
Phonons I - Crystal Vibrations
(Kittel Ch. 4)



• Positions of atoms in their perfect lattice positions are given by:
R0(n1, n2, n3) = n1

0 x + n2
0 y + n3

0 z

For simplicity here we consider 
only one atom per cell and assume 
an orthogonal coordinate system

For convenience let ni = (ni1
0, ni2

0, ni3
0 ) denote atom i which has 

position R0
i

• The displacement of atom i can be written

∆Ri = ui x + vi y + wi z=(n1i- n1i
0) x + (n2i- n2i

0) y+ (n3i- n3i
0) z

Displacements of Atoms  

z

x

y



Energy & Force due to Displacements
• The energy of the crystal changes if the atoms are displaced.  
• The change in energy can be written as a function of the positions 

of all the atoms:
E(R1, R2, R3, …)=E(R1

0 +∆R1, R2
0 +∆R2, ..)

• There are no linear terms if we expand about the equilibrium 
positions – equilibrium defined by dE/d R (R=R0 )=0

• To lowest order in the displacements the energy is quadratic -
Hooke’s law - harmonic limit   

E = E0 + (1/2) Σi j ∆Ri . Di j .∆Rj + ….



Energy & Force due to Displacements
• The general expression for force on atom s is

Fs = - dE/d Rs

• From the harmonic expression the force is given by
Fs = - Σ j Ds j .∆Rj

• The D’s are called force constants - the ratio of force on atom s to 
displacement of atom j - the generalization of the force constant of 
a spring 

• There are no forces at the equilibrium positions.
• The force is due to the displacement of atoms i and the lowest 

order terms are linear in the displacements
• Note that Ds s exists and its sign is negative! 
• What matters is the distance between Ri and Rs



Linear chain
• Consider atoms in a line restricted to move along the line

• Fs = - Σ j Ds j . uj

• Consider the case of only nearest neighbor interactions.
• Fs = - (Ds s-1. us-1+ Ds s. us +Ds s-1. us-1) 

• Or, in analogy with elastic springs, 
assume that force depends on the relative displacements

• Fs = - Σi C (us - us+i)

• Fs = -C [(us - us+1) + [(us - us-1) ]
= C [ us+1 + us-1 - 2 us] 

i ui=∆Ri

a



Oscillations of linear chain

• Newton’s Law:
M d2 us / dt2 = Fs = C [ us+1 + us-1 - 2 us] 

• Time dependence: Let us(t) =  us exp(-iωt) ) 
(also sin or cos is correct but not as elegant)  
Then

M ω2 us =  C [ us+1 + us-1 - 2 us] 

• How to solve? Looks complicated - an infinite number of coupled 
oscillators!

sa us

a



Oscillations of linear chain

• Since the equation is the same at each s, the solution must have the 
same form at each s differing only by a phase factor.  This is most 
easily written

us =  u exp(ik (s a) )
• Then

M ω2 u = C [exp(ik a) + exp(- ik a) - 2 ] u
or 

ω2 =  (C/ M ) [2 cos(ka) - 2]

us

New 
representation



Oscillations of linear chain

• A more convenient form is
ω2 =  ( C / M ) [2 cos(ka) - 2]

=  4 ( C / M ) sin2(ka/2) 
(using cos(x) = cos2 (x/2) - sin2(x/2) = 1 - 2 sin2(x/2))

• Finally:    ω =  2 ( C / M ) 1/2 | sin (ka/2) | 

ui



Oscillations of a linear chain
• We have solved the infinite set of coupled oscillators!

• The solution is an infinite set of independent oscillators, each
labeled by k (wavevector) and having a frequency

ωk =  2 ( C / M ) 1/2 | sin (ka/2) | 

• The relation ωk as a function of k is called the dispersion curve

0 2π/aπ/a

ωk



Brillouin Zone
• Consider k ranging over all reciprocal space.  

