
Free Electron Fermi Gas
(Kittel Ch. 6)



Role of Electrons in Solids
• Electrons are responsible for binding of crystals --

they are the “glue” that hold the nuclei together
Types of binding (see next slide)

Van der Waals - electronic polarizability
Ionic  - electron transfer
Covalent - electron bonds

• Electrons are responsible for important properties:
Electrical conductivity in metals
(But why are some solids insulators?)
Magnetism
Optical properties
. . . .



Characteristic types of binding 

Closed-Shell Binding
Van der Waals

Metallic BindingCovalent Binding

Ionic Binding



Starting Point for Understanding 
Electrons in Solids

• Nature of a metal:
Electrons can become 
“free of the nuclei” and 
move between nuclei
since we observe 
electrical conductivity

• Electron Gas
Simplest possible model
for a metal - electrons are
completely “free of the 
nuclei” - nuclei are replaced
by a smooth background --
“Electrons in a box”



Electron Gas - History
• Electron Gas model predates quantum mechanics

• Electrons Discovered in 1897 

• Drude-Lorentz Model  (1905)-
Electrons - classical particles
free to move in a box

• Model: All electrons 
contribute to conductivity.  
Works!  Still used!

• But same model predicted 
that all electrons contribute 
to heat capacity.  Disaster.  
Heat capacity is MUCH less 
than predicted.



Quantum Mechanics
• 1911:  Bohr Model for H 
• 1923: Wave Nature of Particles Proposed 

Prince Louis de Broglie
• 1924-26: Development of Quantum 

Mechanics - Schrodinger equation
• 1924: Bose-Einstein Statistics for 

Identical Particles (phonons, ...)
• 1925-26: Pauli Exclusion Principle,

Fermi-Dirac Statistics (electrons, ...)
• 1925: Spin of the Electron (spin = 1/2)

G. E. Uhlenbeck and S. Goudsmit
Schrodinger



Schrodinger Equation 
• Basic equation of Quantum Mechanics

[ - ( h/2m ) ∆2 + V( r )   ] Ψ ( r ) =  E Ψ ( r ) 

where
m = mass of particle
V( r ) = potential energy at point  r
∆2 = (d2/dx2 + d2/dy2 + d2/dz2)
E = eigenvalue = energy of quantum state
Ψ ( r ) = wavefunction
n ( r )  = | Ψ ( r ) |2 = probability density 



Schrodinger Equation – 1D line 
• Suppose particles can move freely on a line with 

position x,  0 < x < L

• Schrodinger Eq. In 1D with V = 0
- ( h2/2m ) d2/dx2 Ψ (x) =  E Ψ (x) 

• Solution  with Ψ (x) = 0 at x = 0,L 
Ψ (x) = 21/2 L-1/2 sin(kx) ,  k = n π/L, n = 1,2, ...

(Note similarity to vibration waves)

Factor chosen so ∫0
L dx | Ψ (x) |2 = 1

• E (k) = ( h2/2m ) k 2

0 L

Boundary Condition



Electrons on a line 
• Solution with Ψ (x) = 0 at x = 0,L

Examples of waves - same picture as for lattice 
vibrations except that here Ψ (x) is a continuous wave
instead of representing atom displacements 

0 L

Ψ



Electrons on a line
• For electrons in a box, the energy is just the kinetic 

energy which is quantized because the waves must fit 
into the box

E (k) = ( h2/2m ) k 2 , k = n π/L, n = 1,2, ...

E

k

Approaches 
continuum 

as L becomes large



Schrodinger Equation – 1D line 
• E (k) = ( h2/2m ) k 2 , k = n π/L, n = 1,2, ...

• Lowest energy solutions with Ψ (x) = 0 at x = 0,L

Ψ (x)

x



Electrons in 3 dimensions
-(h2/2m ) [d2/dx2 + d2/dy2 + d2/dz2 ] Ψ (x,y,z) = E Ψ (x,y,z)

Ψ (x) = 0 at x = 0,L; Ψ (y) = 0 at y = 0,L ; Ψ (z) = 0 at z 
= 0,L
Ψ = 23/2 L-3/2 sin(kxx) sin(kyy) sin(kzz) ,  

kx = n π/L, n = 1,2, …, same for y,z

E (k) = ( h2/2m ) (kx
2 + ky

2 + kz
2 ) = ( h2/2m ) k2

E

k

Approaches 
continuum 

as L becomes large



Electrons in 3 dimensions - continued
• Just as for phonons it is convenient to define Ψ with 

periodic boundary conditions
• Ψ is a traveling plane wave:

Ψ = L-3/2 exp( i(kxx + kyy + kzz) ,  
kx =  ± n (2π/L), etc., n = 0,1,2,..

