Phonons I - Crystal Vibrations (Kittel Ch. 4)

Displacements of Atoms

- Positions of atoms in their perfect lattice positions are given by:

$$
\underline{\mathbf{R}}^{0}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}\right)=\mathrm{n}_{1}{ }^{0} \underline{\mathbf{x}}+\mathrm{n}_{2}{ }^{0} \underline{\mathbf{y}}+\mathrm{n}_{3}{ }^{0} \underline{\mathbf{z}}
$$

For simplicity here we consider only one atom per cell and assume an orthogonal coordinate system

For convenience let $\underline{n}_{i}=\left(n_{i 1}{ }^{0}, n_{i 2}{ }^{0}, n_{i 3}{ }^{0}\right)$ denote atom i which has position $\underline{R}_{i}{ }_{i}$

- The displacement of atom i can be written

$$
\Delta \underline{R}_{i}=u_{i} \underline{x}+v_{i} \underline{y}+w_{i} \underline{z}=\left(n_{1 i}-n_{1 i}^{0}\right) \underline{x}+\left(n_{2 i}-n_{2 i}^{0}\right) y^{+}\left(n_{3 i}-n_{3 i}\right) \underline{z}
$$

Energy \& Force due to Displacements

- The energy of the crystal changes if the atoms are displaced.
- The change in energy can be written as a function of the positions of all the atoms:

$$
\mathrm{E}\left(\underline{\mathbf{R}}_{1}, \underline{\mathbf{R}}_{2}, \underline{\mathbf{R}}_{3}, \ldots\right)=\mathrm{E}\left(\underline{\mathbf{R}}_{1}^{0}+\Delta \underline{\mathbf{R}}_{1}, \underline{\mathbf{R}}_{2}^{0}+\Delta \underline{\mathbf{R}}_{2}, . .\right)
$$

- There are no linear terms if we expand about the equilibrium positions - equilibrium defined by dE/d $\underline{\mathbf{R}}\left(\mathbf{R}=\mathbf{R}^{0}\right)=0$
- To lowest order in the displacements the energy is quadratic Hooke's law - harmonic limit
$\mathrm{E}=\mathrm{E}_{0}+(1 / 2) \Sigma_{\mathrm{ij}} \Delta \underline{\mathbf{R}}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{ij}} \cdot \Delta \underline{\mathbf{R}}_{\mathrm{j}}+\ldots$.

Energy \& Force due to Displacements

- The general expression for force on atom s is

$$
\underline{\mathbf{F}}_{\mathrm{s}}=-\mathrm{dE} / \mathrm{d} \underline{\mathbf{R}}_{\mathrm{s}}
$$

- From the harmonic expression the force is given by

$$
\underline{\mathbf{F}}_{\mathrm{s}}=-\Sigma_{\mathrm{j}} \mathrm{D}_{\mathrm{sj}} \cdot \Delta \underline{\mathbf{R}}_{\mathrm{j}}
$$

- The D's are called force constants - the ratio of force on atom s to displacement of atom j - the generalization of the force constant of a spring
- There are no forces at the equilibrium positions.
- The force is due to the displacement of atoms i and the lowest order terms are linear in the displacements
- Note that D_{ss} exists and its sign is negative!
- What matters is the distance between \underline{R}_{i} and $\underline{\mathrm{R}}_{s}$