The expression for ωk is periodic 

ωk =  2 (C/ M ) ½ | sin (ka/2)|

0 2π/aπ/a

ωk

-2π/a −π/a

Brillouin Zone

• All the information is in the first Brillouin Zone - the rest is 
repeated with periodicity 2π/a - that is, the frequencies are the 
same for ωk and ωk+G where G is any reciprocal lattice vector G = 
integer times 2π/a 

• What does this mean?



Meaning of periodicity in reciprocal space

• In fact the motion of atoms with wavevector k is identical to the 
motion with wavevector k + G 

• All independent vibrations are described by k inside BZ

sin (ka/2) with k ~ 2π/3 sin ( (k + 2π/a) a/2)

ui



Group velocity of vibration wave
• The wave us =  u exp(ik (s a) - iω t) is a traveling wave
• Phase velocity vφ = ω / k 
• Group velocity vk = d ωk / dk = slope of ωk vs k

ωk =  2 ( C / M ) 1/2 sin (ka/2) 
so

vk =  a ( C / M ) 1/2 cos (ka/2) 

0-π/a π/a

ωk

vk =  v sound

vk =  0 at 
BZ boundary



What is significance of zero Group velocity at BZ 
Boundary?

• Fundamentally different from elastic wave in a continuum
• Since ωk is periodic in k it must have vk = d ωk / dk = 0 

somewhere!
• Occurs at BZ boundary because ωk must be symmetric about the 

points on the boundary

0-π/a π/a

ωk

vk =  0 at 
BZ boundary



What is significance of zero group velocity at BZ 
Boundary?

• Example of Bragg Diffraction!
• Any wave (vibrations or other waves) is diffracted if k is on a BZ 

boundary
• us =  u exp(ik (s a) ) = u exp (±isπ) = u(-1)s

• Leads to standing wave with group velocity = 0



Meaning of periodicity in reciprocal space  -- II

• This is a general result valid in all crystals in all dimensions
• The vibrations are an example of excitations.  The atoms are not in 

their lowest energy positions but are vibrating.  
• The excitations are labeled by a wavevector k and are periodic 

functions of k in reciprocal space.  
• All the excitations are counted if one considers only k inside the 

Brillouin zone (BZ). The excitations for k outside the BZ are 
identical to those inside and are not independent excitations.



Diffraction and the Brillouin Zone  

• Brillouin Zone formed by
perpendicular bisectors 
of G vectors

• Special Role of Brillouin Zone 
(Wigner-Seitz cell of recip. lat.)  
as opposed to any other primitive cell

• No diffraction for any k
inside the first Brillouin Zone

• Now we see that there are no independent excitations
outside of the first Brilluin Zone

b2

k2

Brillouin Zone

b1

k1 G



Sound Velocity
• In the long wavelength (small k) limit the atomic 

vibration wave us =  u exp(ik (s a) - iω t) is an elastic 
wave

• Atoms act like a continuum for ka << 1
• ωk =  ( C / M ) 1/2 ka
• Sound velocity 

vsound =  a ( C / M ) 1/2 

0-π/a π/a

ωk

vk =  v sound



• N independent oscillators, each labeled by k (wavevector) and 
having a frequency

ωk =  2 ( C / M ) 1/2 | sin (ka/2) |
• Leading to a wave us =  u cos (ksa - ω t) 
• If end atoms are fixed at us = 0, possible wavelenghts

k=πn/(N-1)a, N values <=π/a
• If periodic boundary conditions uN+s = us 

k=+-2πn/Na, N values<= π/a
These discrete choices for waves are called the normal modes of
crystal excitations. 
The normal modes serve as a basis for describing arbitrarily
complex excitations.

