
Chapter II: Reciprocal lattice

Read chapter 2 of Kittel



How can we study crystal structure?
• Need probe that can penetrate into crystal
• X-rays, neutrons, (high energy electrons)

• X-rays discovered by Roentgen in 1895 - instant sensation 
round the world - view of his wife’s hand

• Neutrons (discovered in 1932) penetrate with almost no 
interaction with most materials



How can we study crystal structure?
• X-rays scatter from the electrons - intensity proportional to 

the density n(r)  - Mainly the core electrons around the 
nucleus

• Similarly for high energy electrons
• Neutrons scatter from the nuclei 

(and electron magnetic moment)

• In all cases the scattering is periodic - the same in each cell 
of the crystal 

• Diffraction is the constructive interference of the scattering 
from the very large number of cells of the crystal



The crystal can be viewed as made up
of planes in different ways

• Low index planes: more lattice points, more widely 
spaced

• High index planes: less lattice points, more closely 
spaced

• Bragg model: incident waves are reflected specularly
from parallel planes
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Bragg Scattering Law

• Condition for constructive interference:
2d sin θ = n λ

• Maximum λ = 2d
• Thus only waves with λ of order atomic size can 

have Bragg scattering from a crystal
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Single crystal diffraction

• Crystal must be oriented in all directions 
in 3D space using “Gonier Spectrometer”

• Observe scattering only at Bragg angles for a fixed
wavelength x-ray or neutrons or ….. 

Rotate both sample and 
detector about axis

2θ



Alternative approach -
energy dispersive diffraction

•For fixed angle θ , vary the energy (i.e., λ) to satisfy Bragg condition

•X-rays over broad energy range now available at synchrotrons  

•Diffraction (Bragg scattering) from a single crystallite used to
select X-rays with desired wavelength 
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Scattered wave amplitude

• The Bragg law gives the condition for the constructive 
interference of waves scattered from lattice planes.

• We need a deeper analysis to determine the scattering 
intensity from the basis of atoms, i.e. from the spatial 
distribution of electrons within each cell.

• We will use the periodicity of the electron number density
n(r) to perform Fourier analysis.

• We end up with  a second lattice associated with the 
crystal – reciprocal lattice



Periodic Functions and Fourier Analysis

• Any periodic function can be expressed in terms of its 
periodic Fourier components (harmonics).

• Example of density n(x) in 1D crystal:

n(x) = n0 + Σp>0[Cp cos (2π p x/a) + Sp sin (2π p x/a) ]

• Easier expression:
n(x) = Σp npexp( i 2π p x/a)

(easier because exp( a + b) = exp( a ) exp( b) )

• Expression for Fourier Components:
np =  a-1 ∫

0
a dx n(x) exp( - i 2π p x/a)



Periodic functions and Fourier Analysis 
• Define vector position r = (x,y) (2D), r = (x,y,z) (3D).
• Fourier analysis

f(r) = ΣG fG exp( i G ⋅ r)  
where the G’s are vectors, i.e., 

exp( i G ⋅ r) = exp( i (Gx x + Gy y + Gz z) )

• A periodic function satisfies 
f(r) =  f(r + T) where T is any translation
T(n1,n2,…) = n1 a1 + n2 a2 (+ n3 a3 in 3D),

where the n’s are integers 
• Thus

f(r + T) = ΣG fG exp( i G . r) exp( i G ⋅ T) = f( r )
⇒ exp( i G ⋅ T) = 1 ⇒ G ⋅ T = 2π x integer 



Reciprocal Lattice
• The reciprocal lattice is the set of vectors G in Fourier space 

that satisfy the  requirement 
G ⋅ T = 2π x integer for any translation 
T(n1,n2,…) = n1 a1 + n2 a2 (+ n3 a3 in 3D)

• How to find the G’s ??
• Define  vectors bi by   

bi ⋅ aj =  2π δij , where  δii = 1,  δij = 0 if i ≠ j

• If we define the vectors
G(m1,m2,…) = m1 b1 + m2 b2 (+ m3 b3 in 3D),

where the m’s are integers, then clearly 
G ⋅ T = 2π x integer for any T



Reciprocal Lattice and Translations
• Note:  Reciprocal lattice is defined only by the vectors

