
Chapter 5

Differential Forms

Differential forms are, without a doubt, one of the most beautiful inventions in all of mathe-
matics! Their elegance and simplicity are without bound. Nevertheless, like anything good,
it takes a long time before they become natural and second nature to the student. Whether
you realize it or not, you have been using differential forms for a long time now (gradient).

Before diving into forms, I should mention two quick things. First of all, it is likely
that many of you will never need to know any of this in your life. If that is the case, then
you have no reason to read this chapter (unless you’re curious). I have included it anyway,
since writing these notes has helped me to understand some of the more subtle details of
the mathematics, and I find forms to be very useful. Differential forms are extremely useful
when, for example, you wish to discuss electromagnetism, or any gauge field for that matter,
in curved space (i.e.: with gravity). This is why I thought they would do well in this review.

The second point I want to make is that no matter how much you like or dislike forms,
remember that they are nothing more than notation. If mathematicians had never discovered
differential forms, we would not be at a serious loss; however, many calculations would
become long and tedious. The idea behind this beautiful notation is that terms cancel early.
If we had never heard of differential forms, one would have to carry out terms that would
ultimately vanish, making the calculations nasty, at best! But let us not forget that there is
nothing truly “fundamental” about forms – they are a convienience, nothing more.

That being said, let’s jump in...

5.1 The Mathematician’s Definition of Vector

One thing you have to be very careful of in mathematics is definitions. We have to construct
a definition that both allows for all the cases that we know should exist, and also forbids
any pathological examples. This is a big challenge in general mathematical research. We
have been talking a lot about “vectors”, where we have been using the physicist’s definition
involving transformation properties. But this is unfortunately not the only mathematical
definition of a vector. Mathematicians have another definition that stems from the subject
of linear algebra. For the moment, we are going to completely forget about the physical
definition (no more transformations) and look on vectors from the mathematician’s point of
view. To this end we must make a new definition; the key definition of linear algebra:
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Definition: A Vector Space (sometimes called a Linear Space), denoted by V , is a
set of objects, called vectors, and a field, called scalars, and two operations called vector
addition and scalar multiplication that has the following properties:

1. (V ,+) is an abelian group.

2. V is closed, associative, and distributive under scalar multiplication, and there is a
scalar identity element (1�v = �v).

In our case, the field of scalars will always be R, but in general it could be something
else, like C or some other field from abstract algebra.

Notice that this definition of vectors has absolutely nothing to do with the transformation
properties that we are used to dealing with. Nevertheless, you can prove to yourself very
easily that the set of n-dimensional real vectors (Rn) is a vector space. But so are much
more abstract quantities. For example, the set of all n-differentiable, real-valued functions
(Cn(R)) is also a vector space, where the “vectors” are the functions themselves. Another
example of a vector space is the set of all eigenfunctions in quantum mechanics, where the
eigenfunctions are the vectors. This is why it’s called “abstract” algebra!

Sticking to abstract linear algebra for a minute, there is a very important fact about
vector spaces. Recall that a linear transformation is a function that operates on V and
preserves addition and scalar multiplication:

T (αx + βy) = αT (x) + βT (y)

Then let us consider the set of all linear transformations that go from V to R:

Λ1(V) = {φ| φ : V → R; φ linear} (5.1.1)

I’ll explain the notation in a moment. This set is very intriguing - every element in this
set has the property that it acts on any vector in the original vector space and returns a
number. It is, in general, true that for any vector space, this special set exists. It is also
true that this space also forms a vector space itself. It is so important in linear algebra, it is
given a name. We call it the dual space of V , and denote it as V∗. The vectors (functions)
in the space are called covectors, or 1-forms (hense the 1 superscript).