E (k) = ( h2/2m ) (kx
2 + ky

2 + kz
2 ) = ( h2/2m ) k2

E

k

Approaches 
continuum 

as L becomes large



Density of states 
• Key point - exactly the same as for vibration waves 
• We need the number of states per unit energy to find 

the total energy and the thermal properties of the 
electron gas.

• Difference: density of states is defined in terms of 
energy E, not angular frequency.

• D(E)dE - number of states in energy range E to E+dE
• States in interval (k, E) to (k+ ∆k, E+ ∆E) 

∆N= N(k) ∆k=N(E) ∆E 
dN/dE=(dN/dk)/(dE/dk)



Density of States in 3D
• The values of kx ky kz are equally spaced: ∆kx = 2π/L ,.
Thus the volume in k space per state is (2π/L)3

and the number of states N with |k| < k0 is 
N = (4π/3) k0

3 / (2π/L)3 = V/6π2 k0
3 L3=V

• The density of states per unit energy is 
D(E) = dN/dE = (dN/dk) (dk/dE) 

E = ( h2/2m ) k2 , dE/dk = ( h2/m ) k
⇒ D(E) = (V/2π2) k2 / (h2/m ) k = (V/2π2) k / (h2/m ) 

= (V/4π2) E1/2 (2m / h2)3/2

Kittel adds a factor of 2 for multiplicity of electrons in the
same state (spin): D(E) = (V/2π2) E1/2 (2m / h2)3/2



Electron orbitals
• In 1D   E (k) = ( h2/2m ) k 2 , k = n π/L, n = 1,2, …
• In 3D   E (k) = ( h2/2m ) (kx

2 + ky
2 + kz

2 ) = ( h2/2m ) k2

kx, ky kz =  ± n (2π/L), etc., n = 0,1,2,..
• Thus E1D (k) = n2 ( h2/2m ) (π /L)2

• E3D (k) = (nx+ny+nz)2 ( h2/2m ) (2π /L)2

• To describe a system of Nelec electrons, we assign 
the electrons to orbitals of increasing energy, until all 
orbitals are filled.

• Order of filling: n=1, 2, .. nF

• nF - topmost filled energy level (Fermi level)



Electron orbitals
• D(E)= (V/2π2) E1/2 (2m / h2)3/2

• Now we need to figure out how many electrons are on 
a given orbital (electron occupancy)

E

D(E) EF

Filled
Empty



What is special about electrons?

• Fermions - obey exclusion principle
• Fermions have spin s = 1/2 - two electrons (spin up and 

spin down) can occupy each state
• Kinetic energy = ( p2/2m ) = ( h2/2m ) k2

• Thus if we know the number of electrons per unit 
volume Nelec/V, 
the lowest energy allowed state is for the lowest Nelec/2 
states to be filled with 2 electrons each,
and all the (infinite) number of other states to be empty.

• The number of states with  |k| < k0 is N = (V/6π2) k0
3 

(from before)



Fermi momentum and energy

Fermi surface in 2D

Thus all states are filled up to the Fermi momentum 
kF and Fermi energy EF = ( h2/2m ) kF

2, given by
Nelec/2 = (V/6π2) kF

3

⇒
kF = (3π2 Nelec/V )1/3 and EF = (h2/2m) (3π2 Nelec/V )2/3

Reciprocal space

Possible k valuesFilled states



Fermi Distribution 
• At finite temperature, electrons are not all in the lowest energy 

states
• Applying the fundamental law of statistics to this case (occupation 

of any state and spin only can be 0 or 1) leads to the Fermi 
Distribution giving the probability that an orbital of energy E is 
occupied (Kittel appendix)

f(E) = 1/[exp((E-µ)/kBT) + 1]

E

D(E)

µ
f(E)

1

1/2

Chemical potential 
for electrons = 

Fermi energy at T=0

kBT µ is temperature 
dependent



Ex. How does the Fermi distribution

f(E) = 1/[exp((E-µ)/kBT) + 1]

compare with the Planck distribution for phonons? 
n(E) =  1 / [ exp ( E / kB T)   - 1 ]

Sketch them as a function of energy for different
temperatures.



