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• Stefan-Boltzmann Law:

• Effective temperature of a star: temperature of a
black body with the same luminosity per surface
area

• Stars can be treated as black body radiators to a
good approximation

• Effective surface temperature can be obtained
from the B-V color index with the Ballesteros
equation:

• Luminosity:
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Life History of Stars
Mass Core Details Comments

> 0.08Msun

Low mass ball of gas, not 
hot enough for hydrogen 
fusion

Stars in this mass range are not 
stars, but brown dwarfs of spectral 
type L and T.

0.08Msun < M < 
0.5Msun

Fusion of H -> 4He.  Star is 
never hot enough to fuse 
4He to 12C or 16O.

Stars in this mass range are M on 
the main sequence.  End up white 
dwarfs made of helium.

0.5Msun < M < 
5Msun

Fusion of H -> 4He -> 12C and 
16O.  Center is not hot enough to 
fuse 12C and 16O.

Stars in this mass range are A, F, G 
and K on the main sequence.  End up 
white dwarfs made of 12C and 16O.

5Msun < M < 7Msun
Fusion of H -> 4He -> 12C and 
16O -> 20Ne and 24Mg.

Stars in this mass range are B on 
main sequence.  End up as white 
dwarfs made of 20Ne and 24Mg.

M > 7Msun

Fusion of H -> 4He -> 12C and 
16O ->  20Ne and 24Mg -> 
heavier elements .

Stars in this mass range are O on 
the main sequence.  End up as 
neutron stars or black holes.
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White dwarf
• Core of solar mass star

• Degenerate gas of oxygen and  
carbon

• No energy produced from fusion  
or gravitational contraction

8 April 2016 SMU PHYSICS

Hot white dwarf NGC 2440.  The white dwarf is surrounded by a 
"cocoons" of the gas ejected in the collapse toward the white 
dwarf stage of stellar evolution.



Evolved Stars

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 69

Figure 4.2 Several examples of planetary nebulae, newly formed white dwarfs that irradiate
the shells of gas that were previously shed in the final stages of stellar evolution.
The shells have diameters of ≈ 0.2 − 1 pc. Photo credits: M. Meixner, T.A.
Rector, B. Balick et al., H. Bond, R. Ciardullo, NASA, NOAO, ESA, and the
Hubble Heritage Team

At this point, the remaining outer envelopes of the star expand to the point
that they are completely blown off and dispersed. During this very brief stage
(∼ 104 yr), the star is a “planetary nebula1” (see Fig. 4.2), in which ultraviolet
photons from the hot, newly exposed, core excite the expanding shells of gas that
previously constituted the outer layers of the star. Finally, the exposed remnant of
the original core, called a “white dwarf” reaches the endpoint of stellar evolution
for stars of this mass. In the white-dwarf region of the H-R diagram, these stars
move with time to lower temperature and luminosity as they slowly radiate away
their heat. White dwarfs will be the subject of the next section.
Stars with an initial mass greater than about 8M⊙ continue the sequence of core

contraction and synthesis of progressively heavier elements, which eventually (and
quickly) ends in a “supernova” explosion. We shall return to this class of stars in
Section4.3.

4.2 WHITE DWARFS

In the 19th and early-20th centuries, it was discovered that the nearby (2.7 pc)
A-type star Sirius, the brightest star in the sky, is a visual binary, with a white

1Planetary nebulae have nothing to do with planets, and the name has a purely historical origin.
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Figure 4.3 Observed motion on the sky, over the past century, of the visual binary consisting
of Sirius A and its faint white dwarf companion, Sirius B. On the left are the
observed positions due the orbital motions around the center of mass, combined
with the proper motion of the system as a whole. On the right side, only the
positions of Sirius B relative to Sirius A are shown. The maximum projected
separation of the pair is 10 arcseconds. Using Kepler’s Law, a mass close to
1M⊙ is derived for the white dwarf.

dwarf companion that was named Sirius B. (In fact, Sirius B is the nearest known
white dwarf, and was the first one ever found.) An orbital period of about 50 years
was observed (see Fig. 4.3), allowing the first measurement of the mass of a white
dwarf, which turned out to be close to 1M⊙. Like all white dwarfs, Sirius B’s
low luminosity and high temperature imply a small radius of about 6000 km, i.e.,
less than that of the Earth. The mean density inside Sirius B is therefore of order
1 ton cm−3. In this section, we will work out the basic physics of white dwarfs and
of matter at these extremely high densities.

4.2.1 Matter at Quantum Densities

We saw in the previous section that when the core of a star exhausts its nuclear
energy supply, it contracts and heats up until reaching the ignition temperature of
the next available nuclear reaction, and so on. After each contraction, the density
of the core increases. At some point, the distances between atoms will be smaller
than their de-Broglie wavelengths. At that point, our previous assumption of a
classical (rather than quantum) ideal gas, which we used to derive the equation of
state, becomes invalid. To get an idea of the conditions under which this happens,

Sirius B is a white dwarf 
companion to Sirius A.

In 1844 German astronomer Friedrich 
Bessel deduced the existence of a 
companion star from changes in the 
proper motion of Sirius.

In 1862, astronomer Alvan Clark first  
observed the faint companion using an 18.5 inch 
refractor telescope at the Dearborn Observatory.

In 1915 Walter Adams observed the spectrum of the star, determining it 
was a faint whitish star.  This lead astronomers to conclude it was a 
white dwarf.
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Matter at Quantum Densities
As stars evolve, their cores contract and the core density increases. At 
some point the distance between the atoms is smaller than their de 
Broglie wavelengths and classical assumptions can no longer be used.

Recall:  de Broglie Wavelength
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recall that the de-Broglie wavelength of a particle of momentum p is

λ =
h

p
=

h

(2mE)1/2
≈ h

(3mkT )1/2
, (4.9)

where we have represented the energy with the mean energy of a particle, E ∼
3kT/2. Since electrons and protons share the same energy, but the mass of the
electron is much smaller than the mass of the proton or of other nuclei, the wave-
lengths of the electrons are longer, and it is the electron density which will first
reach the quantum domain. At interparticle separations of order less than half a
de-Broglie wavelength, quantum effects should become important, corresponding
to a density of

ρq ≈
mp

(λ/2)3
=

8mp(3mekT )3/2

h3
. (4.10)

For example, for the conditions at the center of the Sun, T = 15× 106K,

ρq ≈
8× 1.7× 10−24 g (3× 9× 10−28 g × 1.4× 10−16 erg K−1 × 15× 106K)3/2

(6.6× 10−27 erg s)3
(4.11)

= 640 g cm−3.

The central density in the Sun is ρ ≈ 150 g cm−3, and thus the gas in the Sun is
still in the classical regime. Even very dense gas can remain classical, if it is hot
enough. For example, for T = 108K, i.e., E ∼ kT ∼ 10 keV,

ρq ≈ 11, 000 g cm−3. (4.12)

Instead of the Maxwell-Boltzmann distribution, the energy distribution at quantum
densities will follow Bose-Einstein statistics for bosons (particles with spin that is
an integer multiple of h̄) or Fermi-Dirac statistics for fermions (particles with spin
that is an uneven integer multiple of h̄/2). Let us develop the equation of state for
such conditions.

4.2.2 Equation of State of a Degenerate Electron Gas

Heisenberg’s Uncertainty Principle states that, due to the wave nature of matter,
the position and momentum of a particle are simultaneously defined only to within
an uncertainty

∆x∆px > h. (4.13)

Similar relations can be written for each of the coordinates, x, y, and z. Multiplying
the relations, we obtain

∆x∆y∆z∆px∆py∆pz > h3, (4.14)

or

d3pdV > h3. (4.15)
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Since,
p = mv EK =

1

2
mv2

v =

r
2E

m

p =
p
2mE

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 71

recall that the de-Broglie wavelength of a particle of momentum p is

λ =
h

p
=

h

(2mE)1/2
≈ h

(3mkT )1/2
, (4.9)

where we have represented the energy with the mean energy of a particle, E ∼
3kT/2. Since electrons and protons share the same energy, but the mass of the
electron is much smaller than the mass of the proton or of other nuclei, the wave-
lengths of the electrons are longer, and it is the electron density which will first
reach the quantum domain. At interparticle separations of order less than half a
de-Broglie wavelength, quantum effects should become important, corresponding
to a density of

ρq ≈
mp

(λ/2)3
=

8mp(3mekT )3/2

h3
. (4.10)

For example, for the conditions at the center of the Sun, T = 15× 106K,

ρq ≈
8× 1.7× 10−24 g (3× 9× 10−28 g × 1.4× 10−16 erg K−1 × 15× 106K)3/2

(6.6× 10−27 erg s)3
(4.11)

= 640 g cm−3.

The central density in the Sun is ρ ≈ 150 g cm−3, and thus the gas in the Sun is
still in the classical regime. Even very dense gas can remain classical, if it is hot
enough. For example, for T = 108K, i.e., E ∼ kT ∼ 10 keV,

ρq ≈ 11, 000 g cm−3. (4.12)

Instead of the Maxwell-Boltzmann distribution, the energy distribution at quantum
densities will follow Bose-Einstein statistics for bosons (particles with spin that is
an integer multiple of h̄) or Fermi-Dirac statistics for fermions (particles with spin
that is an uneven integer multiple of h̄/2). Let us develop the equation of state for
such conditions.

4.2.2 Equation of State of a Degenerate Electron Gas

Heisenberg’s Uncertainty Principle states that, due to the wave nature of matter,
the position and momentum of a particle are simultaneously defined only to within
an uncertainty

∆x∆px > h. (4.13)

Similar relations can be written for each of the coordinates, x, y, and z. Multiplying
the relations, we obtain

∆x∆y∆z∆px∆py∆pz > h3, (4.14)

or

d3pdV > h3. (4.15)

E ⇠ 3kT

2

mean energy
of a particle
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Question:  Which will reach the quantum domain first, electrons or 
protons?

Although both electrons and protons share the same energy, 
electrons have smaller mass and longer wavelengths.  The 
electron density will reach the quantum domain first.
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Calculate the quantum density at the center of the sun (T = 15 x 106 K).
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When the inter particle spacing is of order 1/2 a de Broglie 
wavelength, quantum effects will become important.
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pq = 640 g cm�3 The core density of the sun is 150 g cm-3.
Much below the quantum regime.
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Pressure Exerted by Ideal Gas
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with momentum
p, that are reflected off the side of a container.

approaches a step function (see Fig. 4.4) in which all particles occupy the lowest
energy states possible without violating the Pauli principle. This means that all
energy states up to an energy Ef are occupied, and all above Ef are empty. Un-
der such conditions, the gas is said to be “degenerate”. For degenerate electrons,
which are s = 1/2 particles, having an isotropic velocity field, the phase-space
distribution will be

dN(p)dp =
Ω

2× 4πp2 dpdV
h3

if |p| ≤ pf

0 if |p| > pf
, (4.17)

where pf , called the Fermi momentum, is the magnitude of the momentum corre-
sponding to the Fermi energy Ef . Dividing by dV , we obtain the number density
of electrons of a given momentum p:

ne(p)dp =
Ω

8πp2 dp
h3

if |p| ≤ pf

0 if |p| > pf
. (4.18)

Integrating over all momenta from 0 to pf gives a relation between the electron
density and pf :

ne =
Z pf

0

8π

h3
p2dp =

8π

3h3
p3

f . (4.19)

Next, let us derive a general expression for the pressure exerted by any ideal gas.
By definition, an ideal gas consists of particles that interact only at short distances,
and hence can transfer momentum only during an “impact” with another particle.
Consider ideal gas particles impinging on the side of a container, with a mean
interval dt between consecutive impacts (see Fig. 4.5). Set the x axis perpendicular
to the surface. Particles with an x component of momentum px will transfer a
momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from

Consider ideal gas particles hitting the
sides of a container.
Recall, that particles with momentum
px impart 2px to the surface with each 
reflection.

The force per unit area imparted is then 
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momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with momentum
p, that are reflected off the side of a container.

approaches a step function (see Fig. 4.4) in which all particles occupy the lowest
energy states possible without violating the Pauli principle. This means that all
energy states up to an energy Ef are occupied, and all above Ef are empty. Un-
der such conditions, the gas is said to be “degenerate”. For degenerate electrons,
which are s = 1/2 particles, having an isotropic velocity field, the phase-space
distribution will be

dN(p)dp =
Ω

2× 4πp2 dpdV
h3

if |p| ≤ pf

0 if |p| > pf
, (4.17)

where pf , called the Fermi momentum, is the magnitude of the momentum corre-
sponding to the Fermi energy Ef . Dividing by dV , we obtain the number density
of electrons of a given momentum p:

ne(p)dp =
Ω

8πp2 dp
h3

if |p| ≤ pf

0 if |p| > pf
. (4.18)

Integrating over all momenta from 0 to pf gives a relation between the electron
density and pf :

ne =
Z pf

0

8π

h3
p2dp =

8π

3h3
p3

f . (4.19)

Next, let us derive a general expression for the pressure exerted by any ideal gas.
By definition, an ideal gas consists of particles that interact only at short distances,
and hence can transfer momentum only during an “impact” with another particle.
Consider ideal gas particles impinging on the side of a container, with a mean
interval dt between consecutive impacts (see Fig. 4.5). Set the x axis perpendicular
to the surface. Particles with an x component of momentum px will transfer a
momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from

v

x

=
dx

dt

where we used:

To get the pressure, we sum forces due to particles of all 
momenta.
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with momentum
p, that are reflected off the side of a container.

approaches a step function (see Fig. 4.4) in which all particles occupy the lowest
energy states possible without violating the Pauli principle. This means that all
energy states up to an energy Ef are occupied, and all above Ef are empty. Un-
der such conditions, the gas is said to be “degenerate”. For degenerate electrons,
which are s = 1/2 particles, having an isotropic velocity field, the phase-space
distribution will be

dN(p)dp =
Ω

2× 4πp2 dpdV
h3

if |p| ≤ pf

0 if |p| > pf
, (4.17)

where pf , called the Fermi momentum, is the magnitude of the momentum corre-
sponding to the Fermi energy Ef . Dividing by dV , we obtain the number density
of electrons of a given momentum p:

ne(p)dp =
Ω

8πp2 dp
h3

if |p| ≤ pf

0 if |p| > pf
. (4.18)

Integrating over all momenta from 0 to pf gives a relation between the electron
density and pf :

ne =
Z pf

0

8π

h3
p2dp =

8π

3h3
p3

f . (4.19)

Next, let us derive a general expression for the pressure exerted by any ideal gas.
By definition, an ideal gas consists of particles that interact only at short distances,
and hence can transfer momentum only during an “impact” with another particle.
Consider ideal gas particles impinging on the side of a container, with a mean
interval dt between consecutive impacts (see Fig. 4.5). Set the x axis perpendicular
to the surface. Particles with an x component of momentum px will transfer a
momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from

Note:  half the particles are
not moving towards walls.
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pxvx = mv2
x =

1
3
mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with momentum
p, that are reflected off the side of a container.

approaches a step function (see Fig. 4.4) in which all particles occupy the lowest
energy states possible without violating the Pauli principle. This means that all
energy states up to an energy Ef are occupied, and all above Ef are empty. Un-
der such conditions, the gas is said to be “degenerate”. For degenerate electrons,
which are s = 1/2 particles, having an isotropic velocity field, the phase-space
distribution will be

dN(p)dp =
Ω

2× 4πp2 dpdV
h3

if |p| ≤ pf

0 if |p| > pf
, (4.17)

where pf , called the Fermi momentum, is the magnitude of the momentum corre-
sponding to the Fermi energy Ef . Dividing by dV , we obtain the number density
of electrons of a given momentum p:

ne(p)dp =
Ω

8πp2 dp
h3

if |p| ≤ pf

0 if |p| > pf
. (4.18)

Integrating over all momenta from 0 to pf gives a relation between the electron
density and pf :

ne =
Z pf

0

8π

h3
p2dp =

8π

3h3
p3

f . (4.19)

Next, let us derive a general expression for the pressure exerted by any ideal gas.
By definition, an ideal gas consists of particles that interact only at short distances,
and hence can transfer momentum only during an “impact” with another particle.
Consider ideal gas particles impinging on the side of a container, with a mean
interval dt between consecutive impacts (see Fig. 4.5). Set the x axis perpendicular
to the surface. Particles with an x component of momentum px will transfer a
momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from

If we assume the velocities are isotropic:
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pxvx = mv2
x =

1
3
mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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pxvx = mv2
x =

1
3
mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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pxvx = mv2
x =

1
3
mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

where we used: 
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where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

For a non-relativistic degenerate gas:
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Figure 4.5 Calculation of the pressure exerted by particles of an ideal gas with momentum
p, that are reflected off the side of a container.

approaches a step function (see Fig. 4.4) in which all particles occupy the lowest
energy states possible without violating the Pauli principle. This means that all
energy states up to an energy Ef are occupied, and all above Ef are empty. Un-
der such conditions, the gas is said to be “degenerate”. For degenerate electrons,
which are s = 1/2 particles, having an isotropic velocity field, the phase-space
distribution will be

dN(p)dp =
Ω

2× 4πp2 dpdV
h3

if |p| ≤ pf

0 if |p| > pf
, (4.17)

where pf , called the Fermi momentum, is the magnitude of the momentum corre-
sponding to the Fermi energy Ef . Dividing by dV , we obtain the number density
of electrons of a given momentum p:

ne(p)dp =
Ω

8πp2 dp
h3

if |p| ≤ pf

0 if |p| > pf
. (4.18)

Integrating over all momenta from 0 to pf gives a relation between the electron
density and pf :

ne =
Z pf

0

8π

h3
p2dp =

8π

3h3
p3

f . (4.19)

Next, let us derive a general expression for the pressure exerted by any ideal gas.
By definition, an ideal gas consists of particles that interact only at short distances,
and hence can transfer momentum only during an “impact” with another particle.
Consider ideal gas particles impinging on the side of a container, with a mean
interval dt between consecutive impacts (see Fig. 4.5). Set the x axis perpendicular
to the surface. Particles with an x component of momentum px will transfer a
momentum 2px to the surface with each reflection. The force per unit area due to
each collision is then

dFx

dA
=

2px

dAdt
=

2pxvx

dAdx
=

2pxvx

dV
, (4.20)

where vx = dx/dt The pressure is obtained by summing the forces due to all
particles of all momenta:

P =
Z ∞

0

dN(p)
pxvx

dV
dp, (4.21)

where we have divided by 2 because, at any given time, only half of all the particles
will have a vx component toward the side of the container, rather than away from
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pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead
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where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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P =
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Z ∞
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n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead
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1
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8π

h3

p4

me
dp =

8π
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where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

ne =
8⇡

3h3
p3f

Finally, noting ne = Zn+ = Zρ/Amp
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y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =
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3h3me

p5
f
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=

µ
3
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where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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Comments:

The electron pressure does not depend on temperature.
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n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

For a typical white dwarf, ρ ~ 106 g cm-3 and T ~ 107 K.  
Their Z/A ~ 0.5. 
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Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead
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where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.
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= 3× 1022 dyne cm−2.