Armed with this knowledge we can go back and redefine what we mean by “tensor”:
consider the set of all multilinear (that is, linear in each of its arguments) transformations
that send k vectors and l covectors to a number:

T : V × · · ·× V� �� �
k times

×V∗ × · · ·× V)∗� �� �
l times

→ R

The set of all such transformations is called T l
k and the elements of this set are called tensors

of rank

�
l
k

�
. Notice immediately that T 0

1 = V , T 1
0 = V∗. Also notice that this definition

of tensor has nothing to do with transformations, as we defined them in Chapter 1. For
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example, acording to this definition, the Christoffel symbols of differential geometry are

(1, 2) tensors. So you must be sure you know which definition people are using.
That’s enough abstraction for one day. Let us consider a concrete example. Consider the

vector space Rn and the set of multilinear transformations that take k vectors to a number:

φ : Rn × Rn × · · ·× Rn
� �� �

k times

→ R (5.1.2)

with the additional property that they are “alternating”, i.e.:

φ(. . . , �x, �y, . . .) = −φ(. . . , �y, �x, . . .) (5.1.3)

When φ takes k vectors in Rn, then φ is called a k-form. The set of all k-forms is denoted
Λk(Rn). Note that this set is also a vector space. The dual space is an example of this, hence
the notation.

In linear algebra, we know that every vector space has a basis, and the dimension of the
vector space is equal to the number of elements in a basis. What is the standard basis for
Λk(Rn)? Let us start by considering the dual space to Rn (k = 1). We know the standard
basis for Rn; let’s denote it by {�e1, ...,�en}. Now let us define a 1-form dxi with the property:

dxi(�ej) ≡
�
dxi, �ej

�
= δi

j (5.1.4)

Then the standard basis of Λk(Rn) is the set of all k-forms:

dxi ∧ dxj ∧ · · · dxl; i �= j �= · · · �= l; i, j, · · · , l ≤ n (5.1.5)

where each “wedge product” has k “dx”s1.
Before going any further, perhaps it would be wise to go over this and make sure you

understand it. Can you write down the standard basis for Λ2(R3)? How about Λ2(R4)? Here
are the answers:

Λ2(R3) : {dx1 ∧ dx2, dx1 ∧ dx3, dx2 ∧ dx3}⇒ D = 3

Λ2(R4) : {dx1 ∧ dx2, dx1 ∧ dx3, dx1 ∧ dx4, dx2 ∧ dx3, dx2 ∧ dx4, dx3 ∧ dx4}⇒ D = 6

By looking at these examples, you should be able to figure out what the dimension of
Λk(Rn) is, in general (k < n):

dim Λk(Rn) =

�
n

k

�
=

n!

k!(n− k)!
(5.1.6)

Notice that if k > n the space is trivial – it only has the zero element.

1Wedge products are discussed below, but for now all you need to know of them is that they are anti-

symmetric products, so A ∧B = −B ∧A for A, B 1−forms.
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5.2 Form Operations

5.2.1 Wedge Product

In order to define the standard basis for Λk(Rn), we needed to introduce a new operation,
called the wedge product (∧). Let’s look more carefully at this new form of multiplication.
As a “pseudo-definition”, consider two 1-forms ω, φ ∈ Λ1(Rn); then let us define an element
in Λ2(Rn) by the following:

ω ∧ φ(�v, �w) = ω(�v)φ(�w)− ω(�w)φ(�v) (5.2.7)

Notice that there are two immediate corollaries:

ω ∧ φ = −φ ∧ ω (5.2.8)

ω ∧ ω = 0 ∀ω ∈ Λk(Rn) (5.2.9)

So the wedge product defines a noncommutative product of forms. Notice that this is different
from the ordinary tensor product:

ω ⊗ φ(�v, �w) ≡ ω(�v)φ(�w) (5.2.10)

Looking at this as an antisymmetric product on forms, you might be reminded of the
cross product. This is exactly right: the cross-product of two vectors is the same thing as a
wedge product of two 1-forms. We will prove this explicitly soon.

Now that we have talked about the specific case of 1-forms, we can generalize to the
wedge product of any forms:

Definition: Let ω ∈ Λk(Rn), φ ∈ Λl(Rn). Then we define ω ∧ φ ∈ Λk+l(Rn) as the sum of
all the antisymmetric combinations of wedge products. This product is

1. Distributive: (dx1 + dx2) ∧ dx3 = dx1 ∧ dx2 + dx1 ∧ dx3

2. Associative: (dx1 ∧ dx2) ∧ dx3 = dx1 ∧ (dx2 ∧ dx3) = dx1 ∧ dx2 ∧ dx3

3. Skew-commutative: ω ∧ φ = (−1)klφ ∧ ω

Notice that for k + l > n the space is trivial, so φ ∧ ω = 0.
Before going any further, let’s do some examples. Consider ω, φ ∈ Λ1(R3), i.e.: 1-forms

in 3-space. Writing it out explicitly, we have:

