
Chromatic Aberrations: Yang and Mills Meet Aharonov and Bohm

John Preskill

15 April 1993

This talk was originally scheduled for April 1st. I was delighted. I’ve always

wanted to give a talk on April 1st, and this subject seemed like the ideal one for

that date. Then, in a stunning reversal, the talk was rescheduled for April 15th. I

was shocked. Suddenly, instead of speaking on the funniest day of the year, I was

speaking on the least funny day of the year. I know that everyone is in a somber

mood on April 15th, so I have decided that there will be no jokes in this talk. I’m

sorry. I hope that you don’t find the talk to be overly taxing.

So what is this talk about, anyway. It is about some interesting consequences

of non-abelian gauge symmetry: charge with no localized source, and non-abelian

generalizations of quantum statistics in two spatial dimensions. What these two

things have in common is that they are both consequences of a phenomenon that

lies at the heart of gauge theory—the Aharonov-Bohm effect. Since the Aharonov-

Bohm effect is really a kind of geometrical effect, we should begin by recalling some

concepts from the foundations of geometry.

Geometry and Curvature

The geometrical properties of a space are those intrinsic properties that have

nothing to do with how we parametrize the space. Suppose, to be definite, that

the space is a two dimensional surface. Suppose that a race of people live on

this surface. These people know how to parallel transport a tangent vector on

this surface—they can carry it from one point to another without rotating it. If

one resident of the surface is a physicist skilled at instrumentation, she might

devise a two-dimensional harmonic oscillator that is constrained to move tangent

to the surface—if there is a gravitational field normal to the surface, an ordinary

pendulum works very nicely. She starts the pendulum swinging in some arbitrarily
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chosen direction, then carries the pendulum along with her on her travels, being

very careful at all times not to rotate it. When she arrives at her destination, the

direction of the swinging pendulum defines the result of parallel transporting the

original tangent vector to the new location.

But she will discover that the result of this procedure is path dependent. Sup-

pose that the surface is a sphere, and that she and her twin live at a point on

the equator of the sphere. They both start their pendula swinging in the same

direction one day. Then physicist A travels directly from home to the north pole,

along a line of longitude. Physicist B first saunters along the equator for a while,

then turns north, and eventually joins her sister at the pole. Both have been very

careful not to rotate their pendula, but when they are reunited at the pole, they

find that their pendula are no longer swinging in the same direction. (The angle

between the two tangent vectors is the solid angle on the sphere enclosed by their

two paths.) What they have discovered is that the surface on which they reside

has intrinsic curvature; by determining the extent to which parallel transport of a

tangent vector is path dependent, they can measure the curvature.

An example of a curved surface that will be particularly relevant for us is the

cone. (At this stage, I need a cone. Did anyone bring one? Oh, yeah. Remove

cone from head, revealing second cone underneath.) The red line on the cone traces

the excursion taken by our physicist, and the black arrows show the direction of

the swinging pendulum. We can see that when she returns to her starting point,

the pendulum that she left behind swings in a different direction than the one she

took along with her, even though they were initially perfectly aligned. She has

discovered that her cone is curved. Yet, the cone has the interesting property that

it is flat almost everywhere. It doesn’t look flat, but if we cut it along an arbitrarily

selected path running from the edge to the tip (cut cone with scissors), we find

that it can be smoothly flattened out on a table. Now it is easy to see that all of

the black arrows point in the same direction.

All of the curvature of the cone is concentrated at a single point, the tip.
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Parallel transport around a closed path results in rotation (by an angle equal to

the “deficit angle” of the flattened cone) if the path encloses the tip (once), but

not otherwise. We see that a resident of the cone can detect the curvature even if

she never visits the tip, and so never experiences it directly.

At the core of geometry is a principle of “orientational democracy” or “local

symmetry.” Each resident of a surface is free to choose her own conventions for, say,

the x direction and the y direction, and to record her conventions by setting two

pendula swinging in orthogonal directions at her home. In fact, one day she may

tire of her old conventions and establish new ones, by resetting the pendula so that

they now swing in different directions. This is a “local symmetry” transformation

in the sense that residents at different locations are free to rotate their axes in

different ways. But none of the intrinsic geometrical properties, the observable

properties of the surface, depend on these choices.

