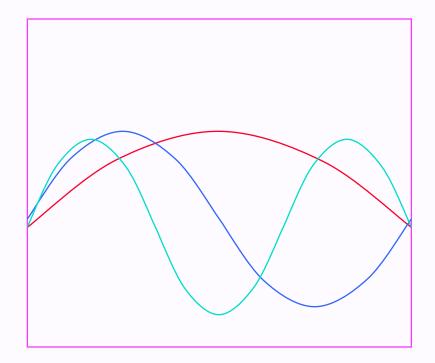
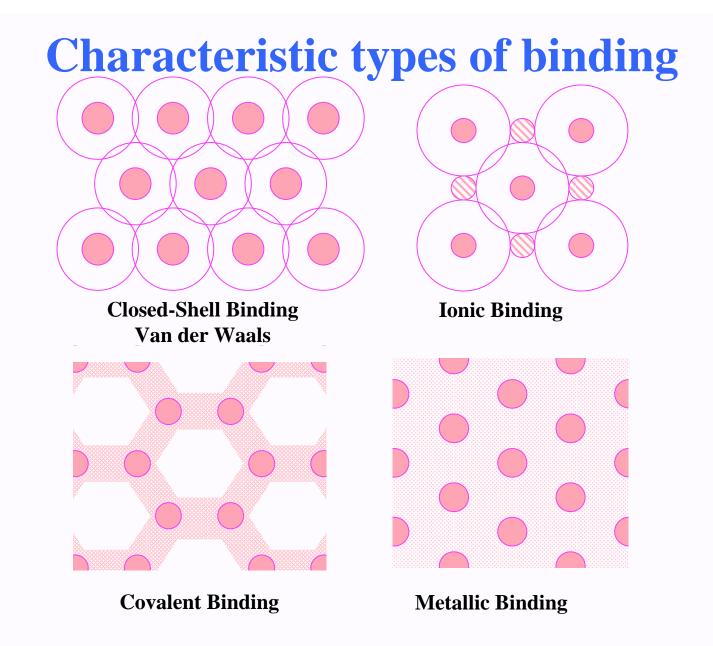
Free Electron Fermi Gas (Kittel Ch. 6)



Role of Electrons in Solids

- Electrons are responsible for binding of crystals -they are the "glue" that hold the nuclei together Types of binding (see next slide) Van der Waals - electronic polarizability lonic - electron transfer Covalent - electron bonds
- Electrons are responsible for important properties: Electrical conductivity in metals (But why are some solids insulators?) Magnetism Optical properties

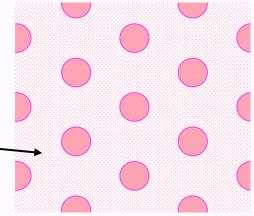
. . . .

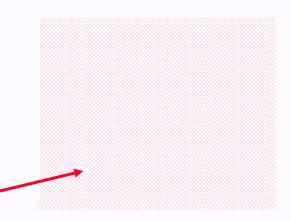


Starting Point for Understanding Electrons in Solids

- Nature of a metal: Electrons can become "free of the nuclei" and move between nuclei since we observe electrical conductivity
- Electron Gas

Simplest possible model for a metal - electrons are completely "free of the nuclei" - nuclei are replaced by a smooth background --"Electrons in a box"





Electron Gas - History

- Electron Gas model predates quantum mechanics
- Electrons Discovered in 1897
- Drude-Lorentz Model (1905)-Electrons - classical particles free to move in a box
- Model: All electrons contribute to conductivity. Works! Still used!
- But same model predicted that all electrons contribute to heat capacity. Disaster. Heat capacity is MUCH less than predicted.

Quantum Mechanics

- 1911: Bohr Model for H
- 1923: Wave Nature of Particles Proposed Prince Louis de Broglie
- 1924-26: Development of Quantum Mechanics Schrodinger equation
- 1924: Bose-Einstein Statistics for Identical Particles (phonons, ...)
- 1925-26: Pauli Exclusion Principle, Fermi-Dirac Statistics (electrons, ...)
- 1925: Spin of the Electron (spin = 1/2)
 G. E. Uhlenbeck and S. Goudsmit

Schrodinger

Schrodinger Equation

Basic equation of Quantum Mechanics

 $[-(\hbar/2m)\Delta^2 + V(\underline{r})]\Psi(\underline{r}) = E\Psi(\underline{r})$

where

m = mass of particle $V(\underline{r}) = potential energy at point \underline{r}$ $\Delta^2 = (d^2/dx^2 + d^2/dy^2 + d^2/dz^2)$ E = eigenvalue = energy of quantum state $\Psi(\underline{r}) = wavefunction$ $n(\underline{r}) = |\Psi(\underline{r})|^2 = probability density$