ω = a1dx1 + a2dx2 + a3dx3

φ = b1dx1 + b2dx2 + b3dx3

ω ∧ φ = (a1dx1 + a2dx2 + a3dx3) ∧ (b1dx1 + b2dx2 + b3dx3)

= (a1b2 − a2b1)dx1 ∧ dx2 + (a1b3 − a3b1)dx1 ∧ dx3 + (a2b3 − a3b2)dx2 ∧ dx3
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Notice how I’ve been careful to keep track of minus signs. Also notice that this looks
very similar to a cross product, as stated earlier. What about taking the wedge product of
two 1-forms in R4:

ξ = a1dx1 + a2dx2 + a3dx3 + a4dx4

χ = b1dx1 + b2dx2 + b3dx3 + b4dx4

ξ ∧ χ = (a1b2 − a2b1)dx1 ∧ dx2 + (a1b3 − a3b1)dx1 ∧ dx3 + (a1b4 − a4b1)dx1 ∧ dx4

+(a2b3 − a3b2)dx2 ∧ dx3 + (a2b4 − a4b2)dx2 ∧ dx4 + (a3b4 − a4b3)dx3 ∧ dx4

Note that this does not look like a “cross product”; it is a six-dimensional object in R4.
However, if you took another wedge product with another 1-form, you would get a 3-form in
R4 (which is four-dimensional), and that would give you something like a four-dimensional
cross product. In general, taking the wedge product of (n − 1) 1-forms in Rn will give you
something analogous to a cross-product. We’ll get back to this later.

As a final example, what if you took the wedge product of a 1-form and a 2-form in R3:

α = c1dx1 + c2dx2 + c3dx3 (5.2.11)

β = L12dx1 ∧ dx2 + L13dx1 ∧ dx3 + L23dx2 ∧ dx3 (5.2.12)

α ∧ β = (c1L23 − c2L13 + c3L12)dx1 ∧ dx2 ∧ dx3 (5.2.13)

Notice that if we identify β = ω ∧ φ from above, then we have shown that the triple wedge
product of 1-forms in R3 is just:

ω ∧ φ ∧ α = det




a1 a2 a3

b1 b2 b3

c1 c2 c3



 dx1 ∧ dx2 ∧ dx3 (5.2.14)

In fact, the wedge product of n 1-forms in Rn is always such a determinant. This is a
very important fact that will come up again and again.

Next, we can ask how a general wedge product of forms acts on vectors? The answer is
that the form farthest to the left acts on the vector, and then you must permute the form so
that all the 1-forms act on the vector. As an example, consider a 2-form acting on a vector:

dx ∧ dy(�v) = dx(�v)dy − dy(�v)dx = vxdy − vydx

The minus sign comes from flipping the dx and the dy.
Before moving on, let us conclude this section with a definition and a theorem:

Definition: A simple k-form is a “monomial” k-form; that is, there is no addition.

Theorem: All k-forms can be written as a linear combination of simple k-forms.

Proof: The proof of this theorem is straightforward: a simple k-form is just a basis
element, possibly multiplied by a number. Then since we are dealing with a vector space,
any element of Λk(Rn) can be written as a linear combination of these basis elements. QED.
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5.2.2 Tilde

The tilde operator is the operator that translates us from vectors to forms, and vice versa.
In general, it is an operation: (rank-k tensors)�→(k-forms). Let’s see some examples:

�v = v1�e1 + v2�e2 + v3�e3 ∈ R3

ṽ = v1dx1 + v2dx2 + v3dx3 ∈ Λ1(R3)

Notice that the tilde changed subscript indices to superscript. This is important when we
have to keep track of what is covariant and contravariant.

Let’s do another less trivial example:

L =




0 L12 L13

−L12 0 L23

−L13 −L23 0



 ∈ R3 (Rank-2)

L̃ =
�
L12dx1 ∧ dx2 + L13dx1 ∧ dx3 + L23dx2 ∧ dx3

�
∈ Λ2(R3)

=
1

2
Lijdxi ∧ dxj

where in the last line I’m using Einstein notation for the indices. Notice how much simpler
it is to write a 2-form as opposed to writing a rank-2 tensor. Also note that both Lij and
Lji are taken care of, including the minus sign, by using wedge products as opposed to using
tensor products - this is why we need the factor of 1

2 in the last line. We are beginning to
see why form notation can be so useful!