The Aharonov-Bohm Effect

Now we know enough about geometry to understand the Aharonov-Bohm ef-

fect. The Aharonov-Bohm effect arises in the following situation: Imagine per-

forming a double-slit interference experiment with electrons, and suppose that we

place a solenoid carrying magnetic flux in between the two slits. This solenoid is

perfectly shielded, so that no electron can penetrate inside and detect the mag-

netic field directly. Yet we find that the electrons know that the field is there. As

the magnetic flux in the solenoid changes, the interference fringes shift. From the

amount of the shift, we can infer that there is a field-dependent contribution to

the relative phase of electron paths that pass through the top slit and the bottom

slit given by

eieΦ/h̄c = exp

[

ie

h̄c

∮

~A · d~x

]

.

This is called the Aharonov-Bohm phase.

What is going on here? The interpretation is that the vector potential ~A is a

connection that determines a notion of parallel transport. But in this case, what is
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being transported is not a tangent vector, but rather the phase of the wave function

of the electron. The vector potential tells us what happens to an electron if we move

it from a point to a neighboring point without rotating its phase. The principle

at the core of electrodynamics is a principle of “phase democracy,” also called

“local symmetry” or “gauge symmetry.” According to this principle, everyone is

free to choose whatever convention she pleases to define the phase of the electron

wave function at each point in space (and at any time). These conventions have

no observable consequences, and the “gauge transformations” that modify these

conventions have no effect on any observable quantities.

What is observable is the path dependence of this notion of parallel transport.

We can carry an electron from ~x to ~y, being very careful not to rotate the phase of

the electron along the way. But if two electrons that have the same phase at ~x are

carried from ~x to ~y along two different paths, they will in general arrive at ~y with

different phases. The relative phase of the two electrons is the Aharonov-Bohm

phase. It is an observable geometrical, or “gauge invariant,” property. We see that

the magnetic field can be interpreted as the curvature associated with the notion

of parallel transport defined by the vector potential.

Note that the Aharonov-Bohm effect is to electrodynamics just as the cone

is to Riemannian geometry. As a resident of a cone can infer the existence of

the curvature at the tip without ever visiting the tip directly, the electron that

propagates in a field-free region can know about the nonvanishing magnetic field

inside a perfectly shielded solenoid, even though it never experiences the field

directly.

Experiments like this one have been performed since the early 60’s. But really

good, well-controlled experiments, convincing even to skeptics, were not done until

the 80’s, thanks in part to advances in microlithography technology. Also in the

80’s, a new type of Aharonov-Bohm interference experiement became possible that

detected Aharonov-Bohm interference not in the vacumm, but inside matter (in

the solid state). This is a gold ring, about a micron across, fabricated by Richard
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Webb and collaborators at IBM in the mid 80’s. The ring has two leads attached to

it. They cooled this ring down, placed it in a strong magnetic field, and observed

the dependence of the resistance in the circuit on the applied field. An electron

traveling from one lead to the other can travel along either of two paths. Whether

these two paths interfere constructively or destructively depends on the magnetic

flux enlosed by the two paths, so one expects to see oscillations in the resistance

with a characteristic period. Indeed, the spacing between successive peaks in the

resistance corresponds to a change in the enclosed magnetic flux given by

∆Φ =
2πh̄c

e
,

such that the Aharonov-Bohm phase advances once around the unit circle.

What is truly remarkable about this measurement it that the electrons scatter

many times off of impurities in the wire as they diffuse through it, yet the scat-

tering does not destroy the phase coherence. The reason is that the scattering

at sufficiently low temperature is almost always elastic, and only inelastic scatter-

ing destroys coherence. Also notice that, aside from the characteristic Aharonov-

Bohm oscillations in the resistance, there are random fluctuations with a smaller

frequency. This random noise is extremely interesting. It is associated with the

change in the magnetic flux that actually penetrates the wire, rather than the flux

enclosed by it. But I don’t have time to talk about this here.

Non-abelian Gauge Symmetry

Instead, let’s generalize our geometric picture to the case of a non-abelian local

symmetry. We’ll consider the case of quantum chromodynamics (QCD), the theory

of the strong interactions.