As opposed to the electrons, the nuclei at such densities are still completely in
the classical regime. The thermal pressure due to the nuclei, assuming a helium
composition, is

Pth = n+kT =
ρ

4mp
kT ∼ 106 g cm−3 × 1.4× 10−16 erg K−1 × 107 K

4× 1.7× 10−24 g
(4.29)

= 2× 1020dynes cm−2.

The degenerate electron pressure therefore completely dominates the pressure in
the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined
with the other equations of stellar structure, implies for the properties of white
dwarfs. Let us start with the relation between mass and radius.

4.2.3.1 Mass-radius relationship

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling
relations (see Eqns. 3.80 and 3.81), suggest

ρ ∼ M

r3
, (4.30)

and

P ∼ GMρ

r
∼ GM2

r4
. (4.31)

The degenerate electron-gas equation of state is

P ∼ bρ5/3 ∼ b
M5/3

r5
, (4.32)

where the constant factor b is given in Eq. 4.27. Equating the pressures gives

r ∼ b

G
M−1/3. (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An
order-of-magnitude estimate of the radius is therefore

rwd ∼
b

G
M−1/3 ∼ h2

20mem
5/3
p G

µ
Z
A

∂5/3

M−1/3 (4.34)

∼ (6.6× 10−27 erg s)2(2× 1033 g)−1/3

20× 9× 10−28 g (1.7× 10−24 g)5/3 6.7× 10−8 cgs

µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

= 1.2× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

,

Compare to the thermal pressure of nuclei at this temperature. 

P = n kT = 2⇥ 1020 dyne cm�2

Thus, degenerate electron pressure completely dominates 
the pressure in these stars.
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Properties of White Dwarfs
Mass-Radius Relationship:
Recall the EOS for a degenerate non-relativistic electron gas: 
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Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead
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where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

The scaling relation for this equation is
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= 3× 1022 dyne cm−2.

As opposed to the electrons, the nuclei at such densities are still completely in
the classical regime. The thermal pressure due to the nuclei, assuming a helium
composition, is

Pth = n+kT =
ρ

4mp
kT ∼ 106 g cm−3 × 1.4× 10−16 erg K−1 × 107 K

4× 1.7× 10−24 g
(4.29)

= 2× 1020dynes cm−2.

The degenerate electron pressure therefore completely dominates the pressure in
the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined
with the other equations of stellar structure, implies for the properties of white
dwarfs. Let us start with the relation between mass and radius.

4.2.3.1 Mass-radius relationship

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling
relations (see Eqns. 3.80 and 3.81), suggest

ρ ∼ M

r3
, (4.30)

and

P ∼ GMρ

r
∼ GM2

r4
. (4.31)

The degenerate electron-gas equation of state is

P ∼ bρ5/3 ∼ b
M5/3

r5
, (4.32)

where the constant factor b is given in Eq. 4.27. Equating the pressures gives

r ∼ b

G
M−1/3. (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An
order-of-magnitude estimate of the radius is therefore
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∼ (6.6× 10−27 erg s)2(2× 1033 g)−1/3

20× 9× 10−28 g (1.7× 10−24 g)5/3 6.7× 10−8 cgs
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,

Recall our scaling relations from the equations of stellar 
structure: 
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= 3× 1022 dyne cm−2.

As opposed to the electrons, the nuclei at such densities are still completely in
the classical regime. The thermal pressure due to the nuclei, assuming a helium
composition, is

Pth = n+kT =
ρ

4mp
kT ∼ 106 g cm−3 × 1.4× 10−16 erg K−1 × 107 K

4× 1.7× 10−24 g
(4.29)

= 2× 1020dynes cm−2.

The degenerate electron pressure therefore completely dominates the pressure in
the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined
with the other equations of stellar structure, implies for the properties of white
dwarfs. Let us start with the relation between mass and radius.

4.2.3.1 Mass-radius relationship

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling
relations (see Eqns. 3.80 and 3.81), suggest

ρ ∼ M

r3
, (4.30)

and

P ∼ GMρ

r
∼ GM2

r4
. (4.31)

The degenerate electron-gas equation of state is

P ∼ bρ5/3 ∼ b
M5/3

r5
, (4.32)

where the constant factor b is given in Eq. 4.27. Equating the pressures gives

r ∼ b

G
M−1/3. (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An
order-of-magnitude estimate of the radius is therefore

rwd ∼
b

G
M−1/3 ∼ h2

20mem
5/3
p G

µ
Z
A

∂5/3

M−1/3 (4.34)

∼ (6.6× 10−27 erg s)2(2× 1033 g)−1/3

20× 9× 10−28 g (1.7× 10−24 g)5/3 6.7× 10−8 cgs

µ
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= 1.2× 109cm
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,
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where b is a constant
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Equating these pressures yields:
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What?
Notice:  The 
radius decreases 
with increasing 
mass!
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Re-derive scaling relations between mass and radius with an index  
(4 + ε)/3.
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G
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P ⇠ ⇢(4+✏)/3 =
M (4+✏)/3

r(4+✏)

M (4+✏)/3

r4+✏
⇠ M2

r4

Equating with pressure from our stellar equations. P ⇠ GM⇢

r
⇠ M2

r4

M4/3M ✏/3

r4r✏
=
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i.e., about 4000 km for Z/A = 0.5 andM = 1M⊙, as deduced for observed white
dwarfs from their luminosities and temperatures. A full solution of the equations
of stellar structure for the degenerate gas equation of state gives

rwd = 2.3× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

. (4.35)

4.2.3.2 The Chandrasekhar Mass

The larger the white-dwarf mass that we consider, the smaller rwd becomes, im-
plying larger densities, and therefore larger momenta to which the electrons are
pushed. When the electron velocities become comparable to the speed of light, we
can no longer assume v = p/m in Eq. 4.23. Instead, v, which dictates the rate
at which collisions transfer momentum to the container wall, approaches c. In the
“ultra-relativistic” limit, we can replace v with c. Eq. 4.25 is then replaced with

Pe =
1
3

Z pf

0

8π

h3
p2pcdp =

8πc

3h3

p4
f

4
. (4.36)

Again using Eqns. 4.19 and 4.26, we obtain the equation of state for an ultra-
relativistic degenerate spin-1/2 fermion gas:

Pe =
µ

3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3. (4.37)

Compared to the non-relativistic case (Eq. 4.27), note the 4/3 power, but also the
fact that the electron mass does not appear, i.e., this equation holds for any ultra-
relativistic degenerate ideal gas of spin-1/2 particles. This comes about because, for
ultra-relativistic particles, the rest mass is a negligible fraction of the total energy,
E = (m2c4 + p2c2)1/2, and hence p ≈ E/c. As we go from small to large white-
dwarf masses there will be a gradual transition from the non-relativistic to the ultra-
relativistic equation of state, with the power-law index of ρ gradually decreasing
from 5/3 to 4/3.
This necessarily means that, as we go to higher masses, and the density increases

due to the shrinking radius, the pressure support will rise more and more slowly,
so that the radius shrinks even more sharply with increasing mass.4 To see what
happens as a result, let us re-derive the scaling relations between mass and radius,
but with an index (4 + �)/3, and then let � approach 0. Thus

P ∼ ρ(4+�)/3, (4.38)
so

M (4+�)/3

r4+�
∼ M2

r4
, (4.39)

or
r� ∼M (�−2)/3, (4.40)

4Sirius B, with a mass of 1M⊙, is among the more massive white dwarfs known, and its equation
of state is already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would
be expected based on Eq 4.35, but is fully consistent with the results of a relativistic calculation.
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)
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= 3× 1022 dyne cm−2.

As opposed to the electrons, the nuclei at such densities are still completely in
the classical regime. The thermal pressure due to the nuclei, assuming a helium
composition, is

Pth = n+kT =
ρ

4mp
kT ∼ 106 g cm−3 × 1.4× 10−16 erg K−1 × 107 K

4× 1.7× 10−24 g
(4.29)

= 2× 1020dynes cm−2.

The degenerate electron pressure therefore completely dominates the pressure in
the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined
with the other equations of stellar structure, implies for the properties of white
dwarfs. Let us start with the relation between mass and radius.

4.2.3.1 Mass-radius relationship

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling
relations (see Eqns. 3.80 and 3.81), suggest

ρ ∼ M

r3
, (4.30)

and

P ∼ GMρ

r
∼ GM2

r4
. (4.31)

The degenerate electron-gas equation of state is

P ∼ bρ5/3 ∼ b
M5/3

r5
, (4.32)

where the constant factor b is given in Eq. 4.27. Equating the pressures gives

r ∼ b

G
M−1/3. (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An
order-of-magnitude estimate of the radius is therefore
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∼ (6.6× 10−27 erg s)2(2× 1033 g)−1/3

20× 9× 10−28 g (1.7× 10−24 g)5/3 6.7× 10−8 cgs
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M
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,

A white dwarf with Z/A = 0.5 and M = 1Msun has a  
radius of ~ 4000 km.

Fully working out the equations of stellar structure gives an equation 
for radius of 
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i.e., about 4000 km for Z/A = 0.5 andM = 1M⊙, as deduced for observed white
dwarfs from their luminosities and temperatures. A full solution of the equations
of stellar structure for the degenerate gas equation of state gives

rwd = 2.3× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

. (4.35)

4.2.3.2 The Chandrasekhar Mass

The larger the white-dwarf mass that we consider, the smaller rwd becomes, im-
plying larger densities, and therefore larger momenta to which the electrons are
pushed. When the electron velocities become comparable to the speed of light, we
can no longer assume v = p/m in Eq. 4.23. Instead, v, which dictates the rate
at which collisions transfer momentum to the container wall, approaches c. In the
“ultra-relativistic” limit, we can replace v with c. Eq. 4.25 is then replaced with

Pe =
1
3

Z pf

0

8π

h3
p2pcdp =

8πc

3h3

p4
f

4
. (4.36)

Again using Eqns. 4.19 and 4.26, we obtain the equation of state for an ultra-
relativistic degenerate spin-1/2 fermion gas:

Pe =
µ

3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3. (4.37)

Compared to the non-relativistic case (Eq. 4.27), note the 4/3 power, but also the
fact that the electron mass does not appear, i.e., this equation holds for any ultra-
relativistic degenerate ideal gas of spin-1/2 particles. This comes about because, for
ultra-relativistic particles, the rest mass is a negligible fraction of the total energy,
E = (m2c4 + p2c2)1/2, and hence p ≈ E/c. As we go from small to large white-
dwarf masses there will be a gradual transition from the non-relativistic to the ultra-
relativistic equation of state, with the power-law index of ρ gradually decreasing
from 5/3 to 4/3.
This necessarily means that, as we go to higher masses, and the density increases

due to the shrinking radius, the pressure support will rise more and more slowly,
so that the radius shrinks even more sharply with increasing mass.4 To see what
happens as a result, let us re-derive the scaling relations between mass and radius,
but with an index (4 + �)/3, and then let � approach 0. Thus

P ∼ ρ(4+�)/3, (4.38)
so

M (4+�)/3

r4+�
∼ M2

r4
, (4.39)

or
r� ∼M (�−2)/3, (4.40)

4Sirius B, with a mass of 1M⊙, is among the more massive white dwarfs known, and its equation
of state is already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would
be expected based on Eq 4.35, but is fully consistent with the results of a relativistic calculation.

mass increases

radius decreases

density increases

electrons pushed to 
larger momenta
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Mass/radius relation for degenerate star

• Stellar mass = M; radius = R

• Gravitational potential energy:

• Heisenberg uncertainty:

• Electron density:

• Kinetic energy:
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Mass/radius relation for degenerate star

• Total energy:

• Find R by minimizing E:

• Radius decreases as mass increases:
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Mass vs radius relation
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)

What does it mean?

At masses so high that electrons become ultra-relativistic, 
the electron pressure is unable to support the star against 
gravity.

If the density is high enough, degeneracy pressure due to 
protons and neutrons begins to operate.  Stops collapse and 
produces a neutron star.

Chandrasekhar Mass:

The maximum stellar mass that can be  
supported by electron degeneracy pressure. 
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Estimate Chandrasekhar Mass
Start with virial theorem:
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)

Substitute the ultra-relativistic electron 
degeneracy pressure and self gravity
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i.e., about 4000 km for Z/A = 0.5 andM = 1M⊙, as deduced for observed white
dwarfs from their luminosities and temperatures. A full solution of the equations
of stellar structure for the degenerate gas equation of state gives

rwd = 2.3× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

. (4.35)

4.2.3.2 The Chandrasekhar Mass

The larger the white-dwarf mass that we consider, the smaller rwd becomes, im-
plying larger densities, and therefore larger momenta to which the electrons are
pushed. When the electron velocities become comparable to the speed of light, we
can no longer assume v = p/m in Eq. 4.23. Instead, v, which dictates the rate
at which collisions transfer momentum to the container wall, approaches c. In the
“ultra-relativistic” limit, we can replace v with c. Eq. 4.25 is then replaced with

Pe =
1
3

Z pf

0

8π

h3
p2pcdp =

8πc

3h3

p4
f

4
. (4.36)

Again using Eqns. 4.19 and 4.26, we obtain the equation of state for an ultra-
relativistic degenerate spin-1/2 fermion gas:

Pe =
µ

3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3. (4.37)

Compared to the non-relativistic case (Eq. 4.27), note the 4/3 power, but also the
fact that the electron mass does not appear, i.e., this equation holds for any ultra-
relativistic degenerate ideal gas of spin-1/2 particles. This comes about because, for
ultra-relativistic particles, the rest mass is a negligible fraction of the total energy,
E = (m2c4 + p2c2)1/2, and hence p ≈ E/c. As we go from small to large white-
dwarf masses there will be a gradual transition from the non-relativistic to the ultra-
relativistic equation of state, with the power-law index of ρ gradually decreasing
from 5/3 to 4/3.
This necessarily means that, as we go to higher masses, and the density increases

due to the shrinking radius, the pressure support will rise more and more slowly,
so that the radius shrinks even more sharply with increasing mass.4 To see what
happens as a result, let us re-derive the scaling relations between mass and radius,
but with an index (4 + �)/3, and then let � approach 0. Thus

P ∼ ρ(4+�)/3, (4.38)
so

M (4+�)/3

r4+�
∼ M2

r4
, (4.39)

or
r� ∼M (�−2)/3, (4.40)

4Sirius B, with a mass of 1M⊙, is among the more massive white dwarfs known, and its equation
of state is already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would
be expected based on Eq 4.35, but is fully consistent with the results of a relativistic calculation.
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)

Simplify:
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)
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and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)

Full Solution using Equations 
of Stellar Structure:

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 77

and
r ∼M (�−2)/3�. (4.41)

When �→ 0,
r →M−∞ = 0. (4.42)

In other words, at a mass high enough so that the electrons become ultra-relativistic,
the electron pressure becomes incapable of supporting the star against gravity, the
radius shrinks to zero (and the density rises to infinity), unless some other source of
pressure sets in. We will see that, at high enough density, the degeneracy pressure
due to protons and neutrons begins to operate, and it can sometimes stop the full
gravitational collapse, producing objects called neutron stars.
The above argument implies that there is a maximum stellar mass that can be

supported by degenerate electron pressure. It is called the Chandrasekhar mass.
To estimate it, recall from the virial theorem that

P̄ V = −1
3
Egr. (4.43)

Substituting the ultra-relativistic electron degeneracy pressure for P̄ , and the usual
expression for the self-energy Egr , we can write

µ
3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3V ∼ 1
3

GM2

r
. (4.44)

With

ρ ∼ M

V
, (4.45)

and

V =
4π

3
r3, (4.46)

r cancels out of the equation and we obtain

M ∼ 0.11
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.47)

A full solution of the equations of stellar structure for this equation of state gives a
somewhat larger numerical coefficient, so that the Chandrasekhar mass is

Mch = 0.21
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp. (4.48)

The expression Gm2
p/(hc) that appears in the Chandrasekhar mass is a dimension-

less constant that can be formed by taking a proton’s gravitational self energy, with
the proton radius expressed by its de Broglie wavelength, and forming the ratio
with the proton’s rest energy:

αG ≡
Gm2

p

h/(mpc)mpc2
=

Gm2
p

hc
=

6.7× 10−8 cgs (1.7× 10−24 g)2

6.6× 10−27 erg s× 3× 1010 cm s−1
≈ 10−39.