Linear chain

- Consider atoms in a line restricted to move along the line

- $\mathrm{F}_{\mathrm{s}}=-\Sigma_{\mathrm{j}} \mathrm{D}_{\mathrm{sj}} \cdot \mathrm{u}_{\mathrm{j}}$
- Consider the case of only nearest neighbor interactions.
- $\mathrm{F}_{\mathrm{s}}=-\left(\mathrm{D}_{\mathrm{s} s-1} \cdot \mathrm{u}_{\mathrm{s}-1}+\mathrm{D}_{\mathrm{s} \mathrm{s}} \cdot \mathrm{u}_{\mathrm{s}}+\mathrm{D}_{\mathrm{s}-1-1} \cdot \mathrm{u}_{\mathrm{s}-1}\right)$
- Or, in analogy with elastic springs, assume that force depends on the relative displacements
- $\quad \mathrm{F}_{\mathrm{s}}=-\Sigma_{\mathrm{i}} \mathrm{C}\left(\mathrm{u}_{\mathrm{s}}-\mathrm{u}_{\mathrm{st}}\right)$
- $\begin{aligned} F_{s}=-C & {\left[\left(u_{s}-u_{s+1}\right)+\left[\left(u_{s}-u_{s-1}\right)\right]\right.} \\ & =C\left[u_{s+1}+u_{s-1}-2 u_{s}\right]\end{aligned}$

Oscillations of linear chain

- Newton's Law:
$\mathrm{Md}^{2} \mathrm{u}_{\mathrm{s}} / \mathrm{dt}^{2}=\mathrm{F}_{\mathrm{s}}=\mathrm{C}\left[\mathrm{u}_{\mathrm{s}+1}+\mathrm{u}_{\mathrm{s}-1}-2 \mathrm{u}_{\mathrm{s}}\right]$
- Time dependence: Let $\left.\mathrm{u}_{\mathrm{s}}(\mathrm{t})=\mathrm{u}_{\mathrm{s}} \exp (-\mathrm{i} \omega \mathrm{t})\right)$ (also sin or cos is correct but not as elegant) Then

$$
\mathrm{M} \omega^{2} \mathrm{u}_{\mathrm{s}}=\mathrm{C}\left[\mathrm{u}_{\mathrm{s}+1}+\mathrm{u}_{\mathrm{s}-1}-2 \mathrm{u}_{\mathrm{s}}\right]
$$

- How to solve? Looks complicated - an infinite number of coupled oscillators!

Oscillations of linear chain

- Since the equation is the same at each s, the solution must have the same form at each s differing only by a phase factor. This is most easily written

$$
\mathrm{u}_{\mathrm{s}}=\mathrm{u} \exp (\mathrm{ik}(\mathrm{~s} \mathrm{a}))
$$

- Then

$$
\mathrm{M} \omega^{2} \mathrm{u}=\mathrm{C}[\exp (\mathrm{ik} \mathrm{a})+\exp (-\mathrm{ik} \mathrm{a})-2] \mathrm{u}
$$

or

$$
\omega^{2}=(\mathrm{C} / \mathrm{M})[2 \cos (\mathrm{ka})-2]
$$

Oscillations of linear chain

- A more convenient form is

$$
\begin{aligned}
& \omega^{\omega^{2}}=(\mathrm{C} / \mathrm{M})[2 \cos (\mathrm{ka})-2] \\
& \quad=4(\mathrm{C} / \mathrm{M}) \sin ^{2}(\mathrm{ka} / 2) \\
& \text { (using } \left.\cos (\mathrm{x})=\cos ^{2}(\mathrm{x} / 2)-\sin ^{2}(\mathrm{x} / 2)=1-2 \sin ^{2}(\mathrm{x} / 2)\right)
\end{aligned}
$$

- Finally: $\omega=2(\mathrm{C} / \mathrm{M})^{1 / 2}|\sin (\mathrm{ka} / 2)|$

Oscillations of a linear chain

- We have solved the infinite set of coupled oscillators!
- The solution is an infinite set of independent oscillators, each labeled by k (wavevector) and having a frequency

$$
\omega_{\mathrm{k}}=2(\mathrm{C} / \mathrm{M})^{1 / 2}|\sin (\mathrm{ka} / 2)|
$$

- The relation ω_{k} as a function of k is called the dispersion curve

Brillouin Zone

- Consider k ranging over all reciprocal space.