Schrodinger Equation – 1D line

 Suppose particles can move freely on a line with position x, 0 < x < L

0

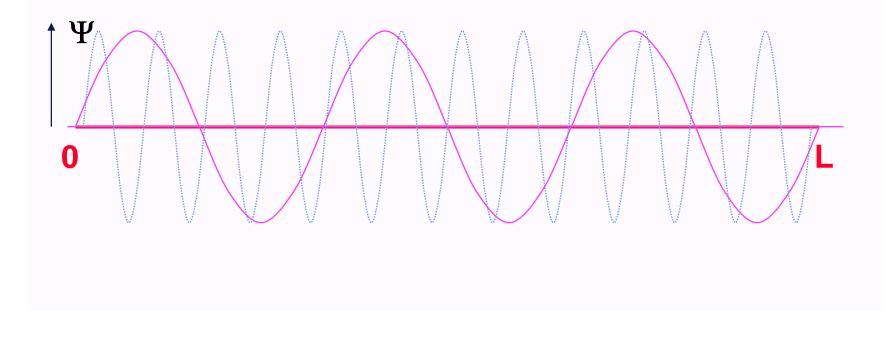
- Schrodinger Eq. In 1D with V = 0

 (ħ²/2m) d²/dx² Ψ (x) = E Ψ (x)
- Solution with Ψ (*x*) = 0 at x = 0,L Ψ (*x*) = 2^{1/2} L^{-1/2} sin(kx), k = n π /L, n = 1,2, ... (Note similarity to vibration waves)
 - Factor chosen so $\int_0^L dx |\Psi(x)|^2 = 1$
- E (k) = $(\hbar^2/2m) k^2$

Electrons on a line

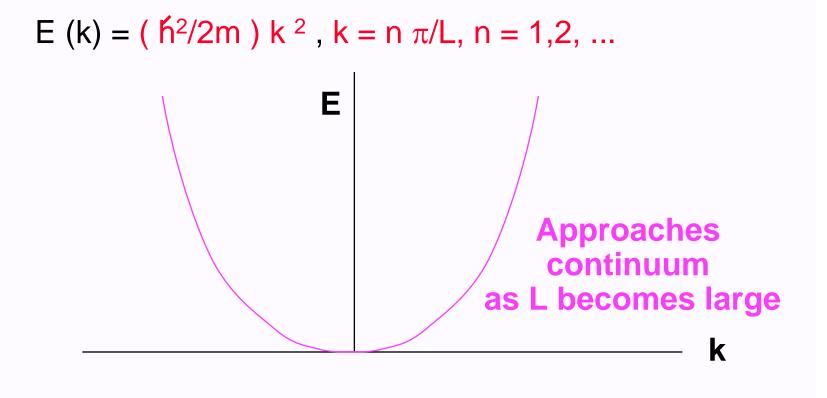
• Solution with $\Psi(x) = 0$ at x = 0, L

Examples of waves - same picture as for lattice vibrations except that here $\Psi(x)$ is a continuous wave instead of representing atom displacements



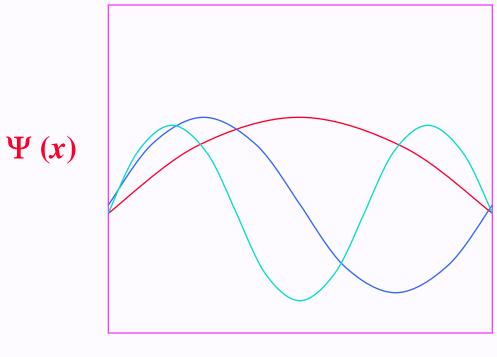
Electrons on a line

• For electrons in a box, the energy is just the kinetic energy which is quantized because the waves must fit into the box



Schrodinger Equation – 1D line

- E (k) = ($h^{2}/2m$) k², k = n π/L , n = 1,2, ...
- Lowest energy solutions with $\Psi(x) = 0$ at x = 0, L