(4.49)

Accurately calculated value is 1.4 Msun.
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As electron velocities increase, the rates at which momentum transfers 
approaches c.  So, we need to modify the EOS for degenerate electron 
gas.
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i.e., about 4000 km for Z/A = 0.5 andM = 1M⊙, as deduced for observed white
dwarfs from their luminosities and temperatures. A full solution of the equations
of stellar structure for the degenerate gas equation of state gives

rwd = 2.3× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

. (4.35)

4.2.3.2 The Chandrasekhar Mass

The larger the white-dwarf mass that we consider, the smaller rwd becomes, im-
plying larger densities, and therefore larger momenta to which the electrons are
pushed. When the electron velocities become comparable to the speed of light, we
can no longer assume v = p/m in Eq. 4.23. Instead, v, which dictates the rate
at which collisions transfer momentum to the container wall, approaches c. In the
“ultra-relativistic” limit, we can replace v with c. Eq. 4.25 is then replaced with

Pe =
1
3

Z pf

0

8π

h3
p2pcdp =

8πc

3h3

p4
f

4
. (4.36)

Again using Eqns. 4.19 and 4.26, we obtain the equation of state for an ultra-
relativistic degenerate spin-1/2 fermion gas:

Pe =
µ

3
8π

∂1/3
hc

4m
4/3
p

µ
Z
A

∂4/3

ρ4/3. (4.37)

Compared to the non-relativistic case (Eq. 4.27), note the 4/3 power, but also the
fact that the electron mass does not appear, i.e., this equation holds for any ultra-
relativistic degenerate ideal gas of spin-1/2 particles. This comes about because, for
ultra-relativistic particles, the rest mass is a negligible fraction of the total energy,
E = (m2c4 + p2c2)1/2, and hence p ≈ E/c. As we go from small to large white-
dwarf masses there will be a gradual transition from the non-relativistic to the ultra-
relativistic equation of state, with the power-law index of ρ gradually decreasing
from 5/3 to 4/3.
This necessarily means that, as we go to higher masses, and the density increases

due to the shrinking radius, the pressure support will rise more and more slowly,
so that the radius shrinks even more sharply with increasing mass.4 To see what
happens as a result, let us re-derive the scaling relations between mass and radius,
but with an index (4 + �)/3, and then let � approach 0. Thus

P ∼ ρ(4+�)/3, (4.38)
so

M (4+�)/3

r4+�
∼ M2

r4
, (4.39)

or
r� ∼M (�−2)/3, (4.40)

4Sirius B, with a mass of 1M⊙, is among the more massive white dwarfs known, and its equation
of state is already in the mildly relativistic regime. Its radius, 5880 km, is therefore smaller than would
be expected based on Eq 4.35, but is fully consistent with the results of a relativistic calculation.

EOS for an ultra-
relativistic degenerate 
spin-1/2 fermion gas

Compare to non-relativistic case:

basicastro4 October 26, 2006

74 CHAPTER 4

it. But

pxvx = mv2
x =

1
3
mv2 =

1
3
pv, (4.22)

where we have utilized v2
x + v2

y + v2
z = v2 and assumed that the velocities are

isotropic so that, on average, v2
x = v2

y = v2
z . Since dN/dV ≡ n,

P =
1
3

Z ∞

0

n(p)pvdp. (4.23)

Replacing the Maxwell-Boltzmann distribution for n(p) recovers the classical
equation of state,

P = nkT. (4.24)
For a non-relativistic3 degenerate electron gas, however, we replace n(p) with the
Fermi-Dirac distribution in the degenerate limit (eq. 4.18). Taking v = p/me, we
obtain instead

Pe =
1
3

Z pf

0

8π

h3

p4

me
dp =

8π

3h3me

p5
f

5
=

µ
3
8π

∂2/3
h2

5me
n5/3

e , (4.25)

where we have used eq. 4.19 to express pf in terms of ne. To relate ne to the mass
density appearing in the equations of stellar structure, consider a fully ionized gas
composed of a particular element, of atomic number Z and atomic mass number
A, and a density of ions n+. Then

ne = Zn+ = Z ρ

Amp
. (4.26)

Substituting into eq. 4.25, we obtain a useful form for the equation of state of a
degenerate non-relativistic electron gas:

Pe =
µ

3
π

∂2/3
h2

20mem
5/3
p

µ
Z
A

∂5/3

ρ5/3. (4.27)

The important feature of this equation of state is that the electron pressure does
not depend on temperature. Indeed, in our derivation of this equation, we have
assumed that kT is effectively zero. (More precisely, kT is very low compared to
the energy of the most energetic electrons at the Fermi energy, which are prevented
from occupying lower energy states by the Pauli principle – see Problem 1.)
In a typical white dwarf, ρ ∼ 106 g cm−3 and T ∼ 107K. White dwarfs are gen-

erally composed of material that was processed by nuclear reactions into helium,
carbon, and oxygen, and therefore Z/A ≈ 0.5. Plugging these numbers into 4.27,
we find

Pe ∼
(6.6× 10−27 erg s)2

20× 9× 10−28 g (1.7× 10−24 g)5/3
0.55/3(106 g cm−3)5/3 (4.28)

3Note that, although we have used non-relativistic considerations (Eq. 4.22) to derive Eq. 4.23, it
holds in the relativistic case as well. We can easily verify that, for an ultra-relativistic gas with particle
energies E, by replacing p with E/c, v with c, and n(p)dp with n(E)dE, we recover the relation
P = U/3, which we derived in Eq. 3.74.

EOS for a degenerate 
non-relativistic electron 
gas

Notes:  The power index changes.
The electron mass disappears.

For ultra-relativistic particles, the rest mass is negligible.

As we go from small to large white dwarf masses, we transition 
gradually from non-relativistic to ultra-relativistic.
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Notes:

The accurately calculated Chandrashaker mass is 1.4 Msun.

No white dwarfs with masses greater than Mch have ever been 
found.

The lower bound of isolated white dwarfs found is 0.25 Msun.
Why is there a lower bound?

The universe is too young!  Stars that have mass < 0.8 
Msun could produce smaller white dwarfs.  However, 
even if they were formed in the early universe, they 
have not yet gone though their main sequence lifetime.
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Mass vs radius relation



o

White Dwarf Cooling
The temperature inside a white dwarf is approximately constant with 
radius.  Let’s estimate the temperature.

The white dwarf contacts until the degeneracy pressure stops the 
contraction of the thermal core.  Just before equilibrium:
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The constant αG expresses the strength of the gravitational interaction, and is the
gravitational analog of the fine-structure constant,

αem =
e2

h̄c
≈ 1

137
, (4.50)

which expresses the strength of the electromagnetic interaction. Eq. 4.48 says
that the maximum mass of a star supported by electron degeneracy pressure is, to
an order of magnitude, the mass of α

−3/2
G protons (i.e., ∼ 1057 protons). Since

Z/A ≈ 0.5,

Mch = 0.21× 0.52 × 1039 3

2 × 1.7× 10−24 g = 1.4M⊙. (4.51)
In fact, no white dwarfs with masses higher thanMch have been found.
There is also a lower bound to the masses of isolated5 white dwarfs that have

been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:

Eth ∼
1
2

GM2

r
. (4.52)

For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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2
NkT =
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M

mp
(
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+
1
4
)kT =

9
8

M

mp
kT, (4.53)

and so

kT ∼ 4
9

GMmp

r
. (4.54)

Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,

kT ∼ 80G2mem
8/3
p

9h2

µ
Z
A

∂−5/3

M4/3 (4.55)

5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.

What are WD composed of? 
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that the maximum mass of a star supported by electron degeneracy pressure is, to
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−3/2
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In fact, no white dwarfs with masses higher thanMch have been found.
There is also a lower bound to the masses of isolated5 white dwarfs that have

been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,

kT ∼ 80G2mem
8/3
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µ
Z
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∂−5/3

M4/3 (4.55)

5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.

Ans:  Helium!   
Nnuclei = M/4mH and Ne = M/2mH.
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been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,
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5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.
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which expresses the strength of the electromagnetic interaction. Eq. 4.48 says
that the maximum mass of a star supported by electron degeneracy pressure is, to
an order of magnitude, the mass of α
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Z/A ≈ 0.5,
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2 × 1.7× 10−24 g = 1.4M⊙. (4.51)
In fact, no white dwarfs with masses higher thanMch have been found.
There is also a lower bound to the masses of isolated5 white dwarfs that have

been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,
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M4/3 (4.55)

5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.
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been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,
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5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.
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been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,
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5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.
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which expresses the strength of the electromagnetic interaction. Eq. 4.48 says
that the maximum mass of a star supported by electron degeneracy pressure is, to
an order of magnitude, the mass of α
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G protons (i.e., ∼ 1057 protons). Since

Z/A ≈ 0.5,

Mch = 0.21× 0.52 × 1039 3

2 × 1.7× 10−24 g = 1.4M⊙. (4.51)
In fact, no white dwarfs with masses higher thanMch have been found.
There is also a lower bound to the masses of isolated5 white dwarfs that have

been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:
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. (4.52)

For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,
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Z
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M4/3 (4.55)

5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.
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= 3× 1022 dyne cm−2.

As opposed to the electrons, the nuclei at such densities are still completely in
the classical regime. The thermal pressure due to the nuclei, assuming a helium
composition, is

Pth = n+kT =
ρ

4mp
kT ∼ 106 g cm−3 × 1.4× 10−16 erg K−1 × 107 K

4× 1.7× 10−24 g
(4.29)

= 2× 1020dynes cm−2.

The degenerate electron pressure therefore completely dominates the pressure in
the star.

4.2.3 Properties of White Dwarfs

Next, we can see what the degenerate electron pressure equation of state, combined
with the other equations of stellar structure, implies for the properties of white
dwarfs. Let us start with the relation between mass and radius.

4.2.3.1 Mass-radius relationship

The equations of mass continuity and hydrostatic equilibrium, expressed as scaling
relations (see Eqns. 3.80 and 3.81), suggest

ρ ∼ M

r3
, (4.30)

and

P ∼ GMρ

r
∼ GM2

r4
. (4.31)

The degenerate electron-gas equation of state is

P ∼ bρ5/3 ∼ b
M5/3

r5
, (4.32)

where the constant factor b is given in Eq. 4.27. Equating the pressures gives

r ∼ b

G
M−1/3. (4.33)

In other words, the radius of a white dwarf decreases with increasing mass. An
order-of-magnitude estimate of the radius is therefore

rwd ∼
b

G
M−1/3 ∼ h2

20mem
5/3
p G

µ
Z
A

∂5/3

M−1/3 (4.34)

∼ (6.6× 10−27 erg s)2(2× 1033 g)−1/3

20× 9× 10−28 g (1.7× 10−24 g)5/3 6.7× 10−8 cgs

µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

= 1.2× 109cm
µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

,
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Put it all together and we have:
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The constant αG expresses the strength of the gravitational interaction, and is the
gravitational analog of the fine-structure constant,

αem =
e2

h̄c
≈ 1

137
, (4.50)

which expresses the strength of the electromagnetic interaction. Eq. 4.48 says
that the maximum mass of a star supported by electron degeneracy pressure is, to
an order of magnitude, the mass of α

−3/2
G protons (i.e., ∼ 1057 protons). Since

Z/A ≈ 0.5,

Mch = 0.21× 0.52 × 1039 3

2 × 1.7× 10−24 g = 1.4M⊙. (4.51)
In fact, no white dwarfs with masses higher thanMch have been found.
There is also a lower bound to the masses of isolated5 white dwarfs that have

been measured, of about 0.25M⊙. This, however, is a result of the finite age of the
Universe, 1.4 × 1010 yr. Stars that will form white dwarfs having masses smaller
than this (namely, stars that have an initial mass on the main sequence smaller than
about 0.8M⊙), have not yet had time to go through their main-sequence lifetimes,
even if they were formed early in the history of the Universe.

4.2.3.3 White dwarf cooling

Due to the good thermal conduction of the degenerate electrons in a white dwarf
(similar to the conduction in metals, which arises in the same way), the temperature
inside a white dwarf is approximately constant with radius. The temperature can be
estimated by recalling that a white dwarf forms from the contraction of a thermally
unsupported stellar core, of massM , down to the radius at which degeneracy pres-
sure stops the contraction. Just before reaching that final point of equilibrium, from
the virial theorem, the thermal energy will equal half the gravitational energy:

Eth ∼
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. (4.52)

For a pure helium composition, the number of nuclei in the core isM/4mH , and the
number of electrons isM/2mH . The total thermal energy (which, once degeneracy
sets it, will no longer play a role in supporting the star against gravity) is therefore,

Eth =
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and so
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Substituting the equilibrium rwd of white dwarfs from Eq. 4.34,

kT ∼ 80G2mem
8/3
p

9h2

µ
Z
A

∂−5/3

M4/3 (4.55)

5In interacting binaries, ablation by beams of matter and radiation from a companion can sometimes
lower the mass of a white dwarf, or even destroy the white dwarf completely. See Section 4.6.3.For a 0.5 Msun white dwarf this give T ~ 8 x 108 K.

The WD is then endpoint in stellar evolution.  No nuclear reactions 
occur.  Hence, it cools over time by radiating it’s energy.  The radiated 
luminosity is given by 
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=
80(6.7× 10−8 cgs)2 9× 10−28 g (1.7× 10−24 g)8/3

9(6.6× 10−27 erg s−1)2
0.5−5/3(1× 1033 g)4/3

= 1.1× 10−8erg,

for a 0.5 M⊙ white dwarf. The temperature is thus kT ∼ 70 keV, or T ∼ 8 ×
108K, and a just-formed degenerate core is a very hot object, with thermal emission
that peaks in the X-ray part of the spectrum. As such, once the core becomes an
exposed white dwarf, its radiation ionizes the layers of gas that were blown off in
the various stages on the giant phase. As already noted, this produces the objects
called planetary nebulae.
A white dwarf is an endpoint in stellar evolution, devoid of nuclear reactions. It

therefore cools by radiating from its surface the thermal energy stored in the still-
classical gas of nuclei within the star’s volume . (The degeneracy of the electron gas
limits almost completely the ability of the electrons to lose their kinetic energies.)
The radiated luminosity will be

L = 4πr2
wdσT 4

E , (4.56)

where TE is the effective temperature of the white dwarf photosphere. Although
electron heat conduction leads to a constant temperature over most of the volume,
there is a thin non-degenerate surface layer (of order 1% of the white dwarf radius)
that insulates the star. This layer lowers TE relative to the interior temperature and
slows down the rate of energy loss.
However, to obtain a crude upper limit on the rate at which a white dwarf cools

by means of its radiative energy loss, let us assume a constant temperature all the
way out to the surface of the star, so that TE ∼ T . The radiative energy loss rate is
then

4πr2
wdσT 4 ∼ dEth

dt
=

3Mk

8mp

dT

dt
(4.57)

(where we have included in the right hand term only the contribution of the nu-
clei to the thermal energy from Eq. 4.53). Separating the variables T and t, and
integrating, the cooling time to a temperature T is

τcool ∼
3Mk

8mp4πr2
wdσ3T 3

(4.58)

=
3× 1× 1033 g × 1.4× 10−16 erg K−1

8× 1.7× 10−24 g 4π(4× 108 cm)2 × 5.7× 10−5 cgs× 3T 3

= 3× 109yr
µ

T

103K

∂−3

,

where we have takenM = 0.5M⊙ and rwd = 4000 km. (We have abbreviated the
units of the Stefan-Boltzmann Law’s σ as “cgs”.) Alternatively, we can write the
temperature as a function of time as

T

103K
∼

µ
t

3× 109yr

∂−1/3

(4.59)

We will assume that white dwarf is at a constant temperature and 
estimate the cooling time.
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=
80(6.7× 10−8 cgs)2 9× 10−28 g (1.7× 10−24 g)8/3

9(6.6× 10−27 erg s−1)2
0.5−5/3(1× 1033 g)4/3

= 1.1× 10−8erg,

for a 0.5 M⊙ white dwarf. The temperature is thus kT ∼ 70 keV, or T ∼ 8 ×
108K, and a just-formed degenerate core is a very hot object, with thermal emission
that peaks in the X-ray part of the spectrum. As such, once the core becomes an
exposed white dwarf, its radiation ionizes the layers of gas that were blown off in
the various stages on the giant phase. As already noted, this produces the objects
called planetary nebulae.
A white dwarf is an endpoint in stellar evolution, devoid of nuclear reactions. It

therefore cools by radiating from its surface the thermal energy stored in the still-
classical gas of nuclei within the star’s volume . (The degeneracy of the electron gas
limits almost completely the ability of the electrons to lose their kinetic energies.)
The radiated luminosity will be

L = 4πr2
wdσT 4

E , (4.56)

where TE is the effective temperature of the white dwarf photosphere. Although
electron heat conduction leads to a constant temperature over most of the volume,
there is a thin non-degenerate surface layer (of order 1% of the white dwarf radius)
that insulates the star. This layer lowers TE relative to the interior temperature and
slows down the rate of energy loss.
However, to obtain a crude upper limit on the rate at which a white dwarf cools

by means of its radiative energy loss, let us assume a constant temperature all the
way out to the surface of the star, so that TE ∼ T . The radiative energy loss rate is
then

4πr2
wdσT 4 ∼ dEth

dt
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3Mk

8mp

dT

dt
(4.57)

(where we have included in the right hand term only the contribution of the nu-
clei to the thermal energy from Eq. 4.53). Separating the variables T and t, and
integrating, the cooling time to a temperature T is

τcool ∼
3Mk

8mp4πr2
wdσ3T 3

(4.58)

=
3× 1× 1033 g × 1.4× 10−16 erg K−1

8× 1.7× 10−24 g 4π(4× 108 cm)2 × 5.7× 10−5 cgs× 3T 3

= 3× 109yr
µ

T

103K

∂−3

,

where we have takenM = 0.5M⊙ and rwd = 4000 km. (We have abbreviated the
units of the Stefan-Boltzmann Law’s σ as “cgs”.) Alternatively, we can write the
temperature as a function of time as

T

103K
∼

µ
t

3× 109yr

∂−1/3

(4.59)

Putting it together:
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dt =
3Mk

32⇡�mpr2
T�4dT
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Integral is left to the student. Put in M = 0.5Msun and rwd = 4000 km.

It would take our WD several Gyr to cool to 103 K.  In reality, the insulating 
non-degenerate surface layers would result in an even slower cooling rate.  
Detailed models take this and other effects into account.  For carbon/oxyen 
WD, cooling over 1010 yrs only brings temperatures down to 3000 - 4000 K.  
This explains the high temperatures (and blue/white colors). 