The expression for ω_{k} is periodic

$$
\omega_{\mathrm{k}}=2(\mathrm{C} / \mathrm{M})^{1 / 2}|\sin (\mathrm{ka} / 2)|
$$

- All the information is in the first Brillouin Zone - the rest is repeated with periodicity $2 \pi / a$ - that is, the frequencies are the same for ω_{k} and $\omega_{\mathrm{k}+\mathrm{G}}$ where G is any reciprocal lattice vector $\mathrm{G}=$ integer times $2 \pi / a$
- What does this mean?

Meaning of periodicity in reciprocal space

- In fact the motion of atoms with wavevector k is identical to the motion with wavevector $\mathrm{k}+\mathrm{G}$
- All independent vibrations are described by k inside BZ

$\sin (k a / 2)$ with $k \sim 2 \pi / 3$
$\sin ((k+2 \pi / a) a / 2)$

Group velocity of vibration wave

- The wave $u_{s}=u \exp (i k(s a)-i \omega t)$ is a traveling wave
- Phase velocity $\mathrm{v}_{\phi}=\omega / \mathrm{k}$
- Group velocity $\mathrm{v}_{\mathrm{k}}=\mathrm{d} \omega_{\mathrm{k}} / \mathrm{dk}=$ slope of $\omega_{\mathrm{k}} \mathrm{vs} \mathrm{k}$

$$
\omega_{\mathrm{k}}=2(\mathrm{C} / \mathrm{M})^{1 / 2} \sin (\mathrm{ka} / 2)
$$

SO

$$
\mathrm{v}_{\mathrm{k}}=\mathrm{a}(\mathrm{C} / \mathrm{M})^{1 / 2} \cos (\mathrm{ka} / 2)
$$

What is significance of zero Group velocity at BZ Boundary?

- Fundamentally different from elastic wave in a continuum
- Since ω_{k} is periodic in k it must have $\mathrm{v}_{\mathrm{k}}=\mathrm{d} \omega_{\mathrm{k}} / \mathrm{dk}=0$ somewhere!
- Occurs at BZ boundary because ω_{k} must be symmetric about the points on the boundary

What is significance of zero group velocity at BZ Boundary?

- Example of Bragg Diffraction!
- Any wave (vibrations or other waves) is diffracted if k is on a BZ boundary
- $\mathrm{u}_{\mathrm{s}}=\mathrm{u} \exp (\mathrm{ik}(\mathrm{s} a))=\mathrm{u} \exp (\pm \mathrm{is} \pi)=\mathrm{u}(-1)^{\mathrm{s}}$
- Leads to standing wave with group velocity $=0$

Meaning of periodicity in reciprocal space -- II

- This is a general result valid in all crystals in all dimensions
- The vibrations are an example of excitations. The atoms are not in their lowest energy positions but are vibrating.
- The excitations are labeled by a wavevector k and are periodic functions of k in reciprocal space.
- All the excitations are counted if one considers only kinside the Brillouin zone (BZ). The excitations for k outside the BZ are identical to those inside and are not independent excitations.

Diffraction and the Brillouin Zone

- Brillouin Zone formed by perpendicular bisectors of G vectors
- Special Role of Brillouin Zone (Wigner-Seitz cell of recip. lat.)
as opposed to any other primitive cell

- No diffraction for any k
inside the first Brillouin Zone
- Now we see that there are no independent excitations
outside of the first Brilluin Zone

Sound Velocity

- In the long wavelength (small k) limit the atomic vibration wave $u_{s}=u \exp (i k(s a)-i \omega t)$ is an elastic wave
- Atoms act like a continuum for $\mathrm{ka} \ll 1$
- $\quad \omega_{\mathrm{k}}=(\mathrm{C} / \mathrm{M})^{1 / 2} \mathrm{ka}$
- Sound velocity

$$
\mathrm{v}_{\text {sound }}=\mathrm{a}(\mathrm{C} / \mathrm{M})^{1 / 2}
$$

Normal modes of a finite set of oscillators

- N independent oscillators, each labeled by k (wavevector) and having a frequency

$$
\omega_{\mathrm{k}}=2(\mathrm{C} / \mathrm{M})^{1 / 2}|\sin (\mathrm{ka} / 2)|
$$