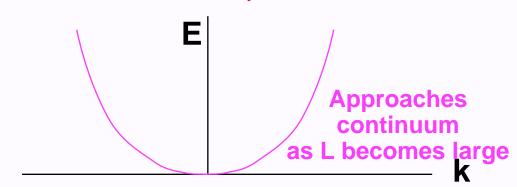


Electrons in 3 dimensions

-(h²/2m) [d²/dx² + d²/dy² + d²/dz²] Ψ (x,y,z) = E Ψ (x,y,z)

$$\begin{split} \Psi(x) &= 0 \text{ at } x = 0, L; \ \Psi(y) = 0 \text{ at } y = 0, L \text{ ; } \Psi(z) = 0 \text{ at } z \\ &= 0, L \\ \Psi &= 2^{3/2} L^{-3/2} \frac{\sin(k_x x) \sin(k_y y) \sin(k_z z)}{k_x = n \pi/L, n = 1, 2, \dots, \text{ same for } y, z} \end{split}$$

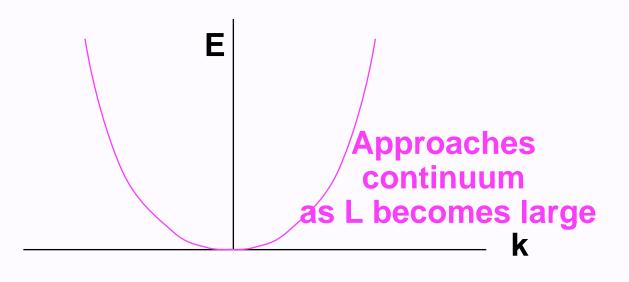
E (k) = ($\hbar^2/2m$) (k_x² + k_y² + k_z²) = ($\hbar^2/2m$) k²



Electrons in 3 dimensions - continued

- Just as for phonons it is convenient to define Ψ with periodic boundary conditions
- Ψ is a traveling plane wave:
 $$\begin{split} \Psi &= L^{-3/2} \exp(i(k_x x + k_y y + k_z z), \\ k_x &= \pm n (2\pi/L), \text{ etc., } n = 0,1,2,... \end{split}$$

E (k) = ($\hbar^2/2m$) (k_x² + k_y² + k_z²) = ($\hbar^2/2m$) k²



Density of states

- Key point exactly the same as for vibration waves
- We need the number of states per unit energy to find the total energy and the thermal properties of the electron gas.
- Difference: density of states is defined in terms of energy E, not angular frequency.
- D(E)dE number of states in energy range E to E+dE
- States in interval (k, E) to (k+ Δ k, E+ Δ E)

 $\Delta N = N(k) \Delta k = N(E) \Delta E$ dN/dE=(dN/dk)/(dE/dk)

Density of States in 3D

• The values of $k_x k_y k_z$ are equally spaced: $\Delta k_x = 2\pi/L$,. Thus the volume in k space per state is $(2\pi/L)^3$ and the number of states N with $|k| < k_0$ is

 $N = (4\pi/3) k_0^3 / (2\pi/L)^3 = V/6\pi^2 k_0^3 \qquad L^3 = V$

The density of states per unit energy is
 D(E) = dN/dE = (dN/dk) (dk/dE)

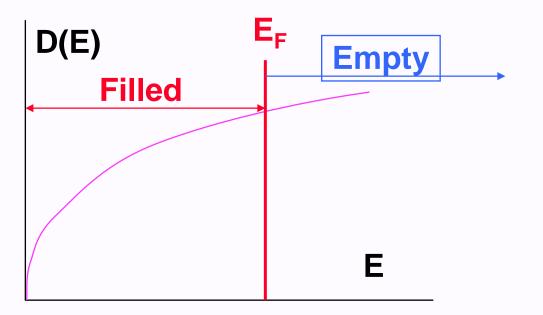
 $\begin{array}{l} \mathsf{E} = (\ \hbar^{2}/2m \) \ k^{2} \ , \ d\mathsf{E}/d\mathsf{k} = (\ \hbar^{2}/m \) \ \mathsf{k} \\ \Longrightarrow \mathsf{D}(\mathsf{E}) = (\mathsf{V}/2\pi^{2}) \ \mathsf{k}^{2} \ / \ (\hbar^{2}/m \) \ \mathsf{k} \ = (\mathsf{V}/2\pi^{2}) \ \mathsf{k} \ / \ (\hbar^{2}/m \) \\ = (\mathsf{V}/4\pi^{2}) \ \mathsf{E}^{1/2} \ (2m \ / \ \hbar^{2})^{3/2} \\ \mbox{Kittel adds a factor of 2 for multiplicity of electrons in the same state (spin): } \ \mathsf{D}(\mathsf{E}) = (\mathsf{V}/2\pi^{2}) \ \mathsf{E}^{1/2} \ (2m \ / \ \hbar^{2})^{3/2} \ \end{array}$