Incidentally, notice that I am only considering antisymmetric tensors when I talk about
forms. This is because the form notation has antisymmetry built into it. For symmetric
tensors, the concept of a form is not very useful.

Finally, let me state a pretty obvious result:

Theorem: ˜̃v = v.

Proof: Left to the reader.

5.2.3 Hodge Star

The next tool we introduce for differential forms is the Hodge Star (∗). The Hodge Star
converts forms to their so-called dual form:

∗ : Λk(Rn) → Λn−k(Rn) (5.2.15)

As for many other things in linear algebra, it is sufficient to consider how the Hodge star
acts on the basis elements. Let’s look at some examples.

In R2:

∗dx1 = dx2

∗dx2 = −dx1
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In R3:

∗dx1 = dx2 ∧ dx3 ∗(dx1 ∧ dx2) = dx3

∗dx2 = dx3 ∧ dx1 ∗(dx2 ∧ dx3) = dx1

∗dx3 = dx1 ∧ dx2 ∗(dx3 ∧ dx1) = dx2

In R4:

∗dx1 = +dx2 ∧ dx3 ∧ dx4 ∗(dx1 ∧ dx2) = +dx3 ∧ dx4 ∗(dx1 ∧ dx2 ∧ dx3) = +dx4

∗dx2 = −dx3 ∧ dx4 ∧ dx1 ∗(dx1 ∧ dx3) = −dx2 ∧ dx4 ∗(dx1 ∧ dx2 ∧ dx4) = −dx3

∗dx3 = +dx4 ∧ dx1 ∧ dx2 ∗(dx1 ∧ dx4) = +dx2 ∧ dx3 ∗(dx1 ∧ dx3 ∧ dx4) = +dx2

∗dx4 = −dx1 ∧ dx2 ∧ dx3 ∗(dx2 ∧ dx3) = +dx1 ∧ dx4 ∗(dx2 ∧ dx3 ∧ dx4) = −dx1

∗(dx2 ∧ dx4) = −dx1 ∧ dx3

∗(dx3 ∧ dx4) = +dx1 ∧ dx2

We can see a pattern here if we remember how the Levi-Civita simbol works. For any
form in Λk(Rn):

Φ = φµ1...µk
dxµ1 ∧ · · · ∧ dxµk ⇒

∗Φ =
1

(n− k)!
�ν1...νnφν1...νkdxνk+1 ∧ · · · ∧ dxνn (5.2.16)

or

∗φµ1...µn−k
=

1

(n− k)!
�ν1...νkµ1...µn−k

φν1...νk (5.2.17)

From the above, we can now present a theorem:

Theorem: For any k-form ω ∈ Λk(Rn), ∗ ∗ ω = (−1)n−1ω.

The proof follows from using Equation (5.2.16) and the properties of the Levi-Civita tensor.
Notice that the double-Hodge star does not depend on k at all!

Note that in all cases, we get the general result:

dxi ∧ ∗dxi =
n�

j=1

dxj ≡ dnx ∈ Λn(Rn) (5.2.18)

Λn(Rn) is one-dimensional; it’s single basis element is the wedge product of all the dxj.
This product is called the volume form of Rn. With this in mind, we can reinterpret
Equation (5.2.14). Given three vectors in R3, take their corresponding forms with the tilde
and then take the wedge product of the result. The answer you get is the determinant of
the matrix formed by these three vectors, multiplied by the volume form of R3. What is this
determinant? It is simply the Jacobian of the transformation from the standard basis to the
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basis of the three vectors you chose! In other words, differential forms automatically give us
the vector calculus result:

dn�x� = J dn�x (5.2.19)

5.2.4 Evaluating k-Forms

We have done a lot of defining, but not too much calculating. You might be asking at this
point: OK, so we have all of this machinery- now what?

The appearance of determinants should give you a clue. Whenever we need to evaluate
a k-form, we construct a matrix according to the prescription the form gives us. Finally, we
take the determinant of the matrix.

To construct the matrix, we simply chose whatever elements of our vectors get picked
out by the simple form.