Eth =
3

8

M

mp
kT

We only take nuclei,  
not electrons.
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ROTSE
• Robotic Optical Transient Search

Experiment

• Original purpose: Observe GRB optical
counterpart (“afterglow”)

• Observation & detection of optical
transients (seconds to days)

• Robotic operating system
o Automated interacting Linux daemons

o Sensitivity to short time-scale variation

o Efficient analysis of large data stream

o Recognition of rare signals

• Current research:
o GRB response

o SNe search (RSVP)

o Variable star search

o Other transients: AGN, CV (dwarf novae), flare
stars, novae, variable stars, X-ray binaries

8 April 2016 SMU PHYSICS

ROTSE-IIIa
Australian National Observatory



ROTSE-I

8 April 2016 SMU PHYSICS

• 1st successful robotic telescope
• 1997-2000; Los Alamos, NM
• Co-mounted, 4-fold telephoto array (Cannon

200 mm lenses)
• CCD

o 2k x 2k Thomson
o “Thick”
o Front illuminated
o Red sensitive
o R-band equivalent
o Operated “clear” (unfiltered)

• Optics
o Aperture (cm): 11.1
o f-ratio: 1.8
o FOV: 16°×16°

• Sensitivity (magnitude): 14-15
o Best: 15.7

• Slew time (90°): 2.8 s
• 990123: Observed 1st GRB afterglow in

progress
o Landmark event
o Proof of concept



ROTSE-III

8 April 2016 SMU PHYSICS

• 2003 – present

• 4 Cassegrain telescopes

• CCD
o “Thin”

o Back illuminated

o Blue-sensitive

o High QE (UBVRI bands)
o Default photometry calibrated to R-band

• Optics
o Aperture (cm): 45

o f-ratio: 1.9

o FOV: 1.85°×1.85°

• Sensitivity (magnitude): 19-20

• Slew time: < 10 s

HET

ROTSE-IIIb

ROTSE-IIIb

re-imaging
optics

twin
prisms

final
focal
plane

McDonald Observatory
Davis Mountains, West Texas
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Dwarf Novae

An artist's concept of the accretion disk around the binary star system
WZ Sge. Using data from Kitt Peak National Observatory and NASA's
Spitzer Space Telescope, a new picture of this system has emerged 
which includes an asymmetric outer disk of dark matter.



ROTSE3 J203224.8+602837.8
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• 1st detection (110706): 
o ROTSE-IIIb & ROTSE-IIId

o ATel #2126

• Outburst (131002 – 131004): 
o ROTSE-IIIb

o ATel #5449

• Magnitude (max): 16.6

• (RA, Dec) = (20:32:25.01, +60:28:36.59)

• UG Dwarf Nova
o Close binary system consisting of a red 

dwarf, a white dwarf, & an accretion disk 

surrounding the white dwarf

o Brightening by 2 - 6 magnitudes caused by 

instability in the disk

o Disk material infalls onto white dwarf

“Damien”
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Novae (classical)

Novae typically originate in binary systems containing 
sun-like stars, as shown in this artist's rendering. 



M33N 2012-10a
• 1st detection: 121004 (ROTSE-IIIb)

• (RA, Dec) = (01:32:57.3, +30:24:27)

• Constellation: Triangulum

• Host galaxy: M33

• Magnitude (max): 16.6

• z = 0.0002 (~0.85 Mpc, ~2.7 Mly)

• Classical nova

o Explosive nuclear burning of white dwarf
surface from accumulated material from the
secondary

o Causes binary system to brighten 7 - 16
magnitudes in a matter of 1 to 100s days

o After outburst, star fades slowly to initial
brightness over years or decades

 CBET 3250

M33 Triangulum Galaxy





Supernovae Search
• SN 2012ha

• SN 2013X

• M33 2012-10a (nova)

• ROTSE3 J203224.8+602837.8 (dwarf nova)

8 April 2016 SMU PHYSICS

SN 2013ej (M74)SN 1994D (NGC 4526)

SN 2013ej (M74)

Supernovae

http://www.rotse.net/
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https://youtu.be/alAQqzlB-O8
https://youtu.be/alAQqzlB-O8
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SN 2012cg (NGC 4424)

http://cmarchesin.blogspot.com/2016/03/first-discovery-of-binary-companion-for.html


SN 2012ha (“Sherpa”)
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• 1st detection: 121120 (ROTSE-IIIb)

• Type: Ia-normal
o Electron degeneracy prevents collapse to

neutron star

o Single degenerate progenitor: C-O white

dwarf in binary system accretes mass from

companion (main sequence star)
o Mass → Chandrasekhar limit (1.44 M☉)

o Thermonuclear runaway

o Deflagration or detonation?

o Standardizable candles
 acceleration of expansion

 dark energy

• Magnitude (max): 15.0

• Observed 1 month past peak brightness

• (RA, Dec) = (13:00:36.10, +27:34:24.64)

• Constellation: Coma Berenices

• Host galaxy: PGC 44785

• z = 0.0170 (~75 Mpc; ~240 Mly)

• CBET 3319

SN 2012ha: HET finder scope



SN 2013X (“Everest”)
• Discovered 130206 (ROTSE-IIIb)

• Type Ia 91T-like
o Overluminous

o White dwarf merger?
o Double degenerate progenitor?

• Magnitude (max): 17.7

• Observed 10 days past maximum brightness

• (RA, Dec) = (12:17:15.19, +46:43:35.94)

• Constellation: Ursa Major

• Host galaxy: PGC 2286144

• z = 0.03260 (~140 Mpc; ~450 Mly)

• CBET 3413

SMU PHYSICS



What happens to a star more 
massive than 1.4 solar masses?

1. There aren’t any

2. They shrink to zero size

3. They explode

4. They become something else

8 April 2016 SMU PHYSICS



Neutron Stars

• Very compact – about 10 km
radius

• Very dense – one teaspoon of
neutron star material weighs as
much as all the buildings in
Manhattan

• Spin rapidly – up to 2000 rev/s

• High magnetic fields –
compressed from magnetic
field of progenitor star

8 April 2016 SMU PHYSICS



Neutron Stars
• Degenerate stars heavier than 1.4

solar masses collapse to become
neutron stars

• Formed in supernovae explosions

• Electrons are not separate
• Combine with nuclei to form neutrons

• Neutron stars are degenerate gas of
neutrons

8 April 2016 SMU PHYSICS

Near the center of the Crab Nebula is a 
neutron star that rotates 30 times per 
second. Photo Courtesy of NASA.



Neutron Stars
Similar to white dwarfs - basic physics is degenerate fermion gas.  
However, we have neutrons, not electrons.  Replace me with mp.
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Thus, most of the nucleons become neutrons, and a neutron star forms, in which
degenerate neutrons, rather than electrons, provide the pressure support against
gravity.

4.3.2 Properties of Neutron Stars

The properties of neutron stars can be estimated easily by replacingme withmn in
Eqns. 4.34-4.35, describing white dwarfs. Thus

rns ≈ 2.3× 109 cm
me

mn

µ
Z
A

∂5/3 µ
M

M⊙

∂−1/3

≈ 14 km
µ

M

1.4M⊙

∂−1/3

.

(4.77)
Here we have setZ/A = 1, since the number of particles contributing to the degen-
eracy pressure (i.e., the neutrons) is almost equal to the total number of nucleons.
Since the radius of a neutron star is about 500 times smaller than that of a white
dwarf, the mean density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is
similar to the density of nuclear matter. In fact, one can consider a neutron star to
be one huge nucleus of atomic mass number A ∼ 1057.
Our estimate of the radius is only approximate, since we have neglected two

effects which are important. First, at these inter-particle separations, the nuclear
interactions play an important role in the equation of state, apart from the neutron
degeneracy pressure. The equation of state of nuclear matter is poorly known, due
to our poor understanding of the details of the strong interaction. In fact, it is hoped
that actual measurements of the sizes of neutron stars will provide experimental
constraints on the nuclear equation of state, which would be important input to
nuclear physics. Second, the gravitational potential energy of a test particle of mass
m at the surface of a ∼ 1.4M⊙ neutron star, of radius r ∼ 10 km, is a significant
fraction of the particle’s rest-mass energy:

Egr

mc2
=

GM

rc2
≈ 6.7× 10−8 cgs× 1.4× 2× 1033 g

10× 105 cm (3× 1010 cm s−1)2
≈ 20%. (4.78)

This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,

Mch = 0.2
µ
Z
A

∂2 µ
hc

Gm2
p

∂3/2

mp, (4.79)

can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)
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Here we have setZ/A = 1, since the number of particles contributing to the degen-
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Since the radius of a neutron star is about 500 times smaller than that of a white
dwarf, the mean density is about 108 times greater, i.e., ρ ∼ 1014 g cm−3. This is
similar to the density of nuclear matter. In fact, one can consider a neutron star to
be one huge nucleus of atomic mass number A ∼ 1057.
Our estimate of the radius is only approximate, since we have neglected two

effects which are important. First, at these inter-particle separations, the nuclear
interactions play an important role in the equation of state, apart from the neutron
degeneracy pressure. The equation of state of nuclear matter is poorly known, due
to our poor understanding of the details of the strong interaction. In fact, it is hoped
that actual measurements of the sizes of neutron stars will provide experimental
constraints on the nuclear equation of state, which would be important input to
nuclear physics. Second, the gravitational potential energy of a test particle of mass
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This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,

Mch = 0.2
µ
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mp, (4.79)

can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)

Note:  the Z/A factor is one, since almost all nucleons are neutrons.

Important Effects (we neglected):

1. Nuclear interactions play an important role in the EOS.  The
EOS is poorly known due to our poor understanding of details 
of the strong interaction. 

2. The star is so compact that the effects of GR must be taken into
account.



Compare gravitational and rest mass energies of a test particle of 
mass m.

Egr =
GMm

2r
E = mc2
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similar to the density of nuclear matter. In fact, one can consider a neutron star to
be one huge nucleus of atomic mass number A ∼ 1057.
Our estimate of the radius is only approximate, since we have neglected two

effects which are important. First, at these inter-particle separations, the nuclear
interactions play an important role in the equation of state, apart from the neutron
degeneracy pressure. The equation of state of nuclear matter is poorly known, due
to our poor understanding of the details of the strong interaction. In fact, it is hoped
that actual measurements of the sizes of neutron stars will provide experimental
constraints on the nuclear equation of state, which would be important input to
nuclear physics. Second, the gravitational potential energy of a test particle of mass
m at the surface of a ∼ 1.4M⊙ neutron star, of radius r ∼ 10 km, is a significant
fraction of the particle’s rest-mass energy:

Egr

mc2
=

GM

rc2
≈ 6.7× 10−8 cgs× 1.4× 2× 1033 g

10× 105 cm (3× 1010 cm s−1)2
≈ 20%. (4.78)

This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
detailed calculations, including these two effects, give a radius of about 10 km for
a 1.4M⊙ neutron star.
The Chandrasekhar mass,
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mp, (4.79)

can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)

and 

basicastro4 October 26, 2006

84 CHAPTER 4
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This means that matter falling onto a neutron star loses 20% of its rest mass, and
the mass of the star (as measured, e.g., via Kepler’s law) is 20% smaller than the
total mass that composed it. Thus, a proper treatment of the physics of neutron stars
needs to be calculated within the strong-field regime of General Relativity. More
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can be used to estimate a maximal mass for a neutron star, beyond which the density
is so high that even the degenerate neutron gas becomes ultra-relativistic and unable
to support the star against gravity. Again replacing the Z/A = 0.5, appropriate for
white dwarfs, with Z/A = 1, describing neutron stars, gives a factor of 4, or

Mns,max = 1.4M⊙ × 4 = 5.6M⊙. (4.80)

Matter falling onto a neutron star loses 20% of its rest mass and 
the mass of the star as measured via Kepler’s law is 20% smaller 
than the total mass that composed it!

Detailed calculations that take into account GR and nuclear 
interactions give a radius of 10 km for a neutron star of 1.4Msun.

Limiting mass of a neutron star is not accurately known.  The value 
is between 2Msun and 3.2Msun.  



Neutron energy levels
• Only two neutrons (one up, one
down) can go into each energy level

• In a degenerate gas, all low energy
levels are filled

• Neutrons have energy, and
therefore are in motion and exert 
pressure even if temperature is zero

• Neutron star are supported by
neutron degeneracy
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https://www.youtube.com/watch?v=DEw6X2BhIy8
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Supernova Explosions

SN1994D
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Properties
- The energy imparted by material flying out is about 3 x 1051 erg. 
- Luminous energy of ~ 3 x 1049 erg can be observed for ~ 1 

month after the explosion.  This is driven by the decay of 
radioactive elements synthesized just before, during collapse & 
during explosion. 

- The mean luminosity is 

LSN ⇠ 1043 erg s�1 = 3⇥ 109Lsun

- The bulk of the energy released in SN is carried away by neutrino-
antineutrino pairs.   

- The density is so high, that photons can not emerge from the star.  
(Too many photon-photon collisions).

basicastro4 October 26, 2006

86 CHAPTER 4

About 3× 1049 erg can be observed over a period of order one month as luminous
energy, driven primarily by the decay of radioactive elements synthesized during
the last fewmoments before collapse, during the collapse, and during the explosion.
Although the luminous energy is only 1% of the kinetic energy, it nevertheless
makes a supernova an impressive event; the mean luminosity is of order

LSN ∼
3× 1049 erg

30 d× 24 hr× 60 m× 60 s
∼ 1043 erg s−1 ∼ 3× 109L⊙, (4.81)

comparable to the luminosity of an entire galaxy of stars (see Chapter 6).
However, the total gravitational binding energy released in the collapse of the

core to a neutron star is

Egr ∼
GM2

rns
= 5× 1053

µ
M

1.4M⊙

∂2 ≥ rns

10 km

¥−1

erg. (4.82)

The kinetic and radiative energies are just small fractions, ∼ 10−2 and ∼ 10−4,
respectively, of this energy. The bulk of the energy released in the collapse is
carried away by neutrino-antineutrino pairs. The density is so high that photons
cannot emerge from the star, and they undergo frequent photon-photon collisions.
These produce electron-positron pairs, which form neutrino pairs:

γ + γ → e+ + e− → νe + ν̄e, νµ + ν̄µ, ντ + ν̄τ (4.83)
(the µ and τ neutrinos are neutrinos related to the muon and the tauon, which
are heavy relatives of the electron.) The neutrinos can pass through the star with
few scatterings (see Problem 3), and can therefore drain almost all of the thermal
energy.
A striking confirmation of this picture was obtained in 1987, with the explo-

sion of Supernova 1987A in the Large Magellanic Cloud, a satellite galaxy of our
Galaxy (the Milky Way; see Chapter 6), at a distance of 50 kpc from Earth. This
was the nearest supernova observed since the year 1604. A total of 20 antineutri-
nos (several of them with directional information pointing toward the supernova)
were detected simultaneously in the span of a few seconds by two different under-
ground experiments. Each experiment consisted of a detector composed of a large
tank filled with water and surrounded by photomultiplier tubes. These experiments
were initially designed to search for proton decay. The experiments discovered
the antineutrinos, and measured their approximate energies and directions via the
reaction

ν̄e + p→ n + e+, (4.84)
by detecting the Cerenkov radiation emitted by the positrons moving faster than
the speed of light in water. The typical energies of the ν̄e’s were 20 MeV. The de-
tection of 20 particles, divided by the efficiency of the experiments to antineutrino
detection (which was a function of antineutrino energy), implied that a “fluence”
(i.e., a time-integrated flux) of 2 × 109 cm−2 electron antineutrinos had reached
Earth. The electron antineutrinos, ν̄e’s, are just one out of six types of particles
(νe, ν̄e, νµ, ν̄µ, ντ , ν̄τ ) that are produced in similar numbers and carry off the col-
lapse energy. Thus, the total energy released in neutrinos was

Eneutrino ∼ 2× 109 cm−2 × 6× (20 MeV × 1.6× 10−6erg MeV−1) (4.85)
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Supernova 1987A
- 20 antineutrinos were discovered in a 

span of a few seconds by two different 
underground experiments 
(Kamiokande II and IMB). 

- First time neutrinos were detected.  
The neutrinos were detector prior to 
the emission of visible light.

16

SN 1987A in the Large Magellanic Cloud. 
Distance 50 kpc from Earth. 
Nearest SN since 1604.

- The experiments were originally 
designed to detect proton decay.   

- Neutrinos are detected via the process
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tection of 20 particles, divided by the efficiency of the experiments to antineutrino
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2002 Nobel Prize in Physics 
for the first real time 
observation of supernova 
neutrinos.  (This prize was 
shared with Ray Davis.)
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Neutrinos from SN1987A.  The 8 neutrinos by the IBM experiment have 
greater energy than the 12 detected by the Kamiokande experiment 
because the IBM detector was not sensitive to low energy neutrinos.
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Optical light curve of SN1987A.  Light faded at almost the same 
observed light at 66Co (77 days).



Principles of Astrophysics & Cosmology -  Professor Jodi Cooley

Type II Supernova:  Summary
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Type Ia SN
- Mass transfer from companion 

onto WD happens until reach 
Mch. 

- At (or before) that stage, carbon 
core ignites.  Temp rises, 
pressure increases. Classically, 
star should expand. 

- Degenerate conditions prevent 
star from expanding, causes 
nuclear reaction rate to 
increase. 

- Ends in a thermonuclear 
runaway — star explodes.

21
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Supernova Summary

- Produced by the feeding of a white dwarf from a companion star. 

- Leaves behind no stellar remnant. 

- The kind of star the companion is unknown. 

- Merger of two WD?

22

- Produced by core collapse of a massive star. 

- Leaves behind a neutron star or black hole.

Type II SN

Type Ia SN

Material expelled by both types of SN is essentially the only 
source of heavy elements in the universe.  Lighter elements were 
formed in the early universe (more details later in the course).
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Gamma Ray Bursts
- Even more luminous than a SN explosion.   
- Release 1051 erg over just a few seconds. 
- Initially energy released at gamma frequencies, fading afterglows 

can be in x-rays (minutes), optical (days), and radio frequencies 
(weeks). 

- Occurrence:  Observe approximately 1 per day. 
- Half of the explosions are in star forming galaxies. 
- Nature and mechanism for GRBs is still widely debated. 

- Involved in formation of black holes. 
- Links to SN explosions (Type Ic) 
- Result from core collapse of massive stars 
(long-duration GRB).
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Pulsars and Supernova Remnants

-The first pulsar was discovered in 1967.  
It had a pulse period of 1.33 s. 

- It was named “LGM-1”.  Any ideas what 
this stands for?

-Today over 1000 pulsars are 
known.  Some have periods as 
short as 0.03 s.