Electron orbitals

- In 1D E (k) = ($\hbar^2/2m$) k², k = n π/L , n = 1,2, ...
- In 3D E (k) = ($\hbar^2/2m$) ($k_x^2 + k_y^2 + k_z^2$) = ($\hbar^2/2m$) k² k_x, k_y k_z = ± n (2 π/L), etc., n = 0,1,2,..
- Thus E_{1D} (k) = n² (h²/2m) (π /L)²
- E_{3D} (k) = $(n_x + n_y + n_z)^2 (\hbar^2/2m) (2\pi/L)^2$
- To describe a system of N_{elec} electrons, we assign the electrons to orbitals of increasing energy, until all orbitals are filled.
- Order of filling: n=1, 2, ... n_F
- n_F topmost filled energy level (Fermi level)

Electron orbitals

• $D(E) = (V/2\pi^2) E^{1/2} (2m / h^2)^{3/2}$



• Now we need to figure out how many electrons are on a given orbital (electron occupancy)

What is special about electrons?

- Fermions obey exclusion principle
- Fermions have spin s = 1/2 two electrons (spin up and spin down) can occupy each state
- Kinetic energy = $(p^2/2m) = (\hbar^2/2m) k^2$
- Thus if we know the number of electrons per unit volume N_{elec}/V,

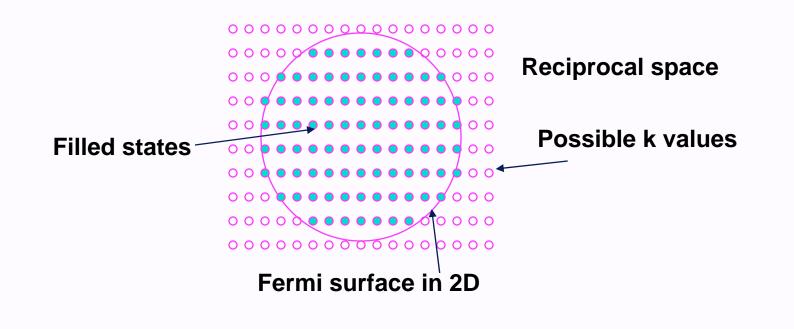
the lowest energy allowed state is for the lowest $N_{elec}/2$ states to be filled with 2 electrons each,

and all the (infinite) number of other states to be empty.

• The number of states with $|\mathbf{k}| < \mathbf{k}_0$ is N = (V/6 π^2) \mathbf{k}_0^3 (from before)

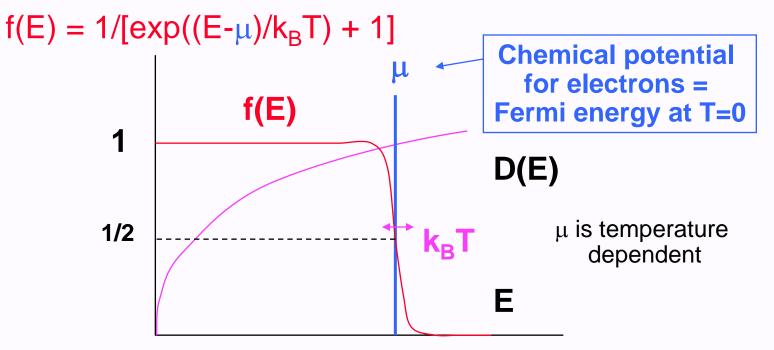
Fermi momentum and energy

Thus all states are filled up to the Fermi momentum k_F and Fermi energy $E_F = (\hbar^2/2m) k_F^2$, given by $N_{elec}/2 = (V/6\pi^2) k_F^3$ \Rightarrow $k_F = (3\pi^2 N_{elec}/V)^{1/3}$ and $E_F = (\hbar^2/2m) (3\pi^2 N_{elec}/V)^{2/3}$



Fermi Distribution

- At finite temperature, electrons are not all in the lowest energy states
- Applying the fundamental law of statistics to this case (occupation of any state and spin only can be 0 or 1) leads to the Fermi Distribution giving the probability that an orbital of energy E is occupied (Kittel appendix)



Ex. How does the Fermi distribution $f(E) = 1/[exp((E-\mu)/k_BT) + 1]$

compare with the Planck distribution for phonons? $n(E) = 1 / [exp(E/k_BT) - 1]$

Sketch them as a function of energy for different temperatures.

Typical values for electrons?