Quarks come in three colors, which I’ll call red (R), green (G), and blue (B),

because those happen to be the colors of the transparency pens that I have. At the

heart of QCD lies a principle of “color democracy”—everyone is free to orient her
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axes in color space however she pleases at each point in space (and at each time).

No observable quantity can depend on these color conventions.

So suppose you go out for a walk, quark-watching, and you see a quark. You

say, “Oh, look at that beautiful blue quark!” Except it doesn’t mean anything.

Someone else might see the very same quark and say, “Oh, look at that beautiful

red quark!”

We can’t tolerate this confusion, so we try to do something about it. What we

do is establish a Quark Bureau of Standards (QBS) right here in Pasadena. If two

quarks are in the same place at the same time we can at least tell whether they have

the same color or not. So we select three mutually orthogonal directions in color

space at the QBS, which we decide to call the R, G, and B directions. We select

samples of quarks with each color, and seal them hermetically in bottles. Great

care is taken to ensure that nothing rotates the color of these standard reference

quarks.

Now if a wild quark is seen out in the field, we know what to do. We capture

it, and carry it back to the QBS, being very careful not to rotate its color along

the way. Upon arrival at the QBS, we can compare the wild quark to the standard

quarks, and unambiguously identify its color.

Except, there is a problem that arises, because of the path dependence of par-

allel transport. To dramatize the problem, let us suppose (stretching our imagina-

tions only a little) that a revolution comes, and Tommy Lasorda becomes dictator.

As his first act in office, he makes a proclamation: “From now on, all quarks shall

be Dodger blue!” So Tommy equips each Dodger with a hermetically sealed sam-

ple of a blue quark that has been callibrated at the QBS. Every player goes on a

quark-hunting expedition, carrying his standard blue quark with him (and being

very careful not to rotate its color). Every time he spots a wild quark, he rotates

the color of the wild quark so that it lines up perfectly with his standard blue

quark.

If color symmetry were a global symmetry, this plan to impose color uniformity
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might succeed. But because the symmetry is actually local, the forces of truth,

justice and color democracy have it within their power to foil the plan. Suppose

it’s Marge Schott—she doesn’t think quarks should be Dodger blue, she thinks

they should be Cincinnati red. So she knows what to do. She builds a solenoid,

and turns on a carefully selected current of colored quarks in the wire. The flux in

the solenoid can be tuned just right so that when one of the Dodgers starts out at

the QBS with his blue quark, voyages once around the solenoid, and then returns,

he finds that the quark in his bottle has now turned red! Tommy’s plan has failed.

The essence of non-abelian gauge symmetry, then, is a notion of parallel trans-

port for a colored object, and the physical content of this notion is encoded in the

path dependence of parallel transport. Suppose a quark is initially at a point x0,

and then we carry that quark around a closed path C that returns to x0, being

careful to preserve its color all along. In general, we find that when the quark

returns to where it started, its color has been rotated by some element of the “lo-

cal symmetry” or “gauge” group, SU(3) in the case of QCD. This group element

U(x0, C) can be said to characterize the “flux” enclosed by the path.

But now we encounter a puzzle. A blue quark and a red quark have different

long-range gluon fields. The difference has a well-defined physical meaning. We can

measure the force exerted by the gluon field on standard R, G, and B quarks. There

will be no problem in imposing a uniform color convention on a large surface, as

long as any color magnetic fields fall off rapidly with distance (no color magnetic

monopoles). Suppose we bend Marge Schott’s solenoid into a closed loop, with

the color magnetic flux sealed inside. Now we take our blue quark, carry it once

through the loop, and bring it home. It is now a red quark. But is doesn’t make

any sense, is not consistent with causality, for the long range color field measured

on a distant surface to be changed by a well localized process in which a quark

winds around a solenoid. So it seems that, after the winding, there is some color

hiding somewhere, that compensates for the exchange of a blue quark for a red

one. Where did the missing color go?
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Part of what makes this puzzle tricky to think about is the existence of massless

colored gluons in QCD. (Of course, it has been implicit in all of the discussion so far

that our measurements are carried out on distance scales that are small compared

to the scale of color confinement in the theory.) When we move quarks around,

we can’t prevent emission of very soft gluons that can carry color away. It will be

easier to think about the puzzle of the disappearing color if we consider a simpler

model that retains some of the essential features of QCD, but does not contain any

massless charged particles. To find a model with these features, we may imagine

that all or most of the gluons have acquired mass via the Higgs phenomenon. But

that means that we need to understand how the Higgs phenomenon works.