- Leading to a wave $\mathrm{u}_{\mathrm{s}}=\mathrm{u} \cos (\mathrm{ksa}-\omega \mathrm{t})$
- If end atoms are fixed at $u_{s}=0$, possible wavelenghts

$$
\Rightarrow \mathrm{k}=\pi \mathrm{n} /(\mathrm{N}-1) \mathrm{a}, \mathrm{~N} \text { values }<=\pi / \mathrm{a}
$$

- If periodic boundary conditions $\mathrm{u}_{\mathrm{N}+\mathrm{s}}=\mathrm{u}_{\mathrm{s}}$
$\Rightarrow \mathrm{k}=+-2 \pi \mathrm{n} / \mathrm{Na}, \mathrm{N}$ values $<=\pi / \mathrm{a}$
These discrete choices for waves are called the normal modes of crystal excitations.
The normal modes serve as a basis for describing arbitrarily complex excitations.

Oscillations in higher dimensions

- For k in x direction each atom in the planes perpendicular to x moves the same:

$$
u_{s}=u \exp (i k(s a)-i \omega t)
$$

- For motion in x direction, same as linear chain

$$
\omega=2(C / M)^{1 / 2}|\sin (k a / 2)|
$$

- longitudinal wave

Oscillations in higher dimensions

- Transverse motion: k in x direction; motion v_{s} in y direction

$$
v_{s}=v \exp (i k(s a)-i \omega t)
$$

- Central forces give no restoring force! Unstable!
- Need other forces - non-central or second neighbor

Oscillations in higher dimensions

- Transverse motion: k in x direction; motion v_{s} in y direction

$$
v_{s}=v \exp (i k(s a)-i \omega t)
$$

- Second neighbor forces

$$
\omega^{2}=(1 / 2)(\mathrm{C} / \mathrm{M})[4 \cos (\mathrm{ka})-4]
$$

- The end result is the same!

Two atoms per cell - Linear chain

- To illustrate the effect of having two different atoms per cell, consider the simplest case atoms in a line with nearest neighbor forces only

- Now we must calculate force and acceleration of each of the atoms in the cell

$$
\mathrm{F}_{\mathrm{s}}^{1}=\mathrm{C}\left[\mathrm{u}_{\mathrm{s}-1}^{2}+\mathrm{u}_{\mathrm{s}}^{2}-2 \mathrm{u}_{\mathrm{s}}^{1}\right]=\mathrm{M}_{1} \mathrm{~d}^{2} \mathrm{u}_{\mathrm{s}}^{1} / \mathrm{dt}^{2}
$$

and

$$
\mathrm{F}_{\mathrm{s}}^{2}=\mathrm{C}\left[\mathrm{u}_{\mathrm{s}+1}{ }^{1}+\mathrm{u}_{\mathrm{s}}^{1}-2 \mathrm{u}_{\mathrm{s}}^{2}\right]=\mathrm{M}_{2} \mathrm{~d}^{2} \mathrm{u}_{\mathrm{s}}^{2} / \mathrm{dt}^{2}
$$

Note subscripts

Oscillations with two atoms per cell

- Since the equation is the same for each cell s, the solution must have the same form at each s differing only by a phase factor. This is most easily written

$$
\begin{aligned}
& u_{s}^{1}=u^{1} \exp (i k(s a)-i \omega t) \\
& u_{s}{ }^{2}=u^{2} \exp (i k(s a)-i \omega t)
\end{aligned}
$$