• Here we count only valence electrons (see Kittel table)

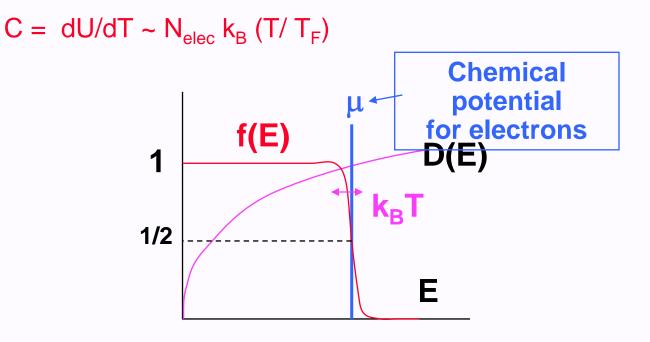
• E	Element	N _{elec} /atom	E _F	$T_F = E_F / k_B$
L	.i	1	4.7 eV	5.5 x10 ⁴ K
Ν	la	1	3.23eV	3.75 x10 ⁴ K
А	Al	3	11.6 eV	13.5 x10 ⁴ K

 For typical metals the Fermi energy temperature is much greater than ordinary temperatures – transition from f(E)=1 to f(E)=0 is sharp at room temperature

Heat Capacity for Electrons

Just as for phonons the definition of heat capacity is C = dU/dTwhere U = total internal energy

- When heated from T=0 only electrons within an energy range $k_B T$ of the Fermi energy can be excited thermally
- For T << T_F = E_F /k_B roughly U ~ U₀ + N_{elec} (T/ T_F) k_B T so that



Heat Capacity for Electrons

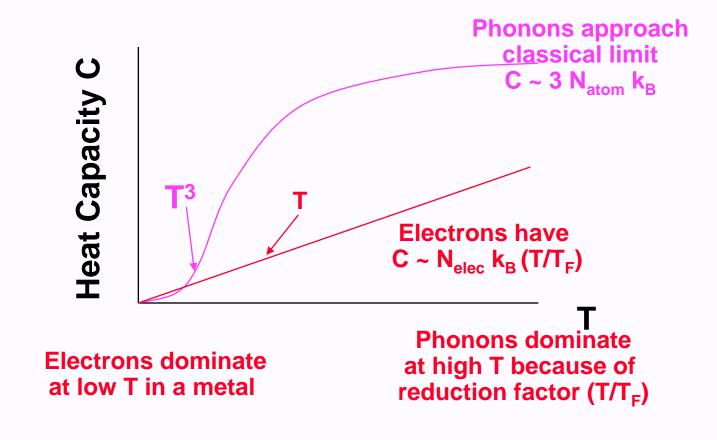
 More precisely, the change in energy when heated from 0 to T is

 $\Delta U = \int_0^{\infty} dE \ E \ D(E) \ f(E) - \int_0^{E_F} dE \ E \ D(E)$

- Using the fact that T << T_F: $C = dU/dT = \int_0^{\infty} dE (E - E_F) D(E) (df(E)/dT)$ $\approx D(E_F) \int_0^{\infty} dE (E - E_F) (df(E)/dT)$
- The integral can be done almost exactly (exact in the low T limit) to give $C = (\pi^{2}/3) D(E_{F}) k_{B}^{2} T \quad \text{(valid for any metal)}$ $\rightarrow (\pi^{2}/2) (N_{elec}/E_{F}) k_{B}^{2} T \quad \text{(for the electron gas)}$ $(\text{using } D(E_{F}) = 3 N_{elec}/2E_{F})$
- Key result: C ~ T agrees with experiment!

Heat capacity

Comparison of electrons in a metal with phonons



Heat capacity

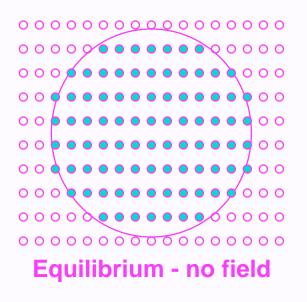
- Experimental results for metals $C/T = \gamma + A T^2 +$
- Find the ratio γ / γ_{free} , $\gamma_{free} = (\pi^2/2) (N_{elec}/E_F) k_B^2$ is the free electron gas result. Equivalently since $E_F \propto 1/m$, we can consider the ratio $\gamma / \gamma_{free} = m_{free}/m_{th}^*$, where m_{th}^* is an thermal effective mass for electrons in the metal

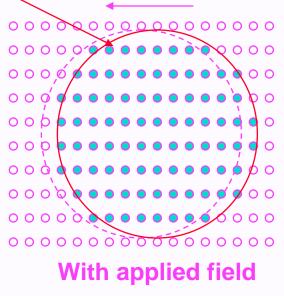
m _{th} */ m _{free}
2.18
1.26
1.25
1.48
1.38

m_{th}* close to m(free) is the "good", "simple metals" !