Examples: evalutate the following forms:

1.

dx ∧ dy








a
b
c



 ,




d
e
f









2.

dx ∧ dz








a
b
c



 ,




d
e
f









3.

dx ∧ dy ∧ dz








a
b
c



 ,




d
e
f



 ,




g
h
i









Answers:

1. Construct the matrix by picking out the “x” and “y” components of the vectors, and
take the determinant:

det

�
a d
b e

�

2. This is similar, but now pick out the “x” and “z” components:

det

�
a d
c f

�

3. For this case, it is simply what we had before:

det




a d g
b e h
c f i





Hopefully you get the hang of it by now.
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5.2.5 Generalized Cross Product

Eariler, I mentioned that we can define a generalized cross product in Rn by wedging together
(n− 1) 1-forms. Let’s see this explicitly:

In Rn, take n− 1 vectors, and tilde them so they are now 1-forms: {ṽ1, . . . , ṽn−1}. Now
wedge these forms together to give you an (n − 1)-form, and take the Hodge star of the
product to give us a 1-form. Finally tilde the whole thing to give us an n-vector, and we
have defined a general product of vectors:

�v1 × · · ·× �vn−1 ≡ �[∗(ṽ1 ∧ · · · ∧ ṽn−1)] ∈ Rn (5.2.20)

5.3 Exterior Calculus

A k-form field is a k-form whose coefficients depend on the coordinates. This is exactly
analogous to a vector field in vector calculus. So, if we have a vector field in R3:

�v(�x) = v1(�x)�e1 + v2(�x)�e2 + v3(�x)�e3

ṽ(�x) = v1(�x)dx1 + v2(�x)dx2 + v3(�x)dx3

5.3.1 Exterior Derivative

Now that we have a notion of “function”, let’s see what we can do in the way of calculus.
We can define an operator

d : Λk(Rn) → Λk+1(Rn)

with the all-important property:

d2 = dd ≡ 0 (5.3.21)

By construction we will let d act on forms in the following way:

d(a(x)dx) = da(x) ∧ dx (5.3.22)

Let’s look at some examples.

f(�x) ∈ Λ0(R3) → df(�x) =

�
∂f

∂x1

�
dx1 +

�
∂f

∂x2

�
dx2 +

�
∂f

∂x3

�
dx3 ∈ Λ1(R3)

This is just the gradient of a function! How about the curl?
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ω = a1dx1 + a2dx2 + a3dx3 →

dω =

��
∂a1

∂x1

�
dx1 +

�
∂a1

∂x2

�
dx2 +

�
∂a1

∂x3

�
dx3

�
∧ dx1

+

��
∂a2

∂x1

�
dx1 +

�
∂a2

∂x2

�
dx2 +

�
∂a2

∂x3

�
dx3

�
∧ dx2

+

��
∂a3

∂x1

�
dx1 +

�
∂a3

∂x2

�
dx2 +

�
∂a3

∂x3

�
dx3

�
∧ dx3

=

�
∂a2

∂x1
− ∂a1

∂x2

�
dx1 ∧ dx2 +

�
∂a3

∂x1
− ∂a1

∂x3

�
dx1 ∧ dx3 +

�
∂a3

∂x2
− ∂a2

∂x3

�
dx2 ∧ dx3

Notice that terms like
�

∂a1
∂x1

�
dx1 ∧ dx1 vanish immediately because of the wedge product.

Again we see how the beauty of differential forms notation pays off!

5.3.2 Formulas from Vector Calculus

At this point we can immediately write down some expressions. Some of them I have shown.
Can you prove the rest of them? In all cases, f is any (differentiable) function, and �v is a
vector field.

�df = ∇f (5.3.23)

�∗dṽ = ∇× �v (in R3) (5.3.24)

∗d ∗ ṽ = ∇ · �v (5.3.25)

∗d ∗ df = ∇2f (5.3.26)

Notice that even though dd = 0, d ∗ d �= 0 in general!

5.3.3 Orthonormal Coordinates

Differential forms allow us to do calculations without ever refering to a coordinate system.
However, sooner or later we will want to get our answers back into a coordinate frame. This
could be tricky.

The key point to remember is that each of these dxi is an orthonormal coordinate2. There-
fore we must make sure to translate them into orthonormal coordinates in our coordinate
frame; otherwise, the Hodge star will not work.