Normal modes of a finite set of oscillators



Oscillations in higher dimensions

• For k in x direction each atom in the planes perpendicular to x 
moves the same:

us =  u exp(ik (s a) - iω t) 
• For motion in x direction, same as linear chain

ω =  2 ( C / M ) 1/2 | sin (ka/2) | 
• longitudinal wave

ui

a



Oscillations in higher dimensions

• Transverse motion: k in x direction; motion vs in y direction
vs =  v exp(ik (s a) - iω t) 

• Central forces give no restoring force!  Unstable!
• Need other forces - non-central or second neighbor 

vi

a



Oscillations in higher dimensions

• Transverse motion: k in x direction; motion vs in y direction
vs =  v exp(ik (s a) - iω t) 

• Second neighbor forces
ω2 =  (1/2)( C / M ) [4 cos(ka) - 4]

• The end result is the same!

vi

a

4 neighbors

Geometric factor = cos2(p/4)



Two atoms per cell - Linear chain
• To illustrate the effect of having two different atoms per cell,

consider the simplest case atoms in a line with nearest neighbor 
forces only

• Now we must calculate force and acceleration of each of the atoms 
in the cell

Fs
1 = C [ us-1

2 + us
2 - 2 us

1]  = M1 d2 us
1 / dt2

and
Fs

2 = C[ us+1
1 + us

1 - 2 us
2]  = M2 d2 us

2 / dt2

Cell s us
1

a

us
2

Note subscripts



Oscillations with two atoms per cell
• Since the equation is the same for each cell s, the solution must 

have the same form at each s differing only by a phase factor.  This 
is most easily written

us
1 =  u1 exp(ik (s a) - iω t ) 

us
2 =  u2 exp(ik (s a) - iω t )

• Inserting in Newton’s equations gives the coupled equations
-M1 ω2 u1 = C[(exp(-ik a) + 1) u2 - 2 u1] 

and 
-M2 ω2 u2 = C [(exp( ik a) + 1) u1 - 2 u2]           

2 C- M1 ω2 - C(exp(-ik a) + 1) 

- C(exp( ik a) + 1)       2 C- M2 ω2
= 0



Oscillations with two atoms per cell

• Exercise: Find the simplest form of the equation connecting ω
and k  

• Use cos(x) = cos2 (x/2) - sin2(x/2) = 1 - 2 sin2(x/2)) 

• How many dispersion relations (branches) does this correspond to?

= 02 C- M1 ω2 - C(exp(-ik a) + 1) 

- C(exp( ik a) + 1)       2 C- M2 ω2



Oscillations with two atoms per cell
• Solution

0 2π/aπ/a

ωk
“Acoustic”

“Optic”

“Gap” frequencies at which
no vibrations can occur



Oscillations with two atoms per cell

• Limits:
• k ~ 0

Acoustic:    ω2 =  (1/2) (C/ (M1 + M2) ) k2 a2

Optic:        ω2 =  2 C[(1 / M1 ) + (1/M2) ] = 2 C/µ
• k = π/a 

Acoustic:  ω2 = 2 C/ Mlarge Optic: ω2 = 2 C/ Msmall

0 2π/aπ/a

ωk
“Acoustic”

“Optic”
“Gap” frequencies at which

no vibrations can occur

Acoustic -
Total Mass

Optic -
Reduced Mass



Modes for k near 0

• Optic at k = 0 - opposed motion - larger displacement of 
smaller mass

us
1

a

us
2

• Acoustic at k near 0 - motion of cell as a whole

us
1

a

us
2



Modes for k at BZ boundary 

• Optic at k = π/a - motion of smaller mass
us

1

a

us
2= 0

• Each type of atom moves in opposite directions in adjacent cells
• Leads to two modes, each with only one type of atom moving 
• Acoustic at k = π/a - motion of larger mass 

us
1= 0

a

us
2

Atom 2 does not move
because there are no forces on it!



