Lecture #1

2-D Lattice and Unit Cell

Chemistry 484 Spring Quarter, 2006 Younan Xia, Instructor

Molecules and Solids (Crystals)

Similarity

Difference

Connection

	1/IA					_				_							1	8/VIIIA
1	1 H 1.008	2/ 11A	-	P	er	0		G	2	0	e		13/IIIA	14/IVA	15/VA	16/VIA 1	7/VIIA	2 He 4.003
2	3 Li 6.941	4 Be 9.012	-		1	998 Dr.	. Michae	el Blabe	r				5 B 10.81	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
3	11 Na 22.99	12 Mg 24.30	3/1118	4/IVB	5/VB	6/VIB	7/VIB	8	VШ - 9	10	11/IB	12/IIB	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 Cl 35.05	18 Ar 39.95
4	19 K 39.10	20 Ca 40.08	21 SC 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
5	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 TC 98.91	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
6	55 Cs 123.9	56 Ba 137.3	La- Lu	72 Hf 178.5	73 Ta 180.9	74 W 183.8	75 Re 186.2	76 OS 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po 210.0	85 At 210.0	86 Rn 222.0
7	87 Fr 223.0	88 Ra 226.0	Ac- Lr	104 Db	105 JI	106 Rf	¹⁰⁷ Bh	¹⁰⁸ Hn	109 Mt	110 Uun	111 Uuu							
$\bigstar s \longrightarrow \bigstar \qquad d \longrightarrow \phi \qquad p \longrightarrow \phi$																		
Lanthanides				57 La 138.9	58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm 146.9	62 Sm 150.4	63 Eu 152.0	64 Gd 157.2	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0
Actinides			89 Ac 227.0	90 Th 232.0	91 Pa 231.0	92 U 238.0	93 Np 237.0	94 Pu 239.1	95 Am 241.1	96 Cm 244.1	97 Bk 249.1	98 Cf 252.1	99 Es 252.1	100 Fm 257.1	101 Md 258.1	102 No 259.1	103 Lr 262.1	

f

Formation of Chemical Bonds

Formation of Covalent Bonding

Formation of Ionic Bonding

Types of Chemical Bonding

- Covalent Bonding atoms share electrons to form discrete molecules. Polymers – very large molecules that are made up of many (>5) smaller molecules (monomers) repeatedly linked together.
- Ionic Bonding picks up or loses electrons, ion is charged atom (Na⁺) or group of atoms (NO₃⁻). The force of attraction between oppositely charged ions (cations/anions) leads to the formation of ionic compounds and solids.

Metallic Bonding – positive ions in "sea of electrons".

Discrete Molecule vs. Extended Solid

Element Combination	Likely Structure	<u>Examples</u>
Metal and metal	Extended (metallic)	CuZn (brass), NiTi
Metal and nonmetal	Extended (ionic)	NaCI
Nonmetal and nonmetal	Discrete (molecular) or Extended (covalent network)	SiCl₄ (discrete) Si (extended)

Stoichiometry of Extended Solids

rock salt: NaCl

Empirical Formula

How does the crystal structure of rock salt reveal the formula?

Lattice

- A periodic array of "dots" (or lattice points) with infinite repetition. In reality, we have to deal with finite sizes.
- It is a mathematic abstraction used to describe the translational symmetry (or order) of a periodic structure.
- > A lattice can be described in terms of unit cell and lattice parameters (constants): (*a*, *b*, *c*) and (α , β , γ).
- Crystal Structure = Lattice + Content of the Lattice Point

Unit Cell

- > The simplest portion of a lattice that can be repeated by translation to cover the entire lattice (T = ma + nb).
- In general, we choose the unit cell such that it can reflect the symmetry of the original lattice.
- Primitive cell (P): only contain one lattice point. We must use primitive cells as long as they match the symmetry of the lattice.
- Centered cells: I, C, F

2-D Lattices and Unit Cells

rectangular lattice centered rectangular unit cell

rectangular lattice rectangular unit cell

square lattice square unit cell

hexagonal lattice, unit cell

parallelogram lattice, unit cell

Finding the Unit Cell

Which of the parallelograms in the figure below are unit cells?

A, B, C

How many total heads are included in the correct unit cell?

Two-Dimensional Packing

square packing (square) coordination number = 4 close packing (hexagonal) coordination number = 6

What is the most efficient way to arrange circles (balls, or atoms) on a plane surface?

Packing Efficiency

% packing efficiency =

Area of circles in unit cell x100% Area of unit cell

Square Packing: ~79% Close Packing: ~91%