Let’s consider a simple example by looking at the two-dimensional Laplacian. From
above, we know that ∇2 = ∗d ∗ d. Cartesian coorindates (x1 = x, x2 = y) are orthonormal,
so we can easily plug into our formula:

2That means that < dxi,�ej >= δi
j and < �ei,�ej >= δij .
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df =
∂f

∂x
dx +

∂f

∂y
dy

∗df =
∂f

∂x
dy − ∂f

∂y
dx

d ∗ df =
∂2f

∂x2
dx ∧ dy − ∂2f

∂y2
dy ∧ dx

=

�
∂2f

∂x2
+

∂2f

∂y2

�
dx ∧ dy

∗d ∗ df =
∂2f

∂x2
+

∂2f

∂y2

All is well with the world. But what if I wanted to do my work in polar coordinates?
Then my coordinate system is (x1 = r, x2 = θ), but the orthonormal polar coordinate basis

vectors are �e1 = r̂,�e2 = θ̂
r , and the dual basis is (dr, rdθ) (see previous footnote). So:

df =
∂f

∂r
dr +

∂f

∂θ
dθ

�r

r

�
=

∂f

∂r
dr +

1

r

∂f

∂θ
(rdθ)

∗df =
∂f

∂r
(rdθ)− 1

r

∂f

∂θ
dr

d ∗ df =

�
∂

∂r

�
r
∂f

∂r

�
dr ∧ dθ − ∂

∂θ

�
1

r

∂f

∂θ

�
dθ ∧ dr

� �r

r

�

=

�
1

r

∂

∂r

�
r
∂f

∂r

�
+

1

r2

∂2f

∂θ2

�
dr ∧ (rdθ)

∗d ∗ df =
1

r

∂

∂r

�
r
∂f

∂r

�
+

1

r2

∂2f

∂θ2
= ∇2f Wow!

where I have introduced ( r
r ) in the first and third line in order to keep the coordinates

orthonormal before using the Hodge star. So, as long as we are careful to use orthonormal
coordinates when using the Hodge star, our formulas work for any coordinate system! This
is a vital reason why differential forms are so useful when working with general relativity,
where you want to prove things about the physics independent of your reference frame or
coordinate basis.

5.4 Integration

We have discussed how to differentiate k-forms; how about integrating them? First I will
discuss how to formally evaluate forms, and then I will present a formula for integrating
them. With this definition in mind, we will be able to derive Stokes’ Theorem- possibly the
most important theorem differential forms will provide us with.
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5.4.1 Evaluating k-form Fields

First, a definition:

Definition: An Oriented k-Parallelogram, denoted by ±P 0
�x{�vi}, (i = 1, . . . , k), is a

k-parallelogram spanned by the k n-vectors {�vi} with basepoint �x. P 0
�x{�vi} is antisymmetric

under �vi exchange.

Oriented k-Parallelograms allow you to think geometrically about evaluating k-forms,
but as far as paperwork goes, they are just a way to keep track of what vectors are what.
We use them explicitly to evaluate k-form fields at a point. Let’s see how that works:

Let’s evaluate the 2-form field φ = cos(xz)dx ∧ dy ∈ Λ2(R3). We’ll evaluate it on the
oriented 2-parallelogram spanned by the 3-vectors �v1 = (1, 0, 1) and �v2 = (2, 2, 3). We’ll
evaluate it at two points: (1, 2, π) and (1

2 , 2, π):

1.

φ




P 00

BBB@

1
2
π

1

CCCA









1
0
1



 ,




2
2
3













= cos(1 · π) det

�
1 2
0 2

�
= −2

2.

φ




P 00

BBB@

1
2
2
π

1

CCCA









1
0
1



 ,




2
2
3













= cos(

1

2
· π) det

�
1 2
0 2

�
= 0

5.4.2 Integrating k-form Fields

Now that we have a formal way to evaluate k-form fields, we can talk about integrating
them. We define what the integral of a k-form field is:

Definition: Let φ ∈ Λk(Rn) be a k-form field, A ⊂ Rk be a pavable set, and γ : A → Rn

be a (vector-valued) differentiable map. Then we define the integral of φ over γ(A) as:

�

γ(A)

φ ≡
�

A

φ

�
P 0

γ(�u)

�
∂�γ

∂x1

����
�u

,
∂�γ

∂x2

����
�u

, . . . ,
∂�γ

∂xk

����
�u

��
dk�u (5.4.27)

where dk�u is the k-volume form.
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Like in vector calculus, we can define the integral formally in terms of Riemann sums -
yuck! Let me just say that this is an equivalent definition; the more curious students can go
prove it.

