
Ising simulation report 
 
Name: 
 

“sommerfeld” – Dynamics of quantum free electrons 
 
“sommerfeld” simulates the response of a two-dimensional quantum free-electron gas to 
applied DC electric and magnetic fields. As in “drude”, electrons do not interact, but their 
velocities are randomized by scattering events characterized by a mean time between 
collisions τ. In contrast to “drude”, the electrons are quantum particles and obey the Pauli 
Exclusion Principle. This does not change the electrical conductivity dramatically. 
However, it gives a qualitatively new point of view that is important when considering 
the implications of band structure: rather than working with average properties of the 
electrons, we focus on the behavior of the electrons of highest energy, the ones with 
energies near the Fermi energy. Electrons of lower energies, because of the exclusion 
principle, effectively play no role. 
 
It is straightforward to find the quantum-mechanical one-electron energy states for an 
electron confined to a volume V. The ground state of the many-electron system is defined 
by assigning the electrons one by one to these energy states in order of increasing energy. 
 
Ex.1. Consider a square of edge length L. Verify that plane wave solutions 
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“sommerfeld” defines a two-dimensional grid of points in reciprocal space by the above 
relation and specifies the initial state of the system in terms of which of these allowed k 
states are occupied. The occupied states are the white dots in the “sommerfeld” display. 
“sommerfeld” pretends the electrons have no spin and limits the occupation of each k 
state to one electron. 
 
PRESET 1 shows the occupied states for a few electrons in a small box.  
 
Ex. 2. Deduce the dimensions of the 2D box to which these electrons are confined. Hint: 
measure the spacing of the grid of allowed k values. Is the box rectangular or square 



shaped? Change the box size in the CONFIGURE dialog box. How does the spacing 
change? 
 
 
 
 
 
 
 
The maximum energy of the filled states is called the Fermi energy; the surface 
separating the filled states from the empty states is the Fermi surface.  
 
Ex. 3. Because of the simplicity of the dispersion relation, m/)(E 222 kk h= , the Fermi 
surface in 2D is a circle. Express the Fermi wave vector as a function of the electron 
density n=N/L2, knowing that the Fermi circle must contain N/2 k- states. 
 
 
 
 
 
 
 
Ex. 4. Run PRESET 1 to see the occupied states change due to thermal motion 
(scattering) at nonzero temperatures. Do all states have the same chance to become 
empty? Does the exclusion principle inhibit scattering? 
 
 
 
 
 
 
 
 
Ex. 5. Select PRESET 2 and run to see the effect of an electric field in the x direction for 
the case of a long relaxation time τ. What happens to the Fermi circle? Does the 
exclusion principle restrict the ability of an electric field to accelerate the electrons? 
 
 
 
 
 
 
 
 
 
 



Reduce τi to 1 ps and run again. What happens to the Fermi circle now?  
 
 
 
 
 
 
 
 
Read pages 144 – 145, “Displaced Fermi sea” to understanding why the current is being 
carried by a tiny minority of the total number of electrons. 
 

“ising” – Ising model and ferromagnetism 
 
Let us imagine a collection of atoms, each having a permanent magnetic moment, with no 
interaction between the moments. The system is characterized by its magnetization, or its 
magnetic moment per unit volume.  The response of the system to an external magnetic 
field can be quantified by a dimensionless quantity called magnetic susceptibility, defined 
as the ratio of the magnetization and the intensity of the magnetic field. According to the 
Curie law, the magnetic susceptibility is inversely proportional to the temperature for a 
non-interacting system. At room temperature, achievable magnetic fields produce only a 
weak alignment of the spins. However, if there are interactions between the spins which 
favor their parallel alignment, then at high temperatures the susceptibility of the system is 
enhanced. Even more interestingly, the interactions lead to a spontaneous alignment of 
the spins at low temperatures, a phenomenon called ferromagnetism. 
 
“ising” is a simulation of one of the classic models for ferromagnetic systems, the two-
dimensional Ising model. The Ising model is a system of N atoms distributed on a square 
lattice, with spin variables which can take on only the values +1 and -1, corresponding to 
“up” and “down” orientations. The spins are assumed to interact with their nearest 
neighbors with an exchange energy –J if the neighbor is parallel, and +J if the neighbor 
is anti-parallel. Each spin also interacts with the applied magnetic field. The energy of the 

full system is ,
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 “ising” selects a spin at random and determines an effective field  at the selected spin, 
equal to the sum of the applied field  and an exchange field from the neighbors. If both 
the external field and chosen spin point upwards, HJ)nn(H eff +−= −+ , where n+ and 
n- are the numbers of up and down-oriented neighbors. “ising” makes the spin point up 
with the probability 
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and point down with the probability   )1(1 =− iSp , regardless of its previous 
orientation. These formulas do not contain the Boltzman constant because both the T and 
H are measured in units of J.   
 