Typical values for electrons?
• Here we count only valence electrons (see Kittel table)

• Element   Nelec/atom      EF         TF = EF/kB

Li 1  4.7 eV 5.5 x104 K 

Na 1 3.23eV 3.75 x104 K 

Al 3   11.6 eV 13.5 x104 K

• For typical metals the Fermi energy temperature is 
much greater than ordinary temperatures – transition 
from f(E)=1 to f(E)=0 is sharp at room temperature



Heat Capacity for Electrons 
Just as for phonons the definition of heat capacity is C = dU/dT
where U = total internal energy

• When heated from T=0 only electrons within an energy range 
kBT of the Fermi energy can be excited thermally
• For T << TF = EF /kB roughly U ~ U0 + Nelec (T/ TF) kB T  so that

C =  dU/dT ~ Nelec kB (T/ TF)

E

D(E)
µ

f(E)
1

1/2

Chemical 
potential 

for electrons

kBT



Heat Capacity for Electrons 
• More precisely, the change in energy when heated 

from 0 to T is

∆U = ∫0
∞ dE E D(E) f(E) - ∫0

EF dE E D(E) 

• Using the fact that T << TF:
C =  dU/dT = ∫0

∞ dE (E - EF)  D(E) (df(E)/dT) 
≈ D(EF) ∫0

∞ dE (E - EF) (df(E)/dT) 

• The integral can be done almost exactly (exact in the 
low T limit) to give
C = (π2/3) D(EF) kB

2 T (valid for any metal) 
→ (π2/2) (Nelec/EF) kB

2 T  (for the electron gas)
(using D(EF) = 3 Nelec/2EF )

• Key result:  C ~ T - agrees with experiment!



Heat capacity
• Comparison of electrons in a metal with phonons

H
ea

t C
ap

ac
ity

 C

T

T3

Phonons approach
classical limit
C ~ 3 Natom kB

Electrons have 
C ~ Nelec kB (T/TF)

Electrons dominate
at low T in a metal 

T

Phonons dominate
at high T because of 
reduction factor (T/TF)



Heat capacity
• Experimental results for metals

C/T = γ + A T2 + ….
• Find the ratio γ / γfree, γfree = (π2/2) (Nelec/EF) kB

2 is the 
free electron gas result.  Equivalently since EF ∝1/m, 
we can consider the ratio γ / γfree = mfree/mth*, where 
mth* is an thermal effective mass for electrons in the 
metal 

Metal mth*/ mfree
Li 2.18
Na 1.26
K 1.25
Al 1.48
Cu 1.38

• mth* close to m(free) is the “good”, “simple metals” !



Electrical Conductivity & Ohm’s Law
• Consider electrons in an external field E.  They 

experience a force F = -eE
• Now F = dp/dt =  h dk/dt , since p = h k
• Thus in the presence of an electric field all the 

electrons accelerate and the k points shift, i.e., the 
entire Fermi surface shifts E

Equilibrium - no field With applied field



Electrical Conductivity & Ohm’s Law
• What limits the acceleration of the electrons? 
• Scattering increases as the electrons deviate more 

from equilibrium
• After field is applied a new equilibrium results as a 

balance of acceleration by field and scattering
E

Equilibrium - no field With applied field



Electrical Conductivity and Resistivity
• The conductivity σ is defined by j = σ E, 

where j = current density
• How to find σ?
• From before F = dp/dt = m dv/dt =   h dk/dt
• Equilibrium is established when the rate that k 

increases due to E equals the rate of decrease due to 
scattering, then dk/dt = 0

• If we define a scattering time τ and scattering rate1/τ
h ( dk/dt + k /τ ) = F= q E (q = charge)

• Now j = n q v (where n = density) so that 
j = n q (h k/m) = (n q2/m) τ E
⇒ σ = (n q2/m) τ

• Resistance: ρ = 1/ σ ∝ m/(n q2 τ) 
Note: sign of charge

does not matter



Scattering mechanisms
• Impurities - wrong atoms, missing atoms, extra atoms, 

….

Proportional to concentration

• Lattice vibrations - atoms out of their ideal places

Proportional to mean square displacement

• (Really these conclusions depend upon ideas from the 
next section that there is no scattering in a perfect 
crystal.)



Electrical Resistivity
• Resistivity ρ is due to scattering:  Scattering rate 

inversely proportional to scattering time τ

ρ ∝ scattering rate ∝ 1/τ

• Matthiesson’s rule - scattering rates add

ρ = ρvibration + ρimpurity ∝ 1/τvibration + 1/τimpurity

Temperature dependent
∝ <u2>

Temperature independent
- sample dependent



Electrical Resistivity
• Consider relative resistance R(T)/R(T=300K)
• Typical behavior (here for samples of potassium)
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T
Increase as T2

Inpurity scattering dominates
at low T in a metal

(Sample dependent) 

Phonons dominate at 
high T because mean square 

displacements <u2> ∝ T
Leads to R ∝ T

(Sample independent) 

0.01

0.05



Interpretation of Ohm’s law
Electrons act like a gas

• A electron is a particle - like a molecule.
• Electrons come to equilibrium by scattering like 

molecules (electron scattering is due to defects, 
phonons, and electron-electron scattering).