G(m1,m2,…) = m1 b1 + m2 b2 (+ m3 b3 in 3D),
where the m’s are integers and

bi ⋅ aj =  2π δij , where  δii = 1,  δij = 0 if i ≠ j

• The only information about the actual basis of atoms is in the 
quantitative values of the Fourier components  fG in the 
Fourier analysis

f(r) = ΣG fG exp( i G ⋅ r) 

• Inversion:
fG = Vcell

-1∫cell dr f(r) exp(- i G ⋅ r)



Reciprocal Lattice and 
Fourier Analysis in 1D

• In 1D,  b = 2 π /a, b and a parallel
• Periodic function f(x): 

f(x) = Σp fp exp( i 2π p x/a)
= Σp fp exp( i p b), p = integer

• The set of all integers x b are the reciprocal lattice
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Real & Reciprocal lattices in 2 D

• Two lattices associated with crystal lattice
• b1 perpendicular to a2 , b2 perpendicular to a1

• Wigner-Seitz cell of reciprocal lattice called the “First 
Brillouin Zone” or just “Brillouin Zone”
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Ex. What is the relationship between b1 and b2, if a1>a2?



Reciprocal Lattice in 3D

• The primitive vectors of the reciprocal lattice are defined 
by the vectors bi that satisfy   

bi ⋅ aj =  2π δij , where  δii = 1,  δij = 0 if i ≠ j

• How to find the b’s?

• Note: b1 is orthogonal to a2 and a3, etc.
• In 3D, this is found by noting that (a2 x a3 ) is orthogonal 

to a2 and a3

• Also volume of primitive cell V = |a1 ⋅ (a2 x a3 )|
• Then bi =  (2π / V ) (aj x ak ), 

where (i, j, k) = (1,2,3), (2,3,1) or (3,1,2)
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Ex. Write the primitive vectors
of the reciprocal lattice in terms
of z,y,x ˆˆˆ







Real and reciprocal lattice
(recall Bravais exercises)

• the reciprocal vector G= h b1 + k b2 + l b3 is 
perpendicular to the real lattice plane with index 
(h k l)

• the distance between two consecutive (h k l) 
planes is 

• See also Problem 2.1 in Kittel
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Scattering and Fourier Analysis

• The in and out waves have the form: 
exp( i kin. r - i ωt)  and  exp( i kout. r - i ωt)

• If the in wave drives the electron density, which 
then radiates waves, the outgoing amplitude is 
proportional to:

F= ∫space dr n(r) exp(i (kin - kout )⋅ r)
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Scattering and Fourier Analysis

• Define   ∆k = kout - kint
• Then we know from Fourier analysis that 

F = ∫space dr n(r) exp(- i ∆k . r) = N cell V cell nG

only if ∆k = G, where G = recip. lat. vector
• Otherwise integral vanishes ⇒ no diffraction
• nG = V cell

-1∫cell dr n(r) exp(- i G ⋅ r)

The set of reciprocal lattice vectors determines the
possible x-ray reflections
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Elastic Scattering

• For elastic scattering (energy the same for in and 
out waves)   

| kin |  = |  kout |, or  kin
2 =  kout

2 = ( kin + G)2

• Then one arrives at the condition for diffraction:  
2 | kin. G | = G2
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Ewald Construction

kout = kin + G
| 2 kin⋅ G | =2 | kin | | G | cos (90º + θ)= 2 | kin | | G | sin θ

lπ2=• ∆ka3

kin

kout
G

2θ 90º−θ

• Laue equations:  

kπ2=• ∆ka2

hπ2=• ∆ka1



Equivalent to 
Bragg Condition

• From last slide, 
since G2 = | G |2 :  

| G | = 2 | kin | sin θ
• But | kin | = 2π/λ,  and | G | = n (2π/d), where d = 

spacing between planes (see Kittel prob. 2.1)
• ⇒ Bragg condition 2d sin θ = n λ
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Geometric Construction of 
Diffraction Conditions  

• Consequence of condition 
| 2 kin ⋅ G | = G2 

• | kin ⋅ G/2 | = (G/2)2

• The vector kin (also kout) lies 
along the perpendicular bisecting 
plane of a G vector

• One example is shown
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Diffraction and the 
Brillouin Zone  

• Brillouin Zone formed by
perpendicular bisectors 
of G vectors

• Consequence:
No diffraction for any k
inside the first Brillouin Zone

• Special role of Brillouin Zone (Wigner-Seitz cell 
of reciprocal lattice)  as opposed to any other 
primitive cell 
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Comparison of diffraction 
from different lattices