Electrical Conductivity & Ohm's Law

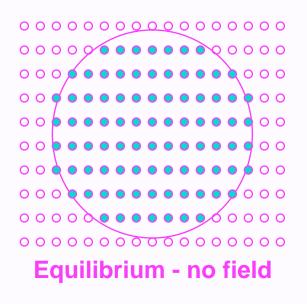
- Consider electrons in an external field E. They experience a force F = -eE
- Now $F = dp/dt = \hbar dk/dt$, since $p = \hbar k$
- Thus in the presence of an electric field all the electrons accelerate and the k points shift, i.e., the entire Fermi surface shifts

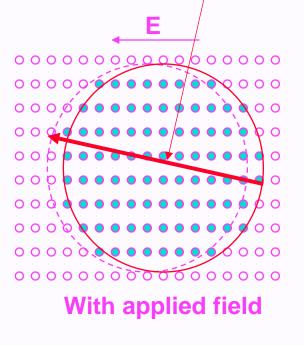




Electrical Conductivity & Ohm's Law

- What limits the acceleration of the electrons?
- Scattering increases as the electrons deviate more from equilibrium
- After field is applied a new equilibrium results as a balance of acceleration by field and scattering





Electrical Conductivity and Resistivity

- The conductivity σ is defined by $j = \sigma E$, where j = current density
- How to find σ ?
- From before $F = dp/dt = m dv/dt = \hbar dk/dt$
- Equilibrium is established when the rate that k increases due to E equals the rate of decrease due to scattering, then dk/dt = 0
- If we define a scattering time τ and scattering rate1/ τ h (dk/dt + k/ τ) = F= q E (q = charge)
- Now j = n q v (where n = density) so that j = n q (h k/m) = (n q²/m) τ E $\Rightarrow \sigma = (n q^2/m) \tau$ Note: si

Note: sign of charge does not matter

• Resistance: $\rho = 1/\sigma \propto m/(n q^2 \tau)$

Scattering mechanisms

Impurities - wrong atoms, missing atoms, extra atoms,

Proportional to concentration

• Lattice vibrations - atoms out of their ideal places

Proportional to mean square displacement

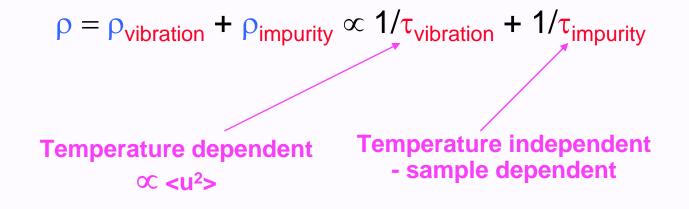
 (Really these conclusions depend upon ideas from the next section that there is no scattering in a perfect crystal.)

Electrical Resistivity

Resistivity ρ is due to scattering: Scattering rate inversely proportional to scattering time τ

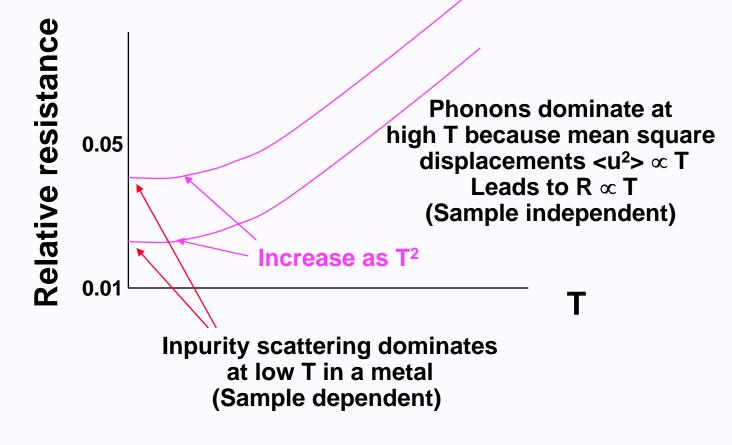
 $ho \propto$ scattering rate $\propto 1/\tau$

• Matthiesson's rule - scattering rates add



Electrical Resistivity

- Consider relative resistance R(T)/R(T=300K)
- Typical behavior (here for samples of potassium)