Little Green Men
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The Crab Pulsar

- First observed in 1054 by Chinese, Japanese and Korean Astronomers. 
- Period τ = 33 ms 
- Ltot ~ 5 x 1038 erg s-1  

-
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Figure 4.9 Flux at 430 MHz vs. time from PSR J0546+2441, a typical radio pulsar, over
several periods. The pulse period is 2.84385038524 s (i.e., measured to 12 sig-
nificant digits). Note the variable strength, and occasional disappearance of the
pulses. The inset shows a zoom-in on the pulse profile, averaged over many pe-
riods. Data credit: D. Champion, see Mon. Not. Royal. Astron. Soc. (2005),
363, 929.

4.4 PULSARS AND SUPERNOVA REMNANTS

Many neutron stars have been identified as such in their manifestation as pulsars.
Pulsars were first discovered with radio telescopes in the 1960s as point sources of
periodic pulses of radio emission, with periods of the order of τ ∼ 10−3 to 1 s.
Today, over 1000 pulsars are known. The periods of most pulsars are observed to
grow slowly with time in a very regular manner. The predictability of the pulse
arrival times is comparable to that of the most accurate man-made clocks. Fig-
ure 4.9 shows a typical pulsar time series. One of the best studied pulsars, which
we shall use as an example, is the Crab pulsar, at the center of the Crab nebula (see
Fig. 4.10). The Crab nebula, an example of a supernova remnant, is an expanding
cloud of gaseous fragments at the same location in the sky where a bright supernova
explosion was observed and documented in the year 1054 by Chinese, Japanese,
and Korean astronomers. The Crab pulsar, from which pulsations are detected at
radio, optical, and X-ray wavelengths, has a pulsation period of τ = 33 ms, i.e., an
angular frequency

ω =
2π

τ
= 190 s−1. (4.86)

The period derivative is
dτ

dt
=

1 ms
75 yr

= 4.2× 10−13, (4.87)
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Pulsars as Neutron Stars

What are possible mechanisms for producing the periodicity of  
the observed magnitude and regularity in these stars?

1. binaries 
2. stellar pulsations 
3. stellar rotation
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Binaries:
Angular frequency, mass and separation are related by Kepler’s 
law.
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or
dω

dt
= −2π

τ2

dτ

dt
= −2.4× 10−9 s−2. (4.88)

The total luminosity of the Crab nebula, integrated over all wavelengths, is
Ltot ≈ 5× 1038erg s−1, (4.89)

and is mostly in the form of synchrotron radiation, i.e., radiation emitted by rela-
tivistic electrons as they spiral along magnetic field lines.

4.4.1 Identification of Pulsars as Neutron Stars

To see that the Crab pulsar (and other pulsars) are most plausibly identified with
spinning neutron stars, let us consider possible mechanisms for producing period-
icity of the observed magnitude and regularity. Three options that come to mind,
of astronomical phenomena associated with periodicity, are binaries, stellar pulsa-
tions, and stellar rotation. For binary orbits, the angular frequency, masses, and
separation are related by Kepler’s law,

ω2 =
G(M1 + M2)

a3
, (4.90)

or

a =
[G(M1 + M2)]1/3

ω2/3
(4.91)

=
[6.7× 10−8 cgs (4× 1033 g)]1/3

(190 s−1)2/3
= 2× 107 cm = 200 km,

where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
mass times the acceleration, Ma ∼ Mr/τ2, gives the required result. Note that the pulsation period,
τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, Eq. 3.15.
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pair to shrink, and the orbital frequency to grow, contrary to the observation that the
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where we have assumed two solar-mass objects and inserted the Crab pulsar’s fre-
quency. The separation a is much smaller than the radii of normal stars or of white
dwarfs. Only a pair of neutron stars could exist in a binary at this separation. How-
ever, General Relativity predicts that two such masses orbiting at so small a separa-
tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
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where a is the separation and we assume object are of solar mass.

How does the separation distance compare to the radius of a 
normal star?

It is much smaller than a normal star or even a white 
dwarf.  Only neutron stars could exist in such a binary.  

BUT GR predicts orbiting masses as such a separation 
will lose energy (via gravitational waves), separation 
will shrink and orbital frequency will grow. Observed 
pulsar frequencies decrease with time.
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Stellar Pulsations:

Stars are observed to pulsate regularly in various modes.
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tion will lose gravitational binding energy via the emission of gravitational waves
(see Problems 5 and 6). This loss of energy will cause the separation between the
pair to shrink, and the orbital frequency to grow, contrary to the observation that the
pulsar frequencies decrease with time. Thus, orbital motion of stellar-mass objects
cannot be the explanation for pulsars.
A second option is stellar pulsations. Stars are, in fact, observed to pulsate

regularly in various modes, with the pulsation period dependent on density as6
τ ∝ ρ−1/2. Normal stars oscillate with periods between hours and months, and
white dwarfs oscillate with periods of 100 to 1000 s. Neutron stars, which are 108

times denser than white dwarfs, should therefore pulsate with periods 104 times

6It is easy to see from a dimensional argument that this must be the case for radial pulsations. Con-
sider a star that is “squeezed” radially, and then released. The restoring force due to the pressure has
dimensions of pressure times area, F ∼ PA ∼ (GMρ/r)r2, where we have used the equation
of hydrostatic equilibrium (Eq. 3.19) to express the dimensions of the pressure. Equating this to the
mass times the acceleration, Ma ∼ Mr/τ2, gives the required result. Note that the pulsation period,
τ ∼ (Gρ)−1/2, is essentially the same as the free-fall timescale, Eq. 3.15.

Normal stars oscillate with periods between hours and 
months.  WD oscillate with periods of 100 to 1000 s.

Neutron stars (108 x denser)  should, therefore, pulsate 
with periods of 0.1s.

Pulsars commonly have a period of ~0.8 s.  There is no 
class of stars that produce this pulsation period.
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Stellar Rotation:
Assume anisotropic emission from a rotating star.  What is 
the fastest a star can spin?

Angular frequency at which centrifugal forces do not 
break it apart.
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
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>
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, (4.93)

and therefore

ρ̄ =
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4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

If the Crab is a spinning star and not flying apart, it’s mean 
density must be 5x WD, but consistent with neutron star.  
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The Crab Nebula

Optical image -  
scale 4 pc per side.

Zoom in of 
marked area in 
optical.

Zoom in of 
marked area in 
x-rays.
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What are possible mechanisms for producing the periodicity of  
the observed magnitude and regularity in these stars?

1. binaries 
2. stellar pulsations 
3. stellar rotation

Last Time:

1. The separation distance required between 2 binaries is 200 km.  
Normal stars and WD are too large, neutrons stars are okay.  
However, GR requires that stars in tight binary lose energy, 
spiral inward and orbital velocity increases.  Observations 
indicate that pulsars slow over time.

2. No known class of stars produces a pulsation period of ~0.8 s.  
Normal stars and WD pulsate at 100 - 1000 s.  Neutrons stars 
pulsate at 0.1 s.
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Stellar Rotation:
Assume anisotropic emission from a rotating star.  What is 
the fastest a star can spin?

Angular frequency at which centrifugal forces do not 
break it apart.
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

If the Crab is a spinning star and not flying apart, it’s mean 
density must be 5x WD, but consistent with neutron star.  
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Assume that the luminosity of the Crab nebula is powered by the pulsar’s 
rotational energy loss as it spins down.

What is the formula for rotational energy?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:
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4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

How would I get the total luminosity due to rotational energy?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:
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4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
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, (4.93)

and therefore

ρ̄ =
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4πr3
>
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4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

What is the moment of inertia of a sphere?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm
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> mω2r, (4.92)

or
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>
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G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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Substitute and solve for Mr2
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Compare this to a 1.4 Msun neutron star of radius 10 km.
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm
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> mω2r, (4.92)

or
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>
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, (4.93)

and therefore

ρ̄ =
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4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm
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or
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>
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and therefore
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>
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4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 91

shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
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>
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and therefore
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4πr3
>
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4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M
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>
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, (4.93)

and therefore

ρ̄ =
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4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω
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. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then
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2
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= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

How does this compare to our sun?
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shorter, i.e., less than 0.1 s. However, the most common period for pulsars is about
0.8 s. There is thus no known class of stars with the density that would produce the
required pulsation period.
Finally, let us assume that the rapid and very regular pulsation is produced via

anisotropic emission from a rotating star. The fastest that a star can spin is at the
angular frequency at which centrifugal forces do not break it apart. This limit can
be found by requiring that the gravitational force on a test mass m, at the surface,
be greater than the centrifugal force:

GMm

r2
> mω2r, (4.92)

or
M

r3
>

ω2

G
, (4.93)

and therefore

ρ̄ =
3M

4πr3
>

3ω2

4πG
=

3(190 s−1)2

4π × 6.7× 10−8 cgs
= 1.3× 1011 g cm−3, (4.94)

for the Crab pulsar. Thus, if the Crab pulsar is a spinning star and is not flying
apart, its mean density must be at least five orders of magnitude larger than that of
a white dwarf, but consistent with that of a neutron star. Note that the pulsars with
the shortest periods known, of about 1 ms (rather than the Crab’s 33 ms), must have
mean densities 1000 times larger to avoid breaking apart, i.e.,∼ 1014 g cm−3. This
is just the mean density we predicted for neutron stars.
Next, let us presume that the luminosity of the Crab nebula is powered by the

pulsar’s loss of rotational energy as it spins down. (The observed luminosity of
the pulsar itself, ∼ 1031 erg s−1, is much too small to be the energy source of the
extended emission). Since

Erot =
1
2
Iω2, (4.95)

where I is the moment of inertia,

Ltot = −dErot

dt
= −Iω

dω

dt
. (4.96)

For an order-of-magnitude estimate, let us use the moment of inertia of a constant-
density sphere, I = 2

5Mr2. Then

Mr2 ∼ −5
2

Ltot

ωdω/dt
= − 5× 5× 1038 erg s−1

2× 190 s−1(−2.4× 10−9 s−2)
= 3× 1045 g cm2.

(4.97)
A 1.4M⊙ neutron star of radius 10 km has just this value ofMr2:

Mr2 = 1.4× 2× 1033 g × (106 cm)2 = 2.8× 1045 g cm2. (4.98)

By comparison, a normal star like the Sun hasMr2 of order 109 larger than the
value in Eq. 4.98. Conservation of angular momentum, J = Iω, then dictates that
when a stellar core of solar mass and solar radius collapses to a radius of about
10 km, it will spin up by a factor of order 109. The rotation period of the Sun is

(2⇥ 1033 g)⇥ (7⇥ 1010 cm)2 = 9.8⇥ 1054 g cm2
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How fast would the sun spin if it were to collapse to a neutron star 
of radius 10 km?  The rotation period of the sun is 25 days and the 
sun’s radius is 7 x 1010 cm.

Use conservation of momentum to solve.

Ii!i = If!f

2

5
MR2

i!i =
2

5
MR2

f!f

!f = !i(
Ri

Rf
)2 = 3⇥ 10�6 s�1 ⇥ (

7⇥ 1010 cm

10⇥ 105 cm
)2 = 1.5⇥ 104 s�1

Spin up rates on order of 109. 
Collapse of main sequence stars 
are expected to produce objects 
with a spin on the order of ms.
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Is the nail in the coffin?
- The spin rate of pulsars is that expected from the 

collapse of the cores of main sequence stars. 
- The mean densities are those of neutron stars 
- Their rotational energy accounts for the luminosity 

of supernova ejecta in which the stars are 
embedded. 

- Location of pulsars at the sites of historical SN is 
expected to accompany the formation of a neutron 
star.
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Magnetic Fields
If a solar type star collapses to form a neutron star, while conserving 
magnetic flux, we would expect

R2
sunBsun = R2

NSBNS

BNS

Bsun
= (

7⇥ 1010 cm

106 cm
)2 ⇠ 5⇥ 109

For the sun, B ~ 100 G, so we would expect a NS to have a 
field of magnitude ~1012 G.
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Consider a NS having a magnetic field axis  
misaligned w.r.t. the stars rotation axis by 
some angle θ.

  

Dipole Radiation

q L=
1

6 c
3
B2 r6 ω4 sin2θ ∝ ω4

Even if a plasma is absent, a spinning neutron star will radiate if the 
magnetic and rotation axes do not coincide:

Equate this to loss of rotational energy:

P=I ω4 d ω
dt

∝ ω4 →
d ω
dt

=Cω3

Separate variables and integrate:

t pulsar=∫dt= ω3

2 ω̇ ( 1

ω2
−

1

ωi

2 )
For Crab, get 1260 years 
from measured ω and dω/dt, 
assuming ω

i
 = ∞.

Matches age of 950 years.

Solving for B,  and substituting in observed 
values of the Crab gives B ~ 8 x 1012 Gauss.

A spinning magnetic dipole radiates an 
EM luminosity of
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25.4 days, or 2 × 106 s, which is typical of main-sequence stars. Collapse of a
stellar core to neutron-star proportions is thus expected to produce an object with a
spin period of order milliseconds, as observed in pulsars.
Thus, we see that if we identify pulsars as rapidly spinning stars, then: their spin

rate is that expected from the collapse of the cores of main sequence stars to neutron
star dimensions; their mean densities are those of neutron stars; and their loss or
rotational energy accounts for the luminosity of the supernova ejecta in which they
are embedded, if they have the moments of inertia of neutron stars. Finally, the
location of pulsars at the sites of some historical supernovae, an explosion that
is expected to accompany the formation of a neutron star (in terms of the energy
released, even if the details of the explosion are not yet fully understood), leaves
little doubt that pulsars are indeed neutron stars.

4.4.2 Pulsar Emission Mechanisms

The details of how pulsars produce their observed periodic emission are still a mat-
ter of active research. However, it is widely accepted that the basic phenomenon is
the rotation of a neutron star having a magnetic field axis that is misaligned with
respect to the star’s rotation axis by some angle θ. A spinning magnetic dipole
radiates an electromagnetic luminosity

L =
1

6c3
B2r6ω4 sin2 θ, (4.99)

where B is the magnetic field on the surface of the star, at a radius r, on the mag-
netic pole. Solving Eq. 4.99 for B, with the observed properties of the Crab, a
typical neutron-star radius, and sin θ ≈ 1,

B ∼ (6c3L)1/2

r3ω2 sin θ
∼ [6(3× 1010 cm s−1)3 × 5× 1038 erg s−1]1/2

(106 cm)3(190 s−1)2 × 1
∼ 8×1012 Gauss.

(4.100)
Magnetic fields of roughly such an order of magnitude are expected when the ion-
ized (and hence highly conductive) gas in a star is compressed during the collapse
of the iron core. The originally small magnetic field of the star (e.g., ∼ 1 Gauss in
the Sun) is “frozen” into the gas. When the gas is compressed, the flux in the mag-
netic field lines is amplified in proportion to r−2, corresponding to∼ 1010 between
the core of a main sequence star and a neutron star.
In a process that is not yet fully agreed upon, the complex interactions between

magnetic and electric fields, particles, and radiation in the neighborhood of the
neutron star power the nebula, and also lead to the emission of radiation in two
conical beams in the direction of the magnetic axis. As the star spins and the
magnetic axis precesses around the rotation axis, each beams traces an annulus of
angular radius θ on the sky, as seen from the neutron star (see Fig. 4.11). Distant
observers who happen to lie on the path of these “lighthouse beams” detect a pulse
once every rotation, when the beam sweeps past them. This implies, of course, that
we can detect only a fraction of all pulsars, namely those for which the Earth lies
in the path of one of the beams.
Evidence that magnetic dipole radiation is the basic emission mechanism can be

found from the age of the Crab pulsar. If such radiation is leading to the pulsar’s

/ !4

If the EM radiation is leading to the pulsar’s rotation energy, then
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Figure 4.11 Schematic model of a pulsar. Bi-conical beams of radiation emerge along the
magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
dErot

dt
= Iω

dω

dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.
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Figure 4.11 Schematic model of a pulsar. Bi-conical beams of radiation emerge along the
magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
dErot

dt
= Iω

dω

dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.

Separating variables and solving yields the age of a pulsar :
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Figure 4.11 Schematic model of a pulsar. Bi-conical beams of radiation emerge along the
magnetic axis of a neutron star. The magnetic axis is inclined by an angle θ to
the star’s spin axis. Observers in a direction, as viewed from the star, that is
within one of the two annular regions swept out by the beams as the star rotates
will detect periodic pulses.

loss of rotational energy, then, combining Eqns. 4.96 and 4.99,
dErot

dt
= Iω

dω

dt
∝ ω4, (4.101)

and
dω

dt
= Cω3. (4.102)

The constant C can be determined from the present values of dω/dt and ω,

C =
ω̇0

ω3
0

. (4.103)

Separating variables in Eq. 4.102 and integrating, we obtain for the age of the
pulsar

tpulsar =
ω3

0

2ω̇0

µ
1
ω2
− 1

ω2
i

∂
, (4.104)

where ωi is the initial angular frequency of the neutron star upon formation. Thus,
an upper limit on the current age of the Crab pulsar is obtained by taking ω = ω0

and ωi =∞,

tpulsar <
ω0

2ω̇0
=

190 s−1

2× 2.4× 10−9 s−2
= 4× 1010 s = 1260 yr. (4.105)

This limit is consistent with the historical age, 950 yr, of the supernova of the year
1054. The pulsar age will equal 950 yr if we set τi = 2π/ωi = 2.5 ms, close to the
expected spin rate of newly formed neutron stars.

For the Crab, pulsar = 1260 years.  This is 
consistent with the historical age of ~960 years.
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Neutron Star Cooling
- Only a small fraction of 

neutron stars are observable 
from Earth. 

- As NS slow down and lose 
rotational energy, they become 
undetectable as pulsars. 

- Detailed calculations of NS 
cooling are much less certain 
than those for WD. 

- Poorly constrained EOS for 
nuclear matter leads to 
uncertainty in the structure and 
composition of a neutron star.
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Black Holes
- In the case of a stellar remnant with mass > the allowed mass of a neutron 

star, no known mechanism can prevent complete gravitational collapse. 
- GR predicts that even if a new form of pressure kicks in at high densities, 

it will not be strong enough to overcome gravity. 
- The star will collapse to a black hole from where no radiation or matter 

can escape.

Let’s find the “radius” of a black hole.