The Higgs Phenomenon

The prototype of the Higgs phenomenon is superconductivity. The ground

state of a superconductor can be viewed as a “pair condensate” a coherent state

containing an indefinite number of Cooper pairs, each carrying charge 2e, where e

is the electron charge. It is instructive to consider what happens if we open up a

hole in the superconductor, and thrust a solenoid into the hole. If the flux in the

solenoid takes a generic value, then a Cooper pair that voyages around the hole

acquires a nontrivial Aharonov-Bohm phase, given by

exp

[

i
(2e)

h̄c
Φ

]

.

The pairs don’t like that—the phase raises their energy. But the pairs have it

within their power to do something about that undesirable phase. A supercurrent

can flow around the solenoid, generating an additional magnetic field that augments

the applied field inside the solenoid. The current can assume a value so that the

total flux due to the applied field and the current together is such that pairs deep

inside the superconductor experience no Aharonov-Bohm phase. The total flux

must then be an integer multiple of a fundamental quantum of flux

Φ0 =
2πh̄c

2e
= 2 × 10−7 flux − cm2 .
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This is the phenomenon of flux quantization in superconductors.

In the case of a type-II superconductor, a sufficiently powerful magnetic field

will penetrate through the superconductor. But it is energetically favorable for the

field to break up into narrow strings of flux, each carrying the flux quantum Φ0.

Thus the field doesn’t disturb the pairs in the bulk, far from the nearest string.

We see that in a superconductor, electrodynamics becomes a short-range in-

teraction. The magnetic field outside a string decays like e−r/r0, where r0 is the

characteristic “penetration depth” of the superconductor. We may say that the

“photon” has acquired a mass given by

mγ =
h̄

c
r−1
0 .

This is the Higgs mechanism, in the case of an abelian gauge theory.

In a non-abelian gauge theory, the ground state (or vacuum) may be a con-

densate containing an indefinite number of colored particles. Now suppose that a

non-abelian magnetic field turns on in this vacuum. We can distinguish two types

of magnetic field. The first type does not rotate the color of the condensate at

all. This type of magnetic field is free to spread out, without raising the vacuum

energy. The associated gauge interactions are long range, and the gauge fields of

this type remain massless.

The second type of magnetic field does rotate the condensate. This type of

magnetic flux will collapse to strings that carry a quantized flux (as in a super-

conductor), so that a condensate particle that winds around the string does not

change its color. The associated gauge interactions are short range, and the gauge

fields of this type acquire masses. This is the non-abelian Higgs mechanism.

The Alice String

Now we’ll consider an instructive example of this non-abelian Higgs mechanism.

For definiteness and ease of visualization, let’s suppose that the underlying local
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symmetry group is S0(3), the three-dimensional rotation group (instead of color

SU(3), which is a bit harder to think about). And let’s imagine that the condensate

is a “spin-two” object—we can think of it as an arrow pointing in a particular

direction in the three-dimensional (internal) space on which S0(3) acts, except

that an arrow pointing up is identified with an arrow pointing down.

We see that there are two types of magnetic flux. If we call the direction in

which the condensate points the ẑ direction, then rotations about the ẑ axis leave

the condensate unchanged. The associated gauge field is a massless “photon;” it

couples to an electric charge operator Q, the generator of rotations about the ẑ

axis.

Rotations about the x̂ or ŷ axes, on the other hand, move the condensate.

The associated guage field are heavy—the magnetic flux is confined to strings. An

object that is transported around the string gets rotated by 180◦ about an axis in

the x− y plane, for such a rotation leaves the condensate unchanged.