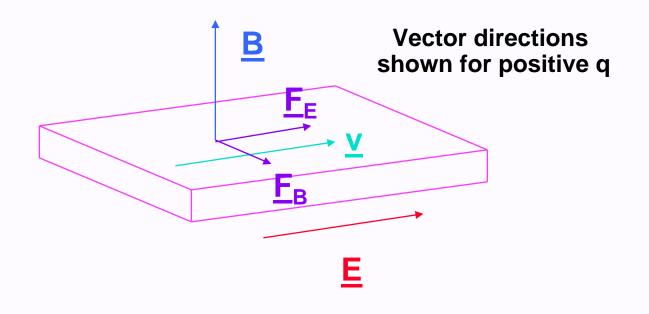
Interpretation of Ohm's law Electrons act like a gas

- A electron is a particle like a molecule.
- Electrons come to equilibrium by scattering like molecules (electron scattering is due to defects, phonons, and electron-electron scattering).
- Electrical conductivity occurs because the electrons are charged, and it shows the electrons move and equilibrate
- What is different from usual molecules? Electrons obey the exclusion principle. This limits the allowed scattering which means that electrons act like a weakly interacting gas.

Hall Effect I

- Electrons moving in an electric and a perpendicular magnetic field
- Now we must carefully specify the vector force

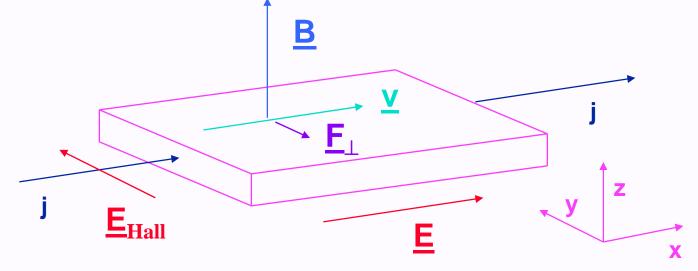
 <u>E</u> = q(<u>E</u> + (1/c) <u>v</u> x <u>B</u>) (note: c → 1 for SI units)
 (q = -e for electrons)



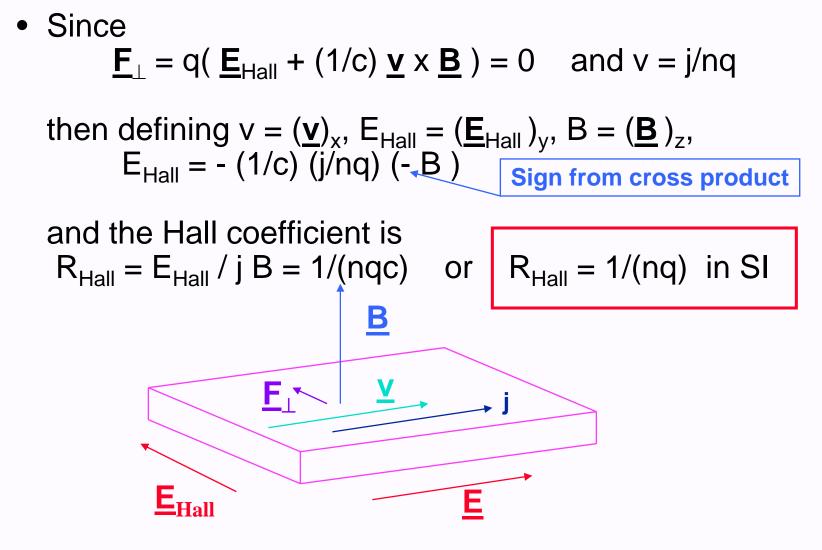
Hall Effect II

- Relevant situation: current j = σ E = nqv flowing along a long sample due to the field <u>E</u>
- But NO current flowing in the perpendicular direction
- This means there must be a Hall field $\underline{\mathbf{E}}_{Hall}$ in the perpendicular direction so the net force $\underline{\mathbf{F}}_{\perp} = \mathbf{0}$

$$\mathbf{\underline{F}}_{\perp} = \mathbf{q}(\mathbf{\underline{E}}_{\text{Hall}} + (1/c) \mathbf{\underline{v}} \times \mathbf{\underline{B}}) = 0$$



Hall Effect III



Hall Effect IV

• Finally, define the Hall resistance as

 $\rho_{\text{Hall}} = R_{\text{Hall}} B = E_{\text{Hall}} / j^{-1}$ be measured directly