• Electrical conductivity occurs because the electrons 
are charged, and it shows the electrons move and 
equilibrate

• What is different from usual molecules?
Electrons obey the exclusion principle. This limits the 
allowed scattering which means that electrons act like 
a weakly interacting gas. 



Hall Effect I
• Electrons moving in an electric and a perpendicular 

magnetic field
• Now we must carefully specify the vector force

F = q( E + (1/c) v x B ) (note: c → 1 for SI units)
(q = -e for electrons)

E

B

v
FE

FB

Vector directions 
shown for positive q



Hall Effect II
• Relevant situation: current j = σ E = nqv flowing along 

a long sample due to the field E
• But NO current flowing in the perpendicular direction
• This means there must be a Hall field EHall in the 

perpendicular direction so the net force F⊥ = 0
F⊥ = q( EHall + (1/c) v x B ) = 0

E

v
F⊥

j

j

EHall

B

x

zy



Hall Effect III
• Since

F⊥ = q( EHall + (1/c) v x B ) = 0    and v = j/nq

then defining v = (v)x, EHall = (EHall )y, B = (B )z, 
EHall = - (1/c) (j/nq) (- B )

and the Hall coefficient is
RHall = EHall / j B = 1/(nqc)    or    RHall = 1/(nq)  in SI

E

vF⊥ j

EHall

B

Sign from cross product



Hall Effect IV
• Finally, define the Hall resistance as 

ρHall = RHall B = EHall / j

which has the same units as ordinary resistivity
• RHall = EHall / j B = 1/(nq)
• Note: RHall determines sign of charge q

Since magnitude of charge is known RHall also 
determines density n

• The sign of charge in several metals (Mg, Al) is 
positive

Each of these  quantities can 
be measured directly



Electrons act like gas - heat transport
• A electron is a particle that carries energy - just like a 

molecule.
• Electrical conductivity shows the electrons move, 

scatter, and equilibrate
• What is different from usual molecules?

Electrons obey the exclusion principle.  This limits 
scattering and helps them act like weakly interacting 
gas. 

Heat Flow

coldhot



Heat Transport due to Electrons
• Definition (just as for phonons):

jthermal = heat flow (energy per unit area per unit time ) 
= - K dT/dx

• If an electron moves from a region with local 
temperature T to one with local temperature T - ∆T, it 
supplies excess energy c ∆T, where c = heat capacity 
per electron.   (Note ∆T can be positive or negative). 

• On average :
∆T = (dT/dx) vx τ, where τ = mean time between 
collisions

• Then  jthermal = - n  vx c vx τ dT/dx = - n  c vx
2 τ dT/dx

Density
Flux



Electron Heat Transport - continued
• Just as for phonons:

Averaging over directions gives ( vx
2 ) average =  (1/3) v2

and 
j = - (1/3) n c v2 τ dT/dx

• Finally we can define the mean free path L = v τ
and  C = nc = total heat capacity,
Then  

j = - (1/3) C v L dT/dx
and
K = (1/3) C v L = (1/3) C v2 τ = thermal conductivity

(just like an ordinary gas!)



Electron Heat Transport - continued
• What is the appropriate v? 
• The velocity at the Fermi surface = vF

• What is the appropriate τ ? 
• Same as for conductivity (almost).

• Results using our previous expressions for C:

K = (π2/3)  (n/m) τ kB
2 T

• Relation of K and σ -- From our expressions:
K / σ = (π2/3) (kB/e)2 T

• This justifies the Weidemann-Franz Law that
K / σ ∝ T



Electron Heat Transport - continued
• K ∝ σ T
• Recall σ → constant as T → 0, σ → 1/T as T → large
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Low T  -- K  
increases as heat
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(v and L are ~ constant)
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high T limit
- K constant
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Electron Heat Transport - continued

• Comparison to Phonons

Electrons dominate in good metal crystals

Comparable in poor metals like alloys

Phonons dominate in non-metals



Summary
• Electrical Conductivity - Ohm’s Law

σ = (n q2/m) τ ρ = 1/σ
• Hall Effect

ρHall = RHall B = EHall / j
ρ and ρHall determine n and the charge of the carriers

• Thermal Conductivity
K = (π2/3)  (n/m) τ kB

2 T
Weidemann-Franz Law:
K / σ = (π2/3) (kB/e)2 T

• Metallic Binding 
Kinetic repulsion
Coulomb attraction to nuclei 
(not included in gas model - must be added)