Now notice something remarkable. If R is such a rotation, then

RQR−1 = −Q ;

if we flip the ẑ-axis, rotate by θ, and then flip the axis back, the result is the same

as a rotation by −θ. That means that, in this model, charge conjugation is a local

symmetry. If you spot a charged particle, it has no invariant meaning to say that

the particle is an electron—someone else could just as well identify it as a positron.

We can, of course, establish a Charge Bureau of Standards, by arbitrarily

calling one charged particle positive (+), and its antiparticle negative (-), and

storing samples of each charge in hermetically sealed bottles. Then if we capture a

wild charge and carry it back to the CBS, we can determine its charge—it is either

attracted or repelled by the standard positive charge.

But the outcome of this charge measurement is path dependent. Suppose we

encounter a string on our way back to the CBS. If we pass to the left of the string,
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we find that the particle is + when we reach the CBS. But if we pass to the right,

the particle is identified as − at the CBS. Because of this feature, this type of

string was dubbed the “Alice” string by Albert Schwarz, who first discussed its

properties about ten years ago—one who voyages around the string is reflected in

the charge-conjugation looking glass.

The Alice string is to electrodynamics as the Möbius strip is to Riemannian

geometry. We can establish a local convention to identify a left hand and a right

hand on a Möbius strip, but these conventions have no global meaning, because a

left hand that voyages around the strip becomes a right hand. Similarly, we can

establish a charge convention at the CBS, but our convention can not be imposed

globally, since a charge that voyages around an Alice string returns with its charge

flipped in sign.

Disappearing Charge

In the context of the Alice string model, our puzzle of the disappearing color

becomes a puzzle of disappearing charge, which is easier to think about. Using test

charges that have been callibrated at the CBS, we can measure the electric field on

a large surface, and use Gauss’s law to determine the total charge enclosed by the

surface. Now suppose that there is a closed loop of Alice string deep inside this

surface. A charged particle, initially measured to be +, winds through the string

loop and becomes −. Yet, this localized process cannot have changed the total

electic charge as measured on the distant surface. Where did the missing charge

go?

To resolve this puzzle, we need to consider in more detail how the electric field

behaves as the charge moves around the string. For this purpose, it is convenient

to adopt a particular convention for measuring the electric field. To measure the

field, we measure the force on a positive test charge, and we can verify that the

test charge is positive by carrying it to the CBS, and comparing with the standard

+ charge there. The trouble with this procedure, of course, is that the calibration
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of the test charge is path dependent—whether it is + or − depends on which way

we carry it around the string.

To avoid this ambiguity, we can take a membrane, stretch it tightly across the

string loop, and declare that no test charge is to cross the membrane when it is

carried to the CBS for callibration. With this convention, the sign of the electric

field at each point is unambiguously determined. But the electric field, measured

this way, has an unusual property—it is discontinuous across the membrane. If

our positive test charge were to pop through the membrane, it would become a

negative test charge according to our conventions. Since the force on the test charge

does behave smoothly across the membrane, the electric field that we measure

must change sign at the membrane. This discontinuity is purely an artifact of our

conventions; no physically observable quantity is discontinuous at the membrane

(just as no geometrical quantity is really discontinous at the arbitrarily selected

curve where we chose to cut open our cone).

We may think of the electric field as a two-valued function, and our convention

picks out a single sheet of this two-valued function, with a branch cut (at the

location of the membrane) joining it to the second sheet. Now look at what happens

as a charged particle passes through the string loop. As the (+) charge approaches

the loop, the electric field lines cannot penetrate the string, and they bend back.

When the particle reaches the membrane, it “ducks under the cut” just as its image

(-) charge on the second sheet pops out from under the cut. As the (-) charge pulls

away from the loop, all of the flux emanating from it returns through the cut to

the second sheet, while all of the flux emanating from the (+) charge (now on the

second sheet) returns to the first sheet through the cut. Once the particle is far

away, the cut appears to be a source of positive electric flux equal to twice the

charge of the particle. The total electric charge has remained unchanged, and two

units of charge have been transfered from the particle to the string loop.