Let’s do two examples to get the hang of it:

1. Consider φ ∈ Λ1(R2) and integrate over the map:

γ(u) =

�
R cos u
R sin u

�

over the region A = [0, α], (α > 0). Let φ = xdy − ydx:

�

γ(A)

φ =

�

[0,α]

(xdy − ydx)



P 00

@ R cos u
R sin u

1

A

�
−R sin u
R cos u

�


 du

=

� α

0

du[(R cos u)(R cos u)− (R sin u)(−R sin u)]

=

� α

0

duR2[cos2 u + sin2 u]

= αR2

2. Consider φ = dx ∧ dy + ydx ∧ dz ∈ Λ2(R3), and the map:

γ

�
s
t

�
=




s + t
s2

t2





over the region C = {
�

s
t

�
|0 ≤ s ≤ 1, 0 ≤ t ≤ 1}:

�

γ(C)

φ =

� 1

0

� 1

0

(dx ∧ dy + ydx ∧ dz)
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dsdt

=

� 1

0
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det

�
1 1
2s 0

�
+ s2 det

�
1 1
0 2t

��
dsdt

=

� 1

0

� 1

0

(−2s + 2s2t)dsdt

=

� 1

0

ds(−2s + s2) = −2

3
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5.4.3 Stokes’ Theorem

Now we can move on to present one of if not the most important theorems that differential
forms has to offer- Stokes’ Theorem. I will present it correctly; do not be overly concerned
with all the hypotheses; it suffices that the area you are integrating over has to be appropri-
ately “nice”.

Theorem: Let X be a compact, piece-with-boundary of a (k+1)-dimensional oriented
manifold M⊂ Rn. Give the boundary of X (denoted by ∂X) the proper orientation, and
consider a k-form field φ ∈ Λk(Rn) defined on a neighborhood of X. Then:

�

∂X

φ =

�

X

dφ (5.4.28)

What is this theorem saying? My old calculus professor used to call it the “Jumping-d
theorem”, since the “d” jumps from the manifold to the form. In words, this theorem says
that the integral of a form over the boundary of a sufficiently nice manifold is the same thing
as the integral of the derivative of the form over the whole mainfold itself.

You have used this theorem many times before. Let’s rewrite it in more familiar notation,
for the case of R3:

k dφ X
�

X dφ =
�

∂X φ Theorem Name

0 ∇f · d�x Path from �a to �b
� �b

�a ∇f · d�x = f(�b)− f(�a) FTOC

1 (∇× �f) · d�S Surface (Ω)
�

Ω(∇× �f) · d�S =
�

∂Ω
�f · d�x Stokes Theorem

2 (∇ · �f)d3x Volume (V)
�

V (∇ · �f)d3x =
�

∂V
�f · d�S Gauss Theorem

Here, I am using vector notation (even though technically I am supposed to be working with
forms) and for the case of R3, I’ve taken advantage of the following notations:

d�x = (dx, dy, dz)
d�S = (dy ∧ dz, dz ∧ dx, dx ∧ dy)
d3x = dx ∧ dy ∧ dz

As you can see, all of the theorems of vector calculus in three dimensions are reproduced
as specific cases of this generalized Stokes Theorem. However, in the forms notation, we are
not limited to three dimensions!

Before leaving differential forms behind, I should mention one important point that I have
gone out of my way to avoid: the issue of orientation. For the sake of this introduction, let me
just say that all the manifolds we consider must be “orientable with acceptable boundary”.
What does this mean? It means that the manifold must have a sense of “up” (no Möbius
strips). “Acceptable boundary” basically means that we can, in a consistent and smooth way,
“straighten” the boundary (no fractals). These are technical issues that I have purposely
left out, but they are important if you want to be consistent.
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5.5 Forms and Electrodynamics

As a finale for differential forms, I thought it would be nice to summarize briefly how one
uses forms in theories such as E&M. Recall that in covariant electrodynamics, we have an
antisymmetric, rank-2 4-tensor known as the “Field Strength” tensor:

F ≡ Fµνdxµ ⊗ dxν (5.5.29)