U > Ek
GMm

r
= =

1

2
mv2e
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4.4.3 Neutron Star Cooling

As already noted, according to the above picture, we observe only a fraction of all
pulsars, those for which the Earth is in the rotating pulsar beam. More significantly,
pulsars slow down and lose their rotational energies, and as a result, at some point
in time, will become undetectable as pulsars. However, there should exist a large
population of old, spun-down, neutron stars – the remnants of all massive stars
that have undergone core-collapse to this state. In Section 4.2.3.3, we saw that the
small surface areas of white dwarfs result in very long cooling times. The surfaces
of neutron stars, smaller by five orders of magnitude compared to those of white
dwarfs, mean that old neutron stars will be “stuck” at temperatures of order 105K,
with thermal radiation peaking at photon energies of tens of eV (called the “extreme
UV” range).
Detailed calculations of neutron star cooling are considerably more uncertain

than those for white dwarfs, partly due to the poorly constrained equation of state
on nuclear matter, which leads to uncertainty in the structure and composition of a
neutron star. A cooling calculation also needs to take into account many different
physical processes, not all fully understood, that may play a role under the extreme
conditions of gravity, temperature, density, and magnetic field inside and near the
surface of a neutron star. Interstellar gas atoms falling onto a neutron-star surface
also have an effect, and are likely to heat it to X-ray temperatures. To date, only
several candidate isolated old neutron stars have been found in X-ray surveys. The
small surface areas of neutron stars mean that their optical luminosities are very
low, and hence such objects can be found only when they are near enough. X-ray
surveys do reveal a large population of accreting neutron stars in binary systems,
called “X-ray binaries”, which we will study in Section 4.6.

4.5 BLACK HOLES

In the case of a stellar remnant with a mass above the maximum allowed mass of a
neutron star, no mechanism is known which can prevent the complete gravitational
collapse of the object. In fact, General Relativity predicts that even if some new
form of pressure sets in at high densities, the gravitational field due to such pressure
will overcome any support the pressure gradient provides, and the collapse of the
star to a singularity, or “black hole” is unavoidable.
As its name implies, matter or radiation cannot escape from a black hole. An

incorrect derivation, giving the correct answer, of the degree to which a mass must
be compressed to become a black hole can be obtained by requiring that the escape
velocity, ve, from a spherical mass of radius r be greater than c (and hence nothing
can escape),

GM

r
>

1
2
v2
e =

1
2
c2, (4.106)

and therefore the Schwarzschild radius is

rs =
2GM

c2
= 3 km

M

M⊙
. (4.107)
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in time, will become undetectable as pulsars. However, there should exist a large
population of old, spun-down, neutron stars – the remnants of all massive stars
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also have an effect, and are likely to heat it to X-ray temperatures. To date, only
several candidate isolated old neutron stars have been found in X-ray surveys. The
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low, and hence such objects can be found only when they are near enough. X-ray
surveys do reveal a large population of accreting neutron stars in binary systems,
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4.5 BLACK HOLES

In the case of a stellar remnant with a mass above the maximum allowed mass of a
neutron star, no mechanism is known which can prevent the complete gravitational
collapse of the object. In fact, General Relativity predicts that even if some new
form of pressure sets in at high densities, the gravitational field due to such pressure
will overcome any support the pressure gradient provides, and the collapse of the
star to a singularity, or “black hole” is unavoidable.
As its name implies, matter or radiation cannot escape from a black hole. An

incorrect derivation, giving the correct answer, of the degree to which a mass must
be compressed to become a black hole can be obtained by requiring that the escape
velocity, ve, from a spherical mass of radius r be greater than c (and hence nothing
can escape),

GM

r
>

1
2
v2
e =

1
2
c2, (4.106)
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Rearranging terms
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As already noted, according to the above picture, we observe only a fraction of all
pulsars, those for which the Earth is in the rotating pulsar beam. More significantly,
pulsars slow down and lose their rotational energies, and as a result, at some point
in time, will become undetectable as pulsars. However, there should exist a large
population of old, spun-down, neutron stars – the remnants of all massive stars
that have undergone core-collapse to this state. In Section 4.2.3.3, we saw that the
small surface areas of white dwarfs result in very long cooling times. The surfaces
of neutron stars, smaller by five orders of magnitude compared to those of white
dwarfs, mean that old neutron stars will be “stuck” at temperatures of order 105K,
with thermal radiation peaking at photon energies of tens of eV (called the “extreme
UV” range).
Detailed calculations of neutron star cooling are considerably more uncertain

than those for white dwarfs, partly due to the poorly constrained equation of state
on nuclear matter, which leads to uncertainty in the structure and composition of a
neutron star. A cooling calculation also needs to take into account many different
physical processes, not all fully understood, that may play a role under the extreme
conditions of gravity, temperature, density, and magnetic field inside and near the
surface of a neutron star. Interstellar gas atoms falling onto a neutron-star surface
also have an effect, and are likely to heat it to X-ray temperatures. To date, only
several candidate isolated old neutron stars have been found in X-ray surveys. The
small surface areas of neutron stars mean that their optical luminosities are very
low, and hence such objects can be found only when they are near enough. X-ray
surveys do reveal a large population of accreting neutron stars in binary systems,
called “X-ray binaries”, which we will study in Section 4.6.

4.5 BLACK HOLES

In the case of a stellar remnant with a mass above the maximum allowed mass of a
neutron star, no mechanism is known which can prevent the complete gravitational
collapse of the object. In fact, General Relativity predicts that even if some new
form of pressure sets in at high densities, the gravitational field due to such pressure
will overcome any support the pressure gradient provides, and the collapse of the
star to a singularity, or “black hole” is unavoidable.
As its name implies, matter or radiation cannot escape from a black hole. An

incorrect derivation, giving the correct answer, of the degree to which a mass must
be compressed to become a black hole can be obtained by requiring that the escape
velocity, ve, from a spherical mass of radius r be greater than c (and hence nothing
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M
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This is the 
Schwarzschild radius
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Note that the equation on the previous page is incorrect for two reasons.

1. The KE of a photon is not mc2/2  
2. The gravitational PE is not described by Newton’s limit.

We will outline the correct derivation.
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Photons cannot escape from an object with a massM that is concentrated within a
radius smaller than rs. The above derivation is incorrect because the kinetic energy
of a photon is notmc2/2, nor is the gravitational potential accurately described by
the Newtonian limit, GM/r.
A correct derivation of rs, which we shall only outline schematically, begins with

the Einstein equations of General Relativity,

Gµν =
8πG

c4
Tµν . (4.108)

The Einstein equations relate the geometry and curvature of spacetime to the distri-
bution of mass-energy. Tµν is the energy-momentum tensor. It is represented by a
4×4matrix, and each of its indices runs over the four space-time coordinates. This
is the “source” term in the equations and includes mass-energy density and pres-
sure. Gµν is the “Einstein tensor” consisting of combinations of first and second
partial derivatives, with respect to the spacetime coordinates, of the metric, gµν .
(A more detailed description of Tµν and Gµν is given in Chapter 8). The metric
describes the geometry of spacetime via the “line element”

(ds)2 =
X

µ,ν

gµνdxµdxν , (4.109)

where ds is the interval between two close spacetime events. For example, the
metric (familiar from Special Relativity) which describes spacetime in a flat (“Eu-
clidean”) region of space, far from any mass concentration, is theMinkowski met-
ric, with a line element

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (4.110)

The nonzero terms of the 4× 4 matrix describing gµν in this case are

g00 = 1, g11 = −1, g22 = −1, g33 = −1. (4.111)

In spherical coordinates, the Minkowski metric has the form,

(ds)2 = (cdt)2 − (dr)2 − (rdθ)2 − (r sin θdφ)2, (4.112)

i.e.,

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ. (4.113)

Since Gµν and Tµν are symmetric 4× 4 tensors (e.g., Gµν = Gνµ), there are only
10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
A solution of the Einstein equations for the geometry of spacetime in the vacuum

surrounding a static, spherically symmetric, mass distribution, as viewed by an
observer at infinity (i.e., very distant from the mass) is the Schwarzschild metric:

(ds)2 =
µ

1− 2GM

rc2

∂
(cdt)2 −

µ
1− 2GM

rc2

∂−1

(dr)2 − (rdθ)2 − (r sin θdφ)2,

(4.114)

Einstein’s tensor energy-momentum tensor
energy-momentum tensor:

Represented a 4x4 matrix, each of the indices runs over the 4 
space-time coordinates.  This term in the equations includes 
mass-energy density and pressure.

Einstein’s tensor:
Consists of combinations of 1st & 2nd PDEs wrt spacetime 
coordinates of the metric gµν.
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The metric tells us how to calculate the interval ds is the interval 
between two spacetime events.

In the absence of matter, spacetime is flat.  In that case, we can use 
the Minkowski metric.
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10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
A solution of the Einstein equations for the geometry of spacetime in the vacuum

surrounding a static, spherically symmetric, mass distribution, as viewed by an
observer at infinity (i.e., very distant from the mass) is the Schwarzschild metric:
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Photons cannot escape from an object with a massM that is concentrated within a
radius smaller than rs. The above derivation is incorrect because the kinetic energy
of a photon is notmc2/2, nor is the gravitational potential accurately described by
the Newtonian limit, GM/r.
A correct derivation of rs, which we shall only outline schematically, begins with

the Einstein equations of General Relativity,
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8πG

c4
Tµν . (4.108)

The Einstein equations relate the geometry and curvature of spacetime to the distri-
bution of mass-energy. Tµν is the energy-momentum tensor. It is represented by a
4×4matrix, and each of its indices runs over the four space-time coordinates. This
is the “source” term in the equations and includes mass-energy density and pres-
sure. Gµν is the “Einstein tensor” consisting of combinations of first and second
partial derivatives, with respect to the spacetime coordinates, of the metric, gµν .
(A more detailed description of Tµν and Gµν is given in Chapter 8). The metric
describes the geometry of spacetime via the “line element”

(ds)2 =
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where ds is the interval between two close spacetime events. For example, the
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normally 1 time and  
3 space elements.

The 4 x 4 matrix describing gµν then look like

gµ⌫ =

0

BB@

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1

CCA
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What happens if dt = 0?

(ds)2 = �[(dx)2 + (dy)2 + (dz)2] = |ds|

This is just the distance between 2 points.

What happens if dx = dy = dz = 0?

(ds)2 = (cdt)2

ds/c = time between two points.  Proper time τ = ds/c is the 
time elapsed on a clock moved between two points.

Light travels along “null geodesics” for which ds = 0.
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In the case of spacetime in a vacuum surrounding a static, spherically 
symmetric, mass distribution we get the Schwarzchild metric:
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Since Gµν and Tµν are symmetric 4× 4 tensors (e.g., Gµν = Gνµ), there are only
10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
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(ds)2 =

⇣
1� rs

r

⌘
(cdt)2 �

⇣
1� rs

r

⌘�1
(dr)2 � (rd✓)2 � (r sin ✓d�)2

where rs is the Schwarzschild radius

rs =
2GM

c2
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as

dτ ≡ ds

c
. (4.115)

For a clock at rest (i.e., dr = dθ = dφ = 0),

dτ =
µ

1− 2GM

rc2

∂1/2

dt =
≥
1− rs

r

¥1/2

dt. (4.116)

Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
gravitational redshift is

λ

λ0
=

µ
1− 2GM

rc2

∂−1/2

=
≥
1− rs

r

¥−1/2

. (4.117)

When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is

dr

dt
= ±c

µ
1− 2GM

rc2

∂
= ±c

≥
1− rs

r

¥
. (4.118)

At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

basicastro4 October 26, 2006

96 CHAPTER 4

where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
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When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,
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Photons cannot escape from an object with a massM that is concentrated within a
radius smaller than rs. The above derivation is incorrect because the kinetic energy
of a photon is notmc2/2, nor is the gravitational potential accurately described by
the Newtonian limit, GM/r.
A correct derivation of rs, which we shall only outline schematically, begins with

the Einstein equations of General Relativity,

Gµν =
8πG

c4
Tµν . (4.108)

The Einstein equations relate the geometry and curvature of spacetime to the distri-
bution of mass-energy. Tµν is the energy-momentum tensor. It is represented by a
4×4matrix, and each of its indices runs over the four space-time coordinates. This
is the “source” term in the equations and includes mass-energy density and pres-
sure. Gµν is the “Einstein tensor” consisting of combinations of first and second
partial derivatives, with respect to the spacetime coordinates, of the metric, gµν .
(A more detailed description of Tµν and Gµν is given in Chapter 8). The metric
describes the geometry of spacetime via the “line element”

(ds)2 =
X

µ,ν

gµνdxµdxν , (4.109)

where ds is the interval between two close spacetime events. For example, the
metric (familiar from Special Relativity) which describes spacetime in a flat (“Eu-
clidean”) region of space, far from any mass concentration, is theMinkowski met-
ric, with a line element

(ds)2 = (cdt)2 − (dx)2 − (dy)2 − (dz)2. (4.110)

The nonzero terms of the 4× 4 matrix describing gµν in this case are

g00 = 1, g11 = −1, g22 = −1, g33 = −1. (4.111)

In spherical coordinates, the Minkowski metric has the form,

(ds)2 = (cdt)2 − (dr)2 − (rdθ)2 − (r sin θdφ)2, (4.112)

i.e.,

g00 = 1, g11 = −1, g22 = −r2, g33 = −r2 sin2 θ. (4.113)

Since Gµν and Tµν are symmetric 4× 4 tensors (e.g., Gµν = Gνµ), there are only
10, rather than 16, independent Einstein equations, and a zero-divergence condition
on Tµν (implying local energy conservation) further reduces this to six equations.
A solution of the Einstein equations for the geometry of spacetime in the vacuum

surrounding a static, spherically symmetric, mass distribution, as viewed by an
observer at infinity (i.e., very distant from the mass) is the Schwarzschild metric:

(ds)2 =
µ

1− 2GM

rc2

∂
(cdt)2 −

µ
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(dr)2 − (rdθ)2 − (r sin θdφ)2,

(4.114)
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as

dτ ≡ ds

c
. (4.115)

For a clock at rest (i.e., dr = dθ = dφ = 0),

dτ =
µ

1− 2GM
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∂1/2

dt =
≥
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dt. (4.116)

Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
gravitational redshift is

λ

λ0
=

µ
1− 2GM

rc2

∂−1/2

=
≥
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. (4.117)

When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is

dr

dt
= ±c

µ
1− 2GM
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∂
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≥
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¥
. (4.118)

At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

rs =
2GM

c2

Consider a stellar remnant so compact that its radius fits within rs.

- As r → rs, dτ → 0.  Gravitational time dilation becomes infinite.
- EM and magnetic fields will appear to oscillate more slowly, 

leading to a gravitational redshift
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as

dτ ≡ ds

c
. (4.115)

For a clock at rest (i.e., dr = dθ = dφ = 0),

dτ =
µ

1− 2GM

rc2

∂1/2

dt =
≥
1− rs

r

¥1/2

dt. (4.116)

Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
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When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is
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At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

where λ0 = emitted wavelength, λ = observed (at infinity).

Note, the redshift becomes infinite as r → rs.
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Event Horizon
Recall that light moves along null geodesics.  If we set ds = 0 the 
coordinate speed of a light beam moving radially becomes
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where r, θ, and φ are spherical coordinates centered on the mass, and t is the time
measured by the distant observer. The time shown by any clock can be found from
the proper time τ , defined as

dτ ≡ ds

c
. (4.115)

For a clock at rest (i.e., dr = dθ = dφ = 0),

dτ =
µ

1− 2GM

rc2

∂1/2

dt =
≥
1− rs

r

¥1/2

dt. (4.116)

Consider now a stellar remnant that is compact enough that its radius is within
rs, and hence the Schwarzschild metric (which applies only in vacuum) describes
spacetime in the vicinity of rs. When a clock is placed at r → rs, dτ approaches
zero times dt. During a time interval of, say, dt = 1 s, measured by a distant
observer, the clock near rs advances by much less. In other words, clocks appear
(to a distant observer) to tick more and more slowly as they approach rs, and to
stop completely at rs. This is called gravitational time dilation.
The electric and magnetic fields of a light wave emitted by a source near rs

will also appear to oscillate more slowly due to the time dilation, and therefore the
frequency of light will decrease, and its wavelength λ will increase, relative to the
wavelength λ0 of light emitted by the same source far from the black hole. This
gravitational redshift is

λ

λ0
=

µ
1− 2GM

rc2

∂−1/2

=
≥
1− rs

r

¥−1/2

. (4.117)

When the light source is at rs, the wavelength becomes infinite and the energy of
the photons, hc/λ, approaches zero.
In General Relativity, once we know the metric that describes spacetime, we can

find the trajectories of free-falling particles and of radiation. In particular, mass-
less particles and light move along null geodesics, defined as paths along which
ds = 0. Setting ds = 0 in Eq. 4.114, the “coordinate speed” of a light beam
moving in the radial direction (dθ = dφ = 0) is

dr

dt
= ±c

µ
1− 2GM

rc2

∂
= ±c

≥
1− rs

r

¥
. (4.118)

At r � rs, the speed is ±c, as expected. However, as light is emitted from closer
and closer to rs, its speed appears to decline (again, to a distant observer), going
to zero at rs. Gravity works effectively as an index of refraction, with n = ∞ at
rs. As a result, no information can emerge from a radius smaller than rs, which
constitutes an “event horizon” around the black hole. We have thus re-derived
(correctly, this time) the Schwarzschild radius and its main properties.
Because of gravitational time dilation, a star collapsing to a black hole, as viewed

by a distant observer, appears to shrink in progressively slower motion, and gradu-
ally appears to “freeze” as it approaches its Schwarzschild radius. In fact, it takes an
infinite time for the star to cross rs, and therefore, formally, black holes do not ex-
ist, in terms of distant static observers such as ourselves. (They certainly can exist,

- What happens if r >> rs?

The speed is c, as expected.

- What happens if rs >> r?

The speed appears to approach 0.

No information can emerge from a radius smaller than rs, 
which constitutes an event horizon around the black hole.

The collapse of matter to rs takes an infinite amount of time for an observer at infinity (but finite 
amount of time for someone falling in).  As such, the matter is “frozen” in time as it falls in.  However, 
there is no observable differences in frozen stars and truly collapsed black holes.  More details can be 
found on pages 97-98 of your textbook. 
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Interacting Binaries

- Many objects (including stars) are powered not by nuclear 
reactions, but by accretion of matter onto gravitational wells. 

- We will focus on stars in binaries which will exert forces on each 
other. 