We see that a loop of string can carry electric charge. But this electric charge

is peculiar. There is no question about the reality of this charge—with suitably
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calibrated test charges, we can measure the electric flux through a large surface

enclosing the loop. Yet if we venture inside the surface seeking the source of this

electric field, no source can be found; the locally measured electric field has van-

ishing divergence everywhere. The branch cut that appears, with our conventions,

to be the source, has no invariant significance. In keeping with the Alice motif,

and insofar as charge without a source is like a smile without a cat, this type of

charge should be called “Cheshire charge.”

When a right hand winds around a Möbius strip, it becomes a left hand, but

we can’t say exactly when it changed from left to right. Similarly, when a + charge

winds through a loop of Alice string, it transfers two units of + charge to the string

loop. We can’t say exactly when this transfer of charge happens, but it definitely

happens.

Cheshire Charge in the Laboratory

Cheshire charge is amusing, but does it really have anything to do with physics?

Are there systems that can be studied in the laboratory and that exhibit these

peculiar Alice properties?

In fact, similar phenomena do occur in nematic liquid crystals. These materials

contain long, narrow, rod-like molecules. In the low temperature (nematic) phase,

the rods tend to line up with one another. This phase flows like a liquid, but has

long-range orientational order. The order parameter in this case is the “director”

field, a vector that indicates how the rods are aligned. But the rods have no

preferred direction, so a vector pointing up must be identified with a vector pointing

down. Thus, the symmetry breaking pattern in a nematic is precisely the same as

in the Alice model. The only difference is that the spontaneously broken symmetry,

in the nematic, is a global symmetry rather than a gauge symmetry.

In the nematic, there is a line defect that could be described as a “global Alice

string.” The director field rotates by 180◦ on a closed path that encircles the core

of the string, just like the condensate outside the core of an Alice string. In the
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Alice model, though I haven’t mentioned them so far, there are also point defects,

magnetic monopoles. In the nematic, there is a corresponding “global monopole”

or “hedgehog” in which the director field points radially outward. A closed loop

of global string can carry magnetic charge which is analogous to Cheshire charge.

As a function of position along the string, the plane of the director field can twist

in space. The magnetic charge carried by the loop turns out to be the number of

times this plane twists around before the loop closes. This is easiest to visualize in

the case of a loop with a single twist (shown here in cross section). On a surface

containing this loop, the director points radially outward, so there is a magnetic

charge inside the surface.

In the Alice model, a magnetic monopole that winds around a string loop trans-

fers magnetic charge to the loop, just as an electrically charged particle transfers

electric charge. So it is in the nematic. The magnetic charge inside a surface

can be inferred from the “winding number” of the director on that surface. A

global monopole that passes through a loop of global Alice string becomes an an-

timonopole, with the opposite value for the winding number. The total magnetic

charge, defined by the behavior of the director on a large surface that encloses the

loop and monopole, is not changed by this process. What happens is that the

passage of the monopole through the loop twists the string, so that the magnetic

charge acquired by the loop compensates for the charge lost by the monopole. It

sounds odd that a discrete quantity, the winding number, which takes an inte-

ger value, can be changed in a continuous process, the passage of the monopole

number through the loop. But that is what Cheshire charge is all about. When

the monopole is in the vicinity of the string loop, there is no unambiguous way

of assigning a winding number to the string; we can resolve the ambiguity only

by adopting a particular convention for measuring the winding. One cannot say

exactly when the transfer of charge happens, but it definitely happens.

Static properties of defects in liquid crystals have been studied for a long time,

but dynamical properties of defects in nematics have been studied only recently,

in particular by Yurke and collaborators at AT&T, and Bowick and collaborators
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at Syracuse. They use a commercially available material called K15, which has a

nematic-isotropic first-order phase transition at the convenient temperature 35◦C

(1 atmosphere pressure). One puts a drop of this glop on a microscope slide and

heats it with a light bulb. Then one allows it to air cool. It passes through the

critical temperature, and the transition to the nematic phase then proceeds via

bubble nucleation. Bubble walls collide, producing defects. The evolution of the

defects can then be viewed and recorded on videotape. Because of the similarity of

this scenario with cosmological phases transitions that have been much discussed

in connection with the formation of large scale structure in the universe, Yurke et

al. called their paper “Cosmology