As we have seen, it is always possible to use 2-forms instead of (antisymmetric) tensors, and
we can rewrite the above tensor as a differential form in Λ2(M4)3:

F ≡ 1

2
Fµνdxµ ∧ dxν ∈ Λ2(M4) (5.5.30)

Notice that the antisymmetry of Fµν is immediate in form notation. Also, this is a 2-form in
four dimensions, which means that its dual is also a 2-form. Now using Equation (5.5.30), I
can write the Lorentz Force Law for a particle with charge e moving with a velocity vector
�u as:

˙̃p = eF (�u) ∈ Λ1(M4) (5.5.31)

Let’s consider an example. Suppose we have a magnetic field in the x̂ direction, so
F = Bxdy ∧ dz. Then the force on the particle is:

˙̃p = eF (�u) = eBx �dy ∧ dz, �u�
= eBx[dy �dz, �u� − dz �dy, �u�]
= eBx[uzdy − uydz] ⇒ �̇p = eBx(uzŷ − uyẑ)

This is exactly what you would have gotten if you had used your vector-form of Lorentz’s
Law, with cross products.

Another vector that is important in E&M is the 4-current (J). We will again think of J
as a 1-form in M4; therefore, it’s dual is a 3-form.

Armed with all we need, we can write down Maxwell’s Equations:

dF = 0 (5.5.32)

d ∗ F = 4π ∗ J (5.5.33)

To interpret these equations, one can think of F (∗F ) as an object that represents “tubes of
force” flowing through space-time.

We can take advantage of Stokes Theorem (just like in regular vector calculus) to put
these equations in integral form:

3M4 is Minkowski space-time. In general, I can go to any space I want; for now, I’m sticking to flat space

(i.e.: ignoring gravity). But notice that this analysis is totally general, and gravity can be easily included at

this stage.
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�

Σ

dF =

�

∂Σ

F = 0 (5.5.34)
�

Σ

d ∗ F =

�

∂Σ

∗F = 4π(charge) (5.5.35)

The first of these equations says that the total flux of F through a closed region of space-
time is zero; the second equation says that the total flux of ∗F through a closed region of
space-time is proportional to the amount of charge in that region. Notice that this description
never mentions coordinate systems: once again, differential forms has allowed us to describe
physics and geometry without ever referring to a coordinate system! Notice the similarity
of this equation with the Gauss-Bonnet Theorem – in gauge theories, you may think of the
field strength as a curvature to some space!

The final step in studying electrodynamics is to notice that Equation (5.5.32) suggests
something. Recall that if a differential form was the exterior derivative of some other form,
then it’s exterior derivative was necessarely zero, via Equation (5.3.21). Is the converse true?
Namely, if you have a form whose exterior derivative is zero, can it be written as the exterior
derivative of some other form?

Your first impulse might be to say “yes”: surely if the form is an exterior derivative, your
condition is satisfied. But it turns out that the question is a little more subtle than that.
For I can give you a form which is not an exterior derivative of another form, and yet still
has vanishing exterior derivative! This is a famous case of “necessity” versus “sufficiency”
in mathematics. That a form is an exterior derivative is sufficient for its exterior derivative
to vanish, but not necessary.

The key point is that this property depends not on the differential forms themselves, but
on the global properties of the space they live in! It turns out that M4 does indeed have the
property of necessity; specifically, it is simply connected. Therefore it is safe to assume a la
Equation (5.5.32) that we can write:

F = dA (5.5.36)

for some 1-form A. So indeed, electrodynamics in flat space can be described by a 4-vector
potential. But do be careful not to jump to any conclusions before you know the properties
of the universe you are describing!

Finally, we can consider what happens if we let A → A + dλ, where λ is any (reasonably
well-behaved) function. Then by just plugging into Equation (5.5.36), with the help of
Equation (5.3.21), we see that F remains the same. Hense, the 4-vector potential is only
defined up to a 4-gradient; this is exactly what gauge invariance tells us should happen!

This gives a very powerful geometric intuition for our field-strength, and therefore for
electricity and magnetism. You can do similar analyses for any gauge field, and by adjusting
the manifold, you can alter your theory to include gravity, extra dimensions, strings, or
whatever you want! This is one of the biggest reasons why differential forms are so useful to
physicists.
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