- Force on center of mass maintains binary orbit. 
- Force is stronger for parts of the star facing towards companion 

and weaker for parts facing away from companion.  This is a 
result of tidal forces that stars exert at small distances.
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Tidal Forces:

Consider mass element m in star 1 at a distance Δr from the center.  
What is the force on m due to star 1?
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Theoretically, quantum mechanics allows an exception to this rule, and small
amounts of so-called “Hawking radiation” can escape a black hole, even causing it
to “evaporate” completely if it is small enough. However, it is unclear if black hole
evaporation has any astronomical relevance.
Observationally, there are many objects considered to be stellar-mass black hole

candidates, consisting of members of binary systems in which the minimum mass
of one of the members is significantly larger than 3M⊙, yet a main-sequence or
giant star of such mass is not seen. Presumably, black holes form from the core-
collapse of stars with an initial mass above some threshold (which is currently
thought to be about 25M⊙). In some of these binary systems, accretion of matter
onto the black hole is taking place. Such systems will be discussed in more detail
in Section 4.6. Finally, there is evidence for the existence of “supermassive” black
holes, with masses of∼ 106−109M⊙, in the centers of most large galaxies. These
will be discussed in Chapter 6.

4.6 INTERACTING BINARIES

Until now, stars were the only luminous objects we considered. However, there
exists an assortment of objects which are powered not by nuclear reactions, but
by the accretion of matter onto a gravitational potential well. Objects in this cat-
egory include pre-main-sequence stars, interacting binaries, active galactic nuclei
and quasars, and possibly some types of supernovae and gamma-ray bursts. While
all these objects are rare relative to normal stars, they are interesting and important
for many physical and observational applications. The physics of accretion is sim-
ilar in many of these objects. In this section, we will focus on interacting binaries,
which are the best-studied accretion powered objects.
As already noted, many stars are in binary systems.7 Pairs with an orbital period

of less than about 10 days are usually in orbits that are circular, “aligned” (i.e., the
spin axes of the two stars and the orbital plane axis are all parallel), and synchro-
nized (i.e., each star completes a single rotation about its axis once per orbit, and
thus each star always sees the same side of its companion star). This comes about
by the action of the strong tidal forces that the stars exert on each other at small
separations. The force per unit mass on a mass element at the surface of a star, at
distance ∆r from the center, due to the massM1 of the star itself is

Fgrav

m
=

GM1

(∆r)2
. (4.125)

The tidal force on this mass element, due to the influence of the second star of mass
M2 at a distance r (assuming ∆r � r) is

Ftide

m
= GM2

µ
1
r2
− 1

(r + ∆r)2

∂
≈ 2GM2∆r

r3
. (4.126)

7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
massive stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars
are in binaries.

What is the tidal force felt by m due to star 2 at distance r (assume Δr 
<< r)
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7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
massive stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars
are in binaries.
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= GM2
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7Current evidence is that the binary fraction among stars depends on stellar mass, with most of the
massive stars being in binaries, but most low-mass stars being single. About one-half of solar-mass stars
are in binaries.

Taking the ratio of forces yields:
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The ratio between the forces is
Ftide

Fgrav
=

2M2

M1

µ
∆r

r

∂3

. (4.127)

Thus, the larger ∆r/r, the more tidal distortion of the shapes of the stars occurs,
such that they become two ovals pointing at each other. As long as the stars are not
tidally locked (i.e., synchronized and circularized), energy is continuously lost to
friction while the different parts of each star are deformed during the orbit. Once
tidal locking is achieved, everything appears stationary in a reference frame rotating
at the binary frequency, and the system achieves its minimum energy.8
If we draw the surfaces of constant potential energy in the rotating frame of such

a binary, the isopotential surfaces close to each of the stars will be approximately
spherical, but at larger radii they are more and more oval shaped, due to the gravi-
tational pull of the companion (see Fig. 4.12). There is one particular isopotential
surface for which projections onto any plane passing through the line connecting
the stars traces a “figure 8”, i.e., the surface is pinched into two pointed “lobes”
that connect at a point between the two stars. These are called Roche lobes and the
point where they connect is the First Lagrange Point, L1. At L1, the gravitational
forces due to the two stars, and the centrifugal force in the rotating frame due to
rotation about the center of mass, all sum up to zero.9
In any star, surfaces of constant gas density and pressure will be parallel to sur-

faces of constant potential (which is why isolated stars are spherical). Thus, a
member of a close binary that evolves and grows in radius, e.g., into a red giant,
will have a shape that is increasingly teardrop shaped. If the star inflates enough
to fill its Roche lobe, stellar material at the L1 point is no longer bound to the star,
and can fall onto the companion. Three configurations are thus possible:
In a detached binary neither of the stars fills its Roche lobe; in a semi-detached
binary one of the stars fills its Roche lobe; and in a contact binary both stars fill
their Roche lobes. In the last case the binary system looks like a single, peanut-
shaped object with two stellar cores and a common envelope.
In the semi-detached case there is always transfer of matter from the Roche-lobe-

filling star to its companion. Different observational phenomena result, depending
on the nature of the receiving star. If it is a main-sequence star, an “Algol-type” bi-
nary system results. If the receiving star is a white dwarf, the resulting phenomena
are called cataclysmic variables, novae, and type-Ia supernovae. If the receiver

8The same kind of tidal deformation is applied by the Sun and the Moon to the Earth, especially to the
Earth’s liquid water surface layer. The deformation is maximal when the three bodies are approximately
aligned, during full Moon and new Moon. During one daily Earth rotation, a point on the Earth goes
through two “high tide” locations and two “low tide” locations. Due to the loss of energy to tidal friction,
the Earth-Moon system is by now largely circularized, but only partly synchronized. On the one hand,
the Moon’s orbital and rotation periods are exactly equal, and hence we always see the same (“near”)
side of the Moon. Although the Moon is solid, synchronization was achieved by means of the solid tidal
stresses and deformations imposed on it by the Earth. The Earth’s rotation, on the other hand, is not yet
synchronized with either the Sun’s or the Moon’s orbital periods. See Problem 8 for some quantitative
assessments of ocean tides.

9Note that L
1

is generally not at the center of mass. The center of mass is closer to the more massive
star in the binary system, while L

1

is closer to the less massive star. Only in equal-mass binaries do the
two points coincide.

Tidal forces are largest 
when Δr/r is biggest.

Forces that cause distortions of equipotential surfaces.

Δr r
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Once the stars achieve synchronized, circularized orbits tidal locking is achieved.  
Everything will appear stationary in a frame rotating at binary frequency.

Roche lobes are the deepest non-disjoint equipotential surface in the rotating 
frame.
Binary systems can be:  

- detached:  neither star fills its Roche lobe 
- semi-detached:  one star fills its Roche lobe 
- contact:  both stars fill their Roche lobes.

If a star fills its Roche lobe, matter transfers via the first Lagrangian point.  
Matter will have angular momentum and form an accretion disk around the 
other star.
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Semi-detached Binary
In the case of a semi-detached binary, there is always mass transfer 
from the Roche-lobe-filling star to its companion.

Binary Type Receiving Star

Algol-type main sequence

cataclysmic variables white dwarf

type Ia supernova white dwarf

x-ray binary neutron star or black 
hole
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Accretion Disks
To model accretion disks we will assume: 

- particles move on an approximate circular orbit 
- they lose energy and angular momentum due to viscous 

interactions with particles on nearby orbits 
- frictional heat is radiated away with each disk annulus 

acting as a blackbody of a given temperature.

Note:  The nature of viscosity is still not well known

How does energy change when a mass dM in an accretion disk 
around a star of mass M change when it’s orbit goes from radius  
r+dr to radius r?

dEg = GMdM

✓
1

r
� 1

r + dr

◆
This is only the 
gravitational 
potential energy.

⇠ GMdMdr

r2
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Half of the total energy is the potential energy.  We must also 
consider the thermal energy. 

Recall that the viral theorem gives

E
total

= E
th

+ E
gr

=
E

gr

2

Thus, 
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gain in thermal energy of the mass element will thus be

dEth =
1
2

µ
GMdM

r
− GMdM

r + dr

∂
, (4.128)

where we neglect the gravitational self-binding energy of the disk itself. Assuming
the hot gas radiates its thermal energy as a black body at the same radius where the
gravitational energy is liberated, the luminosity from an annulus in the disk will be

dL =
dE

dt
=

1
2
GM

dM

dt

µ
1
r
− 1

r + dr

∂
=

1
2
GMṀ

dr

r2
= 2(2πr)drσT 4,

(4.129)
where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is
the Stefan-Boltzmann constant, and the factor of 2 on the right hand side is because
the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
disk

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4. (4.130)

In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,

L =
Z r

out

r
in

2(2πr)σT 4(r)dr =
1
2
GMṀ

µ
1

rin
− 1

rout

∂
. (4.131)

This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to

L =
1
2

GMṀ

rin
. (4.132)

It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:

η =
1
2

GM

c2rin
. (4.133)

If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

What is the luminosity?
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ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
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conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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GMṀ
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. (4.132)

It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:

η =
1
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GM

c2rin
. (4.133)

If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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where we neglect the gravitational self-binding energy of the disk itself. Assuming
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where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is
the Stefan-Boltzmann constant, and the factor of 2 on the right hand side is because
the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
disk
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In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

Notice, T ∝ r-3/4.  This means that the inner regions of the disk are 
hottest and thus most luminous.

To find the total luminosity of the disk, we integrate over all 
annuli.
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in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

In the case the rout >> rin
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where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is
the Stefan-Boltzmann constant, and the factor of 2 on the right hand side is because
the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
disk
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In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.
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Radiative efficiency:
The fraction of rest mass energy of accreted material that is radiated.

⌘ =
L

Ṁc2
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where Ṁ is the mass accretion rate through a particular annulus of the disk, σ is
the Stefan-Boltzmann constant, and the factor of 2 on the right hand side is because
the area of the annulus includes both the “top” and the “bottom”. Taking the two
right-hand terms and isolating T , we find for the temperature profile of an accretion
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In a steady state, Ṁ must be independent of r (otherwise material would pile up
in the disk, or there would be a shortage of material at small radii), and must equal
the accretion rate of mass reaching the stellar surface. Thus, T ∝ r−3/4, meaning
that the inner regions of the disk are the hottest ones, and it is from them that most
of the luminosity emerges. The total luminosity of an accretion disk with inner and
outer radii rin and rout is found by integrating over the luminosity from all annuli,
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This result could have, of course, been obtained directly from conservation of en-
ergy.11 If rout � rin, the result simplifies further to
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It is instructive to evaluate the radiative efficiency of accretion disks by dividing
the luminosity above by Ṁc2, the hypothetical power that would be obtained if all
the accreted rest mass were converted to energy:
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If the accreting object is, e.g., a 1.4M⊙ neutron star with an accretion disk reach-
ing down to the stellar surface at a radius of 10 km, then rin is about 2.5 times the

gravitational equilibrium – in this case a system of one particle.
11Note that, in addition to energy conservation, a full treatment of accretion disk structure must also

conserve angular momentum. The angular momentum per unit mass of a disk particle at radius r, in
a circular Keplerian orbit with velocity vc, is J/m = rvc =

√
GMr. Thus, a particle descending

to an orbit at smaller r must get rid of angular momentum by transfering it to other particles in the
disk. Those particles gain angular momentum, and hence move to larger radii. Some of the gravitational
energy released by the inflow will power this outflow of matter, at the expense of the energy that can be
radiated by the disk.

Accreting Object Inner Radius of 
Disk

Radiative Efficiency

neutron star 1.4 Msun 10 km 0.10

non-rotating black 
hole 

3rs 0.057

maximally rotating 
black hole

0.5rs 0.42

The radiative efficiency of nuclear burning is 0.007 or less in main 
sequence stars.
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Example:  White Dwarf
Calculate the typical luminosity of an accretion discs where the 
accretor is a white dwarf with a mass of Msun and radius 104 km.  
The typical accretion rate is 10-9 Msun yr-1.
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Schwarzschild radius, rs = 2GM/c2 (Eq. 4.107), that corresponds to such a mass
(recall that rs ≈ 3 km for 1M⊙). The rest-mass-to-radiative energy conversion effi-
ciency is then about 0.10. For black hole accretors, it turns out from solution of the
General Relativity equations of motion that gas particles have a “last stable orbit”
at which they can populate the accretion disk. At smaller radii, a particle quickly
spirals in and crosses the event horizon, carrying its remaining kinetic energy with
it. The last stable orbit for a non-rotating black hole12 is at 3rs. Accretion disks
around such black holes will therefore have an efficiency of 1/12 ≈ 0.08, some-
what lower than accretion disks around neutron stars. (A solution of the problem
using the correct General Relativistic, rather than Newtonian, potential, gives an
efficiency of 0.057). The point to note, however, is that, in either case, the effi-
ciency is an order of magnitude higher than the efficiency of the nuclear reactions
operating in stars, η = 0.007 or less. Furthermore, only a tiny fraction of a main-
sequence star’s mass is involved at any given time in nuclear reactions, whereas an
accretion disk can extract energy with high efficiency from all of the mass being
channeled through it. Under appropriate conditions, accretion disks can therefore
produce high luminosities.
Let us calculate the typical luminosities and temperatures of accretion disks in

various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
10−9M⊙ yr−1. This produces a luminosity of

L =
1
2

GMṀ

rin
=

6.7× 10−8 cgs× 2× 1033 g × 10−9 × 2× 1033 g
2× 3.15× 107 s× 109 cm

(4.134)

= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4 (4.135)

12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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what lower than accretion disks around neutron stars. (A solution of the problem
using the correct General Relativistic, rather than Newtonian, potential, gives an
efficiency of 0.057). The point to note, however, is that, in either case, the effi-
ciency is an order of magnitude higher than the efficiency of the nuclear reactions
operating in stars, η = 0.007 or less. Furthermore, only a tiny fraction of a main-
sequence star’s mass is involved at any given time in nuclear reactions, whereas an
accretion disk can extract energy with high efficiency from all of the mass being
channeled through it. Under appropriate conditions, accretion disks can therefore
produce high luminosities.
Let us calculate the typical luminosities and temperatures of accretion disks in

various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
10−9M⊙ yr−1. This produces a luminosity of
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= 4× 1033 erg s−1 ≈ L⊙.

The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
4.130)

T (r) =

√
GMṀ

8πσ

!1/4

r−3/4 (4.135)

12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
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Calculate the temperature at the inner radius (which dominates the 
disk).
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6.7× 10−8 cgs× 2× 1033 g × 10−9 × 2× 1033 g
3.15× 107 s× 8π × 5.7× 10−5 cgs

∂1/4

(109 cm)−3/4

= 5× 104K.

The thermal spectrum from the disk therefore peaks in the far UV part of the
spectrum, and is usually distinct from the spectrum of the main-sequence or red
giant donor star (which of course generally has a red spectrum). The integrated
spectrum of the system will therefore have at least two distinct components.
When the orbits of cataclysmic variables are sufficiently inclined to our line of

sight, monitoring the total light output over time, as the systems rotate, reveals
changes due to mutual eclipses by the various components: the donor star, the ac-
cretion disk, and sometimes a “hot spot” where the stream of matter from the donor
hits the disk. The changing projected area of the distorted donor star also affects
the light output. Analysis of such data allows reconstructing the configurations
and parameters of these systems. In addition to the periodic variability induced by
eclipses and changes in orientation, accreting systems reveal also aperiodic vari-
ability, i.e., variations with a “noise-like” character. These variations likely arise
from an unstable flow of the material overflowing the donor’s Roche lobe, causing
changes in Ṁ , as well as from instabilities and flares in the accretion disk itself.
In a class of cataclysmic variable called novae there are also outbursts of lu-

minosity during which the system brightens dramatically for about a month. The
outbursts occur once every 10 − 105 yr, as a result of rapid thermonuclear burn-
ing of the hydrogen-rich (and hence potentially explosive) accreted material that
has accumulated on the surface of the white dwarf. Assuming again an accretion
rate of 10−9M⊙ yr−1, over a period of 1000 yr, a mass of 10−6M⊙ will cover the
surface of the white dwarf. If completely ignited, it yields an energy

Enova = 0.007mc2 = 0.007×10−6×2×1033 g×(3×1010 cm s−1)2 ≈ 1046 erg.
(4.136)

When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 ×
1039 erg s−1 = 106L⊙, i.e., 106 times the normal luminosity of the accretion
disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
synthesized in these explosions, providing direct evidence of the process at hand.
As discussed in Section 4.3.3, under certain conditions (likely involving the

reaching of the Chandrasekhar mass by the accreting white dwarf) an extreme,
runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
an event, a large fraction of the white dwarf mass (i.e., of order 1M⊙ of carbon,
rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
synthesized into iron-group elements. The total energy is, correspondingly, 106

times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can
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The luminosity from the accretion disk thus completely overpowers the luminosity
of the white dwarf. The disk luminosity can be much greater than that of the donor
star (for low-mass main-sequence donors, the most common case), comparable to
the donor star (for intermediate-mass main sequence stars) or much smaller than
the donor luminosity (for high-mass main sequence and red-giant donors). At the
inner radius (which dominates the luminosity from the disk) the temperature is (Eq.
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12A black hole is fully characterized by only three parameters – its mass, its spin angular momentum,
and its electric charge (the latter probably not being of astrophysical relevance, because astronomical
bodies are expected to be almost completely neutral). Spacetime around a rotating black hole is de-
scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
accompanied by the general relativistic phenomenon of “frame dragging”, in which spacetime outside
the event horizon rotates with the black hole. In a rotating black hole, the last stable orbit and the event
horizon are at smaller radii than in the non-rotating case.