• The Bragg condition can also be written               
| G | = 2 | kin | sin θ

⇒ sin θ = (λ /4π) | G | 
• Thus the ratios of the sines of the angles for 

diffraction are given by:
sin θ1 / sin θ2 = | G1 | / | G2 |  

• Each type of lattice has characteristic ratios  
the positions of diffraction peaks as a function of 
sin θ 

• Simple scaling with λ



Experimental Powder Pattern  

• Diffraction peaks at angles satisfying the Bragg 
condition

Differences for 
imperfect powder
averages

Reciprocal Lattice units

http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/teaching.html



Fourier analysis of the basis  
• The intensity of the diffraction at each G is 

proportional to the square of the scattering 
amplitude 

F = N ∫cell dr n(r) exp(- i G . r)= NSG

• SG – structure factor
• Regard the crystal density n(r) as a sum of atomic-

like densities natom (r - Ri), centered at point Ri
n(r) = ∑ all i natom i ( r - Ri)

• Then also  
SG =  ∑ i in cell ∫space dr natom i (r - Ri) exp(- i G ⋅r)

Cell



One atom per cell and Form Factor
• Then one can set Ri = 0 and SG is the Fourier 

transform of one atom density
f =  ∫space dr natom (r) exp(- i G ⋅ r)

• Called Form Factor
• In the limit of point-like atoms f=Z

natom (r) |r|

|G|

f Values of |G| for a
particular crystal



More than one atom per cell  

• SG = ∑ i in cell ∫space dr natom i ( r - Ri) exp(- i G ⋅ r)

=  ∑ i in cell exp(- i G ⋅ Ri) 
∫space dr natom i ( r - Ri) exp(- i G ⋅ (r - Ri) ) 

=  ∑ i in cell exp(- i G ⋅ Ri) 
∫space dr natom i ( r) exp(- i G ⋅ r) 

=  ∑ i in cell exp(- i G ⋅ Ri)  fG atom i

• Interpretation: Form factor fG atom i and phase factor
exp(- i G . Ri)  for each atom in unit cell



Structure factor and atomic form factor

• The amplitude of the scattered electromagnetic wave is

• The structure factor of the base is

• The atomic form factor
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“Pure” Structure factor  

• Often the basis contains more than one atom that is 
same element, e.g., diamond structure

• Then fG atom i = fG atom is the same  and
SG =  ∑ i in cell exp(- i G ⋅ Ri)  SG 

atom i

= fG atom ∑ i in cell exp(- i G ⋅ Ri) 

• Define “pure” structure factor
S0

G =  (1/n) ∑ i in cell exp(- i G ⋅ Ri)

where n = number of atoms in cell

• Then SG = n S0
G fG atom



Body Centered Cubic viewed as 
Simple Cubic with 2 points per cell

S0
G =  (1/2) ∑ i =1,2 exp(- i G ⋅ Ri)

=  (1/2) ( 1 + exp(- i G ⋅ R2) 
=  (1/2) exp(- i G ⋅ R2/2) 
[exp( i G ⋅ R2/2) + exp(- i G ⋅ R2/2) ] 
= exp(- i G ⋅ R2/2) cos ( G ⋅ R2/2) 

Result:   If G = (v1 v2 v3) 2π/a
|S0

G | = 1 if sum of integers 
is even
| S0

G | = 0 if sum is odd

Same as we found before!  
FCC reciprocal lattice

a
a1

a3

a2

Points at  
R1 = (0,0,0)
R2 = (1,1,1) a/2



Face Centered Cubic viewed as 
Simple Cubic with 4 points per cell

a
a1

a2

a3

Points at   (0,0,0) ; (1,1,0) a/2 ; 
(1,0,1) a/2 ; (0,1,1) a/2 

S0
G =  (1/4) ∑ i =1,4 exp(- i G . Ri)

Result:

If G = (v1 v2 v3) 2π/a
then

S0
G = 1 if all integers 

are odd  or all are even

S0
G = 0 otherwise

Same as we found before!  
BCC reciprocal lattice



Structure factor for diamond  

• Ex: diamond structure
S0

G =  (1/2) ∑ i =1,2 exp(- i G . Ri)

• R1 = + (1/8, 1/8, 1/8)a
R2 = - (1/8, 1/8, 1/8)a