- Inserting in Newton's equations gives the coupled equations

$$
-\mathrm{M}_{1} \omega^{2} \mathrm{u}^{1}=\mathrm{C}\left[(\exp (-\mathrm{ik} \mathrm{a})+1) \mathrm{u}^{2}-2 \mathrm{u}^{1}\right]
$$

and

$$
-\mathrm{M}_{2} \omega^{2} \mathrm{u}^{2}=\mathrm{C}\left[(\exp (\mathrm{ik} a)+1) \mathrm{u}^{1}-2 \mathrm{u}^{2}\right]
$$

$$
\mid 2 \mathrm{C}-\mathrm{M}_{1} \omega^{2} \quad-\mathrm{C}(\exp (-\mathrm{ik} \mathrm{a})+1) \quad=0
$$

Oscillations with two atoms per cell

$$
\left|\begin{array}{cc}
2 C-M_{1} \omega^{2} & -C(\exp (-i k a)+1) \\
-C(\exp (i k ~ a)+1) & 2 C-M_{2} \omega^{2}
\end{array}\right|=0
$$

- Exercise: Find the simplest form of the equation connecting ω and k
- Use $\left.\cos (\mathrm{x})=\cos ^{2}(\mathrm{x} / 2)-\sin ^{2}(\mathrm{x} / 2)=1-2 \sin ^{2}(\mathrm{x} / 2)\right)$
- How many dispersion relations (branches) does this correspond to?

Oscillations with two atoms per cell

- Solution

Oscillations with two atoms per cell

- Limits:
- k~0

Acoustic -
Total Mass

Optic -
Reduced Mass

Acoustic: $\quad \omega^{2}=(1 / 2)\left(\mathrm{C} /\left(\mathrm{M}_{1}+\mathrm{M}_{2}\right)\right) \mathrm{k}^{2} \mathrm{a}^{2}$ Optic: $\quad \omega^{2}=2 \mathrm{C}\left[\left(1 / \mathrm{M}_{1}\right)+\left(1 / \mathrm{M}_{2}\right)\right]=2 \mathrm{C} / \mu$

- $\mathrm{k}=\pi / \mathrm{a}$

Acoustic: $\omega^{2}=2 \mathrm{C} / \mathrm{M}_{\text {large }}$ Optic: $\omega^{2}=2 \mathrm{C} / \mathrm{M}_{\text {small }}$

Modes for k near 0

- Acoustic at k near 0 - motion of cell as a whole

- Optic at k=0-opposed motion - larger displacement of smaller mass

Modes for k at BZ boundary

- Each type of atom moves in opposite directions in adjacent cells
- Leads to two modes, each with only one type of atom moving
- Acoustic at $\mathbf{k}=\pi / \mathbf{a}$ - motion of larger mass

- Optic at $\mathbf{k}=\pi / \mathbf{a}$ - motion of smaller mass

Atom 2 does not move
because there are no forces on it!

Oscillations in 3 dimension with N atoms per cell

- Result

Quantization of Vibration waves

- Each independent harmonic oscillator has quantized energies:

$$
\mathrm{e}_{\mathrm{n}}=(\mathrm{n}+1 / 2) \mathrm{h} \nu=(\mathrm{n}+1 / 2) K \omega
$$

- We can use this here because we have shown that vibrations in a crystal are independent waves, each labeled by $\underline{\mathbf{k}}$ (and index for the type of mode - 3 N indices in a 3 dimen. crystal with N atoms per cell)
- Since the energy of an oscillator is $1 / 2$ kinetic and $1 / 2$ potential, the mean square displacement is given by
$(1 / 2) M \omega^{2} u^{2}=(1 / 2)(n+1 / 2) h \omega$
where M and u are appropriate to the particular mode (e.g. total mass for acoustic modes, reduced mass for optic modes ,)

Quantization of Vibration waves

- Quanta are called phonons
- Each phonon carries energy $\hbar \omega$
- For each independent oscillator (i.e., for each independent wave in a crystal), there can be any integer number of phonons
- These can be viewed as particles
- They can be detected experimentally as creation or destruction of quantized particles
- Later we will see they can transport energy just like a gas of ordinary particles (like molecules in a gas).