13The accretion rate can be limited by the rate at which the donor star transfers mass through the
L

1

point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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spectrum, and is usually distinct from the spectrum of the main-sequence or red
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disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
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runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
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rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
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times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can
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produce high luminosities.
Let us calculate the typical luminosities and temperatures of accretion disks in

various situations. In cataclysmic variables, the accretor is a white dwarf, with
a typical mass of 1M⊙ and a radius of 104 km. A typical accretion rate13 is
10−9M⊙ yr−1. This produces a luminosity of

L =
1
2

GMṀ
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the donor star (for intermediate-mass main sequence stars) or much smaller than
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scribed by a metric called the Kerr metric, rather than by the Schwarzschild metric. Black hole spin is
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13The accretion rate can be limited by the rate at which the donor star transfers mass through the
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point, by the efficiency of the viscous process that causes material in the accretion disk to fall to
smaller radii, or by the radiation pressure of the luminosity resulting from the accretion process – see
Section 4.6.2
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The thermal spectrum from the disk therefore peaks in the far UV part of the
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hits the disk. The changing projected area of the distorted donor star also affects
the light output. Analysis of such data allows reconstructing the configurations
and parameters of these systems. In addition to the periodic variability induced by
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changes in Ṁ , as well as from instabilities and flares in the accretion disk itself.
In a class of cataclysmic variable called novae there are also outbursts of lu-

minosity during which the system brightens dramatically for about a month. The
outbursts occur once every 10 − 105 yr, as a result of rapid thermonuclear burn-
ing of the hydrogen-rich (and hence potentially explosive) accreted material that
has accumulated on the surface of the white dwarf. Assuming again an accretion
rate of 10−9M⊙ yr−1, over a period of 1000 yr, a mass of 10−6M⊙ will cover the
surface of the white dwarf. If completely ignited, it yields an energy

Enova = 0.007mc2 = 0.007×10−6×2×1033 g×(3×1010 cm s−1)2 ≈ 1046 erg.
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When divided by a month (2.5 × 106 s), this gives a mean luminosity of 4 ×
1039 erg s−1 = 106L⊙, i.e., 106 times the normal luminosity of the accretion
disk. In reality, only partial processing of the accreted hydrogen takes place, and
the energy is also partly consumed in unbinding some material from the underlying
white dwarf. On the other hand, for longer recurrence times between outbursts, the
mass of accumulated hydrogen can be larger than assumed above. The gamma-ray
spectra of novae reveal emission from the radioactive decay of elements that are
synthesized in these explosions, providing direct evidence of the process at hand.
As discussed in Section 4.3.3, under certain conditions (likely involving the

reaching of the Chandrasekhar mass by the accreting white dwarf) an extreme,
runaway version of the nova eruption, called a type-Ia supernova, occurs. In such
an event, a large fraction of the white dwarf mass (i.e., of order 1M⊙ of carbon,
rather than the 10−6M⊙ of hydrogen in the nova case) is ignited and is explosively
synthesized into iron-group elements. The total energy is, correspondingly, 106

times larger than that of a nova, i.e., 1051−52 erg. As in the core-collapse supernova
explosions that end the life of massive stars, the ratio of kinetic to luminous energy
is about 100, and thus type-Ia supernovae, with a luminosity of about 1010L⊙, can

In which part of the EM spectrum does this star peak?

�
max

=
0.29 cmK

T
=

0.29 cmK

5⇥ 104 K
= 5.8⇥ 10�6 cm = 58 nm

This is well into the UV part of the EM spectrum.

Compare this to a neutron star accretor.  For a typical neutron star of 
1.4 Msun with radius 10 km we have 

- L ~ 1037 ergs (vs ~ 1033) 
- T ~ 107 K (vs ~ 104) 
- λmax ~ 0.58 nm (x-ray specturm)
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Accreting White Dwarfs
Novae are a class of cataclysmic variable binary stars.  Mass transfers 
though disk, builds up on WD surface and eventually undergoes 
nuclear fusion.

- Typical energy ~ 1046 erg. 
- Duration ~ 1 month, typical luminosity ~ 4 x 1039erg s-1.

Type Ia supernovae are the runaway version of the nova eruption.  
Mass builds up on the WD until mass exceeds the Chandrasekhar 
limit.  WD fuses to iron-group elements and explodes.

- Typical energy ~ 1051-52 erg. 
- Duration ~ 1 month, typical luminosity ~ 1043-44 erg s-1 ~10Lsun. 
- 99% of energy is carried away by neutrinos (thus, core-collapse 

SN are far more energetic) 
- have a narrow range of observed optical luminosities. 
- useful as “standard candles” for measuring distances.
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Eddington Limit
Consider radiation pressure from an object of luminosity L acting on 
ionized inflowing gas.  The dominant interaction will be Thomson 
scatter.
The rate at which an electron scatters photons depends on the # 
photons per unit area is the energy flux at that frequency dived by the 
energy of an individual photon.

⌃ =
f⌫
h⌫

=
L⌫

4⇡r2h⌫

The electron will scatter via Thomson scatter at a rate

Rscat = �T
L⌫

4⇡r2h⌫
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Each scattering event transfers, on average a momentum to the 
electron given by

p =
h⌫

c

The force exerted on the electron is then

F⌫ =
dp

dt
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outshine their host galaxies for a period of about a month (see Problem 4). Al-
though core-collape supernovae and type-Ia supernovae have similar luminous and
kinetic energy outputs, one should remember that in core-collapse supernovae 99%
of the energy is carried away by neutrinos, and therefore core-collapse supernovae
are intrinsically far more energetic events. Type-Ia supernovae have a narrow range
of observed optical luminosities, probably as a result of the fact that they generally
involve the explosion of about 1.4M⊙ of white dwarf material. These supernovae
are therefore very useful as “standard candles” for measuring distances. In Chap-
ters 7 and 9 we will see how they have been used in this application.
When the receiving star in an interacting binary is a neutron star or a black hole,

the inner radius of the accretion disk is of order 10 km, rather than 104 km, and
therefore the luminosity is much greater than in a white dwarf accretor. For exam-
ple, scaling from Eq. 4.134, if the accretor is a 1.4M⊙ neutron star with the same
accretion rate, the accretion-disk luminosity is of order 1037 erg s−1. The temper-
ature at the inner radius, scaling as M1/4r−3/4 (Eq. 4.135), is T = 107 K. The
emission therefore peaks in the X-rays, and hence the name “X-ray binaries”. In
reality, due to the extreme matter and radiation densities, temperatures, and mag-
netic fields near the surface of a neutron star, the accretion disk may not actually
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ing a hot-spot where it hits the surface. In addition to the thermal emission from
the accretion disk, other, non-thermal, radiation components are observed in such
systems, e.g., synchrotron emission from relativistic electrons spiraling along mag-
netic field lines. Some accreting white dwarfs also possess strong magnetic fields
that funnel the accretion flow directly onto hot spots on the white dwarf. Such
“magnetic cataclysmic variables” also appear then as X-ray sources.

4.6.2 Accretion Rate and Eddington Luminosity

The above discussion shows that the properties of accreting systems are largely
determined by three parameters,M , Ṁ , and rin. M and rin are limited to particular
values by the properties of stars and stellar remnants. However, the accretion rate,
Ṁ , also cannot assume arbitrarily large values. To see this, consider an electron
at a radius r in an ionized gas that is taking part in an accretion flow toward some
compact object of massM . The accretion flow produces a luminosity per frequency
interval Lν , and therefore the density of photons with energy hν at r is

nph =
Lν

4πr2chν
. (4.137)

The rate at which photons of this energy are scattered via Thomson scattering on
the electron is

Rscat = nphσT c, (4.138)

where σT is the Thomson scattering cross section. Each scattering event transfers,
on average, a momentum p = hν/c to the electron. The rate of momentum transfer
to the electron, i.e., the force exerted on it by the radiation, is then

dp

dt
= Rscat

hν

c
=

LνσT

4πr2c
. (4.139)

The total force is found by integrating over all frequencies, ν.
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,

Frad =
LσT

4πr2c
. (4.140)

The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp

r2
. (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,

LE =
4πcGMmp

σT
(4.142)

=
4π × 3× 1010 × 6.7× 10−8 cgs× 2× 1033 g × 1.7× 10−24 g

6.7× 10−25 cm2

M

M⊙

= 1.3× 1038 erg s−1 M

M⊙
= 6.5× 104 L⊙

M

M⊙
.

This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

Gravitational attraction prevents the electron from being repelled by 
the accreting source of luminosity.  The gravitational force will be 
felt more strongly by protons, but electrons are attracted to the 
protons by the coulomb attraction.  Thus,
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,

Frad =
LσT

4πr2c
. (4.140)
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greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,

LE =
4πcGMmp

σT
(4.142)

=
4π × 3× 1010 × 6.7× 10−8 cgs× 2× 1033 g × 1.7× 10−24 g

6.7× 10−25 cm2

M

M⊙

= 1.3× 1038 erg s−1 M

M⊙
= 6.5× 104 L⊙

M

M⊙
.

This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar
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The total radiative force on the electron is obtained by integrating over all frequen-
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Frad =
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

basicastro4 October 26, 2006

STELLAR EVOLUTION AND STELLAR REMNANTS 105

The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,

Frad =
LσT

4πr2c
. (4.140)

The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp

r2
. (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

The accretion flow will stop if Frad > Fgrav since the net force on matter 
in the flow would then be outward.  The maximum accretion rate and 
maximum luminosity occurs when the radiation pressure exactly 
balances gravity.  This is the Eddington Luminosity.

LE�T

4⇡r2c
=

GMmp

r2
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,

Frad =
LσT

4πr2c
. (4.140)

The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp

r2
. (4.141)

The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,

LE =
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=
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

Calculate this limit in terms of the M/Msun.
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore

Fgrav =
GMmp
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar
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The total radiative force on the electron is obtained by integrating over all frequen-
cies ν,
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The electron would be repelled from the accreting source of luminosity, were it
not for the gravitational attraction of the accreting object. This force will be much
greater on protons than on electrons. However, the Coulomb attraction between
electrons and protons prevents their separation, and therefore the gravitational at-
traction on a proton effectively operates on neighboring electrons as well. The
attractive force on the electron is therefore
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The accretion flow, and its resulting luminosity, can proceed only if the radiative
force does not halt the inward flow of matter, i.e., Frad < Fgrav. Equating the two
forces, using Eqns. 4.140 and 4.141, we obtain the maximum luminosity possible
in a system powered by accretion,
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This limiting luminosity is called the Eddington luminosity.
Recalling our derivation, above, of a luminosity of order 1037 erg s−1 from an ac-

cretion disk around a 1.4M⊙ neutron star with an accretion rate Ṁ = 10−9M⊙ yr−1,
we see that an accretion rate, say, 100 times larger would bring the system to a lu-
minosity of several times LE , and is therefore impossible. This is not strictly true,
since in the derivation of LE we have assumed spherical accretion and an isotrop-
ically radiating source. Both assumptions fail in an accretion disk, which takes
in matter along an equatorial plane, and radiates preferentially in directions per-
pendicular to that plane. Nevertheless, detailed models of accretion disk structure
show that disks become unstable when radiating at luminosities approaching LE .
The Eddington limit is therefore a useful benchmark even for non-spherical ac-
creting systems. Finally, note that LE applies to systems undergoing steady-state
accretion. Objects of a given mass can have higher luminosities (see, e.g., the lu-
minosities of novae and supernovae that we calculated above), but then an outflow
of material is unavoidable, the object is disrupted, and the large luminosity must be
transient.

4.6.3 Evolution of Interacting Binary Systems

The transfer of mass between members of interacting binaries can have drastic
effects on both members. We recall that isolated neutron stars power their pulsar

Limiting luminosity is called 
the Eddington Luminosity
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Notes:
- Our calculations of luminosities for accretion onto neutron stars 

implies we would get luminosities higher than the Eddington 
limit.  This is not really true.  We made an assumptions/
simplifications of spherical accretion and an isotropically 
radiating source. 

- Matter is taken in along an equatorial plan and radiates 
preferentially in directions perpendicular to the plane.. 

- Detailed calculations show that accretion disks become unstable 
when radiating near LE. 

- LE applies to systems undergoing steady-state accretion.
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Evolution of Interacting Binary Systems

Recall that isolated neutron stars power their pulsar emission and 
their surrounding SN remnant emission at the expense of their 
rotational energy.

Neutron stars in binary systems that are accreting matter from a 
companion can GAIN angular momentum.

The jets and beams present in pulsars can hit one side of the donor 
star, heat it, ablate it or completely destroy it.  These pulsars are 
known as black-widow pulsars.  Example:  a millisecond pulsars 
with no companion.

http://www.nasa.gov/content/goddard/with-a-deadly-embrace-spidery-pulsars-
consume-their-mates/#.VSKgpEaRqC8
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http://www.nasa.gov/content/goddard/with-a-deadly-embrace-spidery-pulsars-consume-their-mates/#.VSKgpEaRqC8

http://www.nasa.gov/content/goddard/with-a-deadly-embrace-spidery-pulsars-consume-their-mates/#.VSKgpEaRqC8
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Let’s examine the changes in evolution to of the parameters in a 
binary system.
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

The orbital angular momentum of a circular binary composed of 
M1 and M2 with separation distance a.
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being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

where I is the moment of inertia and µ is the reduced mass,
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Recall Kepler’s law (from chapter 2).
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
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µ

2
√
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∂
= 0, (4.147)

or
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dµ
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=

1
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. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Substituting yields

J = µa2
p

G(M1 +M2)

a3/2
= µ

p
G(M1 +M2)a
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J = µ
p

G(M1 +M2)a

Conservation of total mass and angular momentum require 

dJ

dt
= 0
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Which term(s) are chaining with time? Need to invoke the chain rule.
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)
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µ

2
p
a
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dt
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Examine dµ/dt
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
G(M1 + M2)

µ
dµ

dt

√
a +

µ

2
√

a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)However, conservation mass requires that 
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=

p
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µ
dµ

dt

√
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µ

2
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a

da

dt

∂
= 0, (4.147)

or

− 2
µ

dµ

dt
=

1
a

da

dt
. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Thus, we can write
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,
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∂
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or
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Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2
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dt
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. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)
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emission and their surrounding supernova remnant emission at the expense of their
rotational energy, and thus gradually slow down. A neutron star in a binary system,
if accreting matter from its companion, under suitable conditions can gain angular
momentum, which can spin the pulsar back up. Thus, many pulsars in binary
systems are spinning at millisecond frequencies, i.e., close to the maximal spin
possible for a neutron star, and have negative period derivatives, Ṗ (if they are still
being spun up by the accretion; see Problem 9). The neutron star can also affect the
donor star. The jets and beams present in pulsars may hit one side of the donor star
(the binaries are tidally locked), heat it, ablate it, or completely destroy it. Several
examples of such “black-widow pulsars” are known, in which an old millisecond
pulsar has no companion, or in which the companion is a white dwarf of much too
small a mass to have evolved in isolation from the main sequence (i.e., white dwarfs
of such mass form after a time that is much greater than the age of the Universe).
The transfer of mass and angular momentum in an interacting binary can also

lead to complex evolution of the parameters of the system, such as binary separation
and accretion rate. Changes in those parameters can then affect the future evolution
of the system. Let us see how this works. The orbital angular momentum of a
circular binary composed of massesM1 andM2 with separation a is

J = Iω = µa2ω, (4.143)

where I is the moment of inertia, and µ is the reduced mass,

µ =
M1M2

M1 + M2
. (4.144)

(For simplicity, we will ignore the spin angular momentum of the stars.) Substi-
tuting ω from Kepler’s Law (Eq. 2.35),

ω2 =
G(M1 + M2)

a3
, (4.145)

we get

J = µ
p

G(M1 + M2)a. (4.146)

Assuming conservation of total mass and angular momentum, the time derivative
of J equals zero,

dJ

dt
=
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µ
dµ

dt

√
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2
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∂
= 0, (4.147)

or

− 2
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=

1
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. (4.148)

Expressing µ̇ in terms of its constituent masses,
dµ

dt
=

1
M1 + M2

µ
dM1

dt
M2 + M1

dM2

dt

∂
. (4.149)

However, conservation of mass means that Ṁ1 = −Ṁ2, and hence
dµ

dt
=

Ṁ1

M1 + M2
(M2 −M1). (4.150)

Substituting yields
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Replacing in Eq. 4.148, we finally get

2Ṁ1
M1 −M2

M1M2
=

1
a

da

dt
. (4.151)

Eq. 4.151 determines how the period and separation of the system evolve, de-
pending on the constituent masses, the accretion rate, and its sign. For exam-
ple, consider a system that starts out with two close main sequence stars, with
M1 > M2. M1 will therefore be the first to become a red giant, fill its Roche lobe,
and transfer mass toM2. SinceM1 loses mass, Ṁ1 is negative. From Eq. 4.151, ȧ
is then negative. In other words, the two stars approach each other. The decrease
in separation a means that the Roche lobe around M1 moves to a smaller radius,
and the accretion rate grows further. If this trend is not interrupted (e.g., by the end
of the giant stage ofM1), the system reaches a common envelope stage. Evolution
resumes once M1 becomes a white dwarf, or at a later stage, when M2 becomes
a red giant, if it fills its Roche lobe. Accretion will now be in the opposite sense,
and Ṁ1 is therefore positive. If, despite the earlier accretion phase and the individ-
ual stellar evolution, M1 is still larger than M2, then ȧ will now be positive. If the
Roche lobe size ofM2 overtakes the star’s radius, accretion will stop. Alternatively,
if by this time M2 > M1, the two stars will again approach each other and there
may be a second common envelope phase. Obviously, there are many other possi-
ble evolution paths, depending on the initial parameters. Moreover, in reality stars
lose mass throughout their evolution by means of winds, and therefore the total
mass and angular momentum of a binary system will generally not be conserved,
opening further binary evolution paths.

PROBLEMS

1. In a fully degenerate gas, all the particles have energies lower than the Fermi
energy. For such a gas we found (Eq. 4.19) the relation between the density
ne and the Fermi momentum pf :

ne =
8π

3h3
p3

f .

a. For a nonrelativistic electron gas, use the relation pf =
p

2meEf between
the Fermi momentum, the electrom mass me, and the Fermi energy Ef , to
express Ef in terms of ne andme.
b. Estimate a characteristic ne under typical conditions inside a white dwarf.
Using the result of (a), and assuming a temperature T = 107 K, evaluate
numerically the ratioEth/Ef , whereEth is the characteristic thermal energy
of an electron in a gas of temperature T , to see that the electrons inside a
white dwarf are indeed degenerate.

2. Cold, planetary-mass, objects such as Jupiter are mostly devoid of internal
thermal energy sources, as is the case of white dwarfs. However, planets are
supported against gravity by repulsive atomic electrostatic forces rather than

This equation determines how 
period and separation evolve.
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