 
This process is repeated for a number of sweeps, during which each spin is selected in 
once, on average. This algorithm is an example of a Monte Carlo simulation. 
 
 
 
 
Ex. 1. Open PRESET 1 to see the array of spins on the left, with red and white indicating 
the up and down orientations of the spins. Click RUN and drag the EXTERNAL FIELD 
slider slowly to both positive and negative values. What color of spin in the display 
corresponds to alignment parallel to a positive magnetic field? 
 
 
 
 
 
 
Ex. 2. Leave the EXTERNAL FIELD at 1 J and RUN, varying the TEMPERATURE in 
the range T>3 J. STOP to see on the right a graphical history of the magnetization during 
your variation of the temperature. Why does the magnetization increase as the 
temperature is lowered? 
 
 
 
 
 
 
T>3 J means that the thermal energy (kBT) is three times larger than the interaction 
energy. The magnetization and magnetic susceptibility are normalized by their saturation 
values, obtained when all the spins are aligned in parallel. 
 
 Ex. 3 Use PRESET 2 and take a data series recording T, H and <M>, starting at T=20 J 
and H= 4 J. Work down in T until you feel the data no longer makes sense. Choose H 
values large enough that the magnetization is easily measurable, but small enough that  
M<0.25, to avoid nonlinearities. You will need to decrease H as you reduce T in order to 
continue to satisfy these conditions. Note that you can have H values between 0 and 1 if 
you write them in instead of using the slider. It is useful to take smaller spacings in T as T 
is lowered. Also, repeat measurements to see how well successive runs agree. The 
readouts of <M> are average values over the time interval displayed in the graph. Be sure 
to RESET the graph before each change in temperature! 
 
Divide <M> by H to find the magnetic susceptibility. If the spins were independent,  



T/1=χ , or the inverse susceptibility, 1−χ , is proportional with T. Plot the inverse 
susceptibility you obtained (e.g. use Excel). Is the x-intercept equal to zero? If not, what 
value do you obtain?  
 
 
 
 
 
 
 
 
 
The Curie-Weiss law gives ),/(1 θχ −= T  and the Curie temperature,θ ,  is predicted by 
the mean-field theory of ferromagnetism to be J4=θ . Does your result agree with that? 
 
 
 
 
 
Ex. 4. Use PRESET 3, where the temperature is below the Curie temperature and the 
external field is zero. When you RUN, the spins quickly condense into a state with most 
of the spins in the same direction. Increase both the NUMBER OF SWEEPS and the 
SPEED by a factor of 10. While running, click on INIT whenever the system decided on 
a preferred orientation. Is the result always the same when repeating the experiment?  
Why? 
 
 
 
 
 
 
 
 
 
Ex. 5. In PRESET 4 the Ising system is initialized in a random T=inf array in zero field, 
but then runs at T= 1J. With each RUN, only a single sweep is performed. Already after 
the first RUN you see that the spins have preferentially aligned in the direction of the 
majority of their neighbors. Click RUN a number of times to see a coarsening of the 
parallel-spin clusters. The larger clusters grow at the expense of the smaller ones. 
Increase the NUMBER OF SWEEPS as time increases. Watch the clusters. Does “ising” 
use open or periodic boundary conditions? 
 
 
 
 
 



Ex. 6. CONFIGURE the array of spins to 20x20. Watch the coarsening process again. 
Focus your attention on a small cluster of oriented spins on a background of spins in the 
other orientation. Can you argue why the small cluster is more likely to shrink than to 
grow? 
 
 
 
 
 
 
 
Ex. 9 Now let’s see if an external magnetic field can flip a system that is oriented in the 
other direction. In PRESET 5 the low external field of H=0.1 J is unlikely to flip spins 
surrounded by parallel neighbors. RUN and watch how thermal fluctuations collaborate 
with the magnetic field to form nuclei of field-oriented spins. How large a nucleus can 
ultimately flip the whole array? Try to vary the temperature and magnetic field slightly 
and record the time needed for flipping the system. What do you find?   
 
 