- The in and out waves have the form:
$\exp \left(\mathrm{i} \underline{\mathbf{k}}_{\mathrm{in}} \cdot \mathrm{r}-\mathrm{i} \omega_{\mathrm{in}} \mathrm{t}\right)$ and $\exp \left(\mathrm{i} \underline{\mathbf{k}}_{\text {out }} \mathrm{r}-\mathrm{i} \omega_{\text {out }} \mathrm{t}\right)$
- For elastic scattering we found that diffraction occurs only for $\underline{\mathbf{k}}_{\text {in }}-\underline{\mathbf{k}}_{\text {out }}=\underline{\mathbf{G}}$
- For inelastic scattering the lattice planes are vibrating and the phonon supplies wavevector $\underline{\mathbf{k}}_{\text {phonon }}$ and frequency $\omega_{\text {phonon }}$

Inelastic Scattering and Fourier Analysis

- Result:
- Inelastic diffraction occurs for

$$
\begin{aligned}
& \underline{\mathbf{k}}_{\text {in }}-\underline{\mathbf{k}}_{\text {out }}=\underline{\mathbf{G}} \pm \underline{\mathbf{k}}_{\text {phonon }} \\
& \omega_{\text {in }}-\omega_{\text {out }}= \pm \omega_{\text {phonon }} \text { or } \quad \mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\text {out }}= \pm К \omega_{\text {phonon }}
\end{aligned}
$$

Experimental Measurements of Dispersion Curves

- Dispersion curves ω as a function of \mathbf{k} are measured by inelastic diffraction
- If the atoms are vibrating then diffraction can occur with energy loss or gain by scattering particle
- In principle, can use any particle - neutrons from a reactor, X-rays from a synchrotron, He atoms which scatter from surfaces,

Experimental Measurements of Dispersion Curves

- Neutrons are most useful for vibrations

For $\lambda \sim$ atomic size, energies \sim vibration energies BUT requires very large crystals (weak scattering)

- X-ray - only recently has it been possible to have enough resolution (meV resolution with KeV X-rays!)
- "Triple Axis" - rotation of sample and two monochrometers

Neutrons or X-rays with broad range of energies

Single crystal monchrometer

Experimental Measurements of Dispersion Curves

- Alternate approach for Neutrons Use neutrons from a sudden burst, e.g., at the new "spallation" source being built at Oak Ridge
- Measure in and out energies by "time of flight"

More on Phonons as Particles

- Quanta are called phonons, each with energy ho
- \underline{k} can be interpreted as "momentum"
- What does this mean?

NOT really momentum - a phonon does not change the total momentum of the crystal But \underline{k} is "conserved" almost like real momentum - when a phonon is scattered it transfers " \underline{k} " plus any reciprocal lattice vector, i.e.,

$$
\sum \underline{\mathbf{k}}_{\text {before }}=\sum \underline{\mathbf{k}}_{\text {after }}+\underline{\mathbf{G}}
$$

- Example : scattering of particles

$$
\underline{\mathbf{k}}_{\text {in }}=\mathbf{k}_{\text {out }}+\underline{\mathbf{G}} \pm \underline{\mathbf{k}}_{\text {phonon }}
$$

where + means a phonon is created, - means a phonon is destroyed

Summary

- Normal modes of harmonic crystal: Independent oscillators labeled by wavevector \mathbf{k} and having frequency ω_{k}
- The relation ω_{k} as a function of k is called a dispersion curve - 3N curves for N atoms/cell in 3 dimensions
- Quantized energies $(\mathrm{n}+1 / 2) \mathrm{h} \omega_{\mathrm{k}}$
- Can be viewed as particles that can be created or destroyed - each carries energy and "momentum"
- "Momentum" conserved modulo any \underline{G} vector
- Measured directly by inelastic diffraction - difference in in and out energies is the quantized phonon energy
- Neutrons, X-rays,