Each of these quantities can

which has the same units as ordinary resistivity

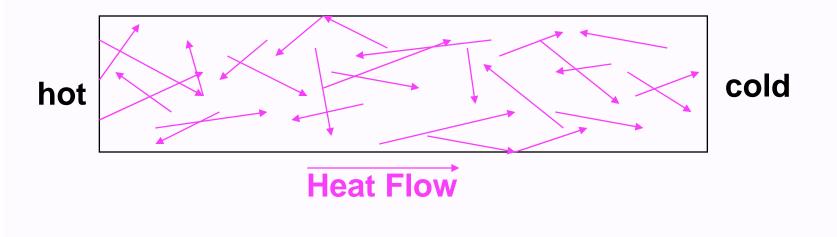
- $R_{Hall} = E_{Hall} / j B = 1/(nq)$
- Note: R_{Hall} determines sign of charge q

Since magnitude of charge is known R_{Hall} also determines density n

• The sign of charge in several metals (Mg, Al) is positive

Electrons act like gas - heat transport

- A electron is a particle that carries energy just like a molecule.
- Electrical conductivity shows the electrons move, scatter, and equilibrate
- What is different from usual molecules? Electrons obey the exclusion principle. This limits scattering and helps them act like weakly interacting gas.



Heat Transport due to Electrons

- Definition (just as for phonons):
 j_{thermal} = heat flow (energy per unit area per unit time)
 = K dT/dx
- If an electron moves from a region with local temperature T to one with local temperature T - ΔT, it supplies excess energy c ΔT, where c = heat capacity per electron. (Note ΔT can be positive or negative).
- On average : $\Delta T = (dT/dx) v_x \tau$, where $\tau =$ mean time between collisions

• Then
$$j_{thermal} = -n v_x c v_x \tau dT/dx = -n c v_x^2 \tau dT/dx$$

Flux
Density

Electron Heat Transport - continued

• Just as for phonons: Averaging over directions gives (v_x^2) average = (1/3) v^2 and

$$j = -(1/3) n c v^2 \tau dT/dx$$

 Finally we can define the mean free path L = v τ and C = nc = total heat capacity, Then

$$j = -(1/3) C v L dT/dx$$

and

K = (1/3) C v L = (1/3) C v² τ = thermal conductivity

(just like an ordinary gas!)

Electron Heat Transport - continued

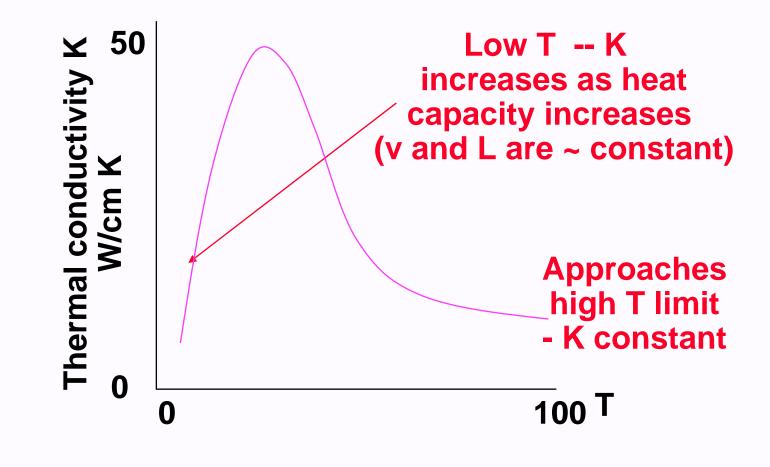
- What is the appropriate v?
- The velocity at the Fermi surface = v_F
- What is the appropriate τ ?
- Same as for conductivity (almost).
- Results using our previous expressions for C:

 $K = (\pi^2/3) (n/m) \tau k_B^2 T$

- Relation of K and σ -- From our expressions: K / σ = (π^2 /3) (k_B/e)² T
- This justifies the Weidemann-Franz Law that K / $\sigma \, \propto T$

Electron Heat Transport - continued • $K \propto \sigma T$

• Recall $\sigma \rightarrow$ constant as T \rightarrow 0, $\sigma \rightarrow$ 1/T as T \rightarrow large



Electron Heat Transport - continued

• Comparison to Phonons

Electrons dominate in good metal crystals Comparable in poor metals like alloys Phonons dominate in non-metals

Summary

- Electrical Conductivity Ohm's Law $\sigma = (n q^2/m) \tau$ $\rho = 1/\sigma$
- Hall Effect

 $\rho_{Hall} = R_{Hall} B = E_{Hall} / j$ and ρ_{Hall} determine n and the charge of the carriers

Thermal Conductivity

K = ($\pi^2/3$) (n/m) τ k_B² T Weideman K / σ = ($\pi^2/3$) (k_B/e)² T

• Metallic Binding

Kinetic repulsion

Coulomb attraction to nuclei

(not included in gas model - must be added)