Oscillations in 3 dimension with N atoms per cell

• Result

0 2π/aπ/a

ωk

3 Acoustic modes
Each has ω ~ k at small k

3 (N -1) Optic Modes



Quantization of Vibration waves
• Each independent harmonic oscillator has quantized energies:

en = (n + 1/2) hν = (n + 1/2) hω
• We can use this here because we have shown that vibrations in a 

crystal are independent waves, each labeled by k (and index for the 
type of mode - 3N indices in a 3 dimen. crystal with N atoms per 
cell)

• Since the energy of an oscillator is 1/2 kinetic and 1/2 potential, the 
mean square displacement is given by
(1/2) M ω2 u2 = (1/2) (n + 1/2) hω
where M and u are appropriate to the particular mode
(e.g. total mass for acoustic modes, reduced mass for optic modes , 
….) 



Quantization of Vibration waves
• Quanta are called phonons
• Each phonon carries energy  hω
• For each independent oscillator (i.e., for each independent wave in 

a crystal), there can be any integer number of phonons 
• These can be viewed as particles
• They can be detected experimentally as creation or destruction of 

quantized particles
• Later we will see they can transport energy just like a gas of 

ordinary particles (like molecules in a gas).



Inelastic Scattering and Fourier Analysis

• The in and out waves have the form: 
exp( i kin. r - i ωint)  and  exp( i kout. r - i ωoutt)

• For elastic scattering we found that diffraction 
occurs only for kin - kout = G

• For inelastic scattering the lattice planes are 
vibrating and the phonon supplies wavevector
kphonon and frequency ωphonon

d

λ
kin

kout



Inelastic Scattering and Fourier Analysis

• Result:
• Inelastic diffraction occurs  for 

kin - kout = G ± kphonon
ωin - ωout = ± ωphonon or   Εn - Εout = ± hωphonon

kin ωin koutωout

kphononωphonon

Quantum Mechanics



Experimental Measurements of Dispersion Curves

• Dispersion curves ω as a function of k are measured by inelastic 
diffraction

• If the atoms are vibrating then diffraction can occur with energy 
loss or gain by scattering particle

• In  principle, can use any particle - neutrons from a reactor, X-rays 
from a synchrotron, He atoms which scatter from surfaces, …...



Experimental Measurements of Dispersion Curves

• Neutrons are most useful for vibrations
For λ ~ atomic size, energies ~ vibration energies
BUT requires very large crystals (weak scattering)

• X-ray - only recently has it been possible to have enough 
resolution (meV resolution with KeV X-rays!) 

• “Triple Axis” - rotation of sample and two monochrometers

Neutrons or X-rays 
with broad range 
of energies Single crystal

monchrometer

Sample

selected 
energy in

Single crystal
monchrometer

Detector

selected 
energy out



Experimental Measurements of Dispersion Curves

• Alternate approach for Neutrons
Use neutrons from a sudden burst, e.g., at the new “spallation”
source being built at Oak Ridge

• Measure in and out energies by “time of flight”

Burst of neutrons at measured
time (broad range of energies)

Sample

Mechanical chopper
selects velocity, i.e.,
energy in 

Detector

Timing at detector
selects energy out



More on Phonons as Particles
• Quanta are called phonons, each with energy  hω
• k can be interpreted as “momentum”
• What does this mean?

NOT really momentum - a phonon does not change the total 
momentum of the crystal
But k is “conserved” almost like real momentum - when a phonon 
is scattered it transfers “k” plus any reciprocal lattice vector, i.e., 

∑ kbefore = ∑ kafter + G
• Example : scattering of particles

kin =  kout + G ± kphonon
where + means a phonon is created, - means a phonon is destroyed



Summary
• Normal modes of harmonic crystal: 

Independent oscillators labeled by wavevector k and 
having frequency ωk

• The relation ωk as a function of k is called a dispersion 
curve - 3N curves for N atoms/cell in 3 dimensions

• Quantized energies (n + 1/2) h ωk

• Can be viewed as particles that can be created or destroyed 
- each carries energy and “momentum”

• “Momentum” conserved modulo any G vector 
• Measured directly by inelastic diffraction - difference in in 

and out energies is the quantized phonon energy
• Neutrons, X-rays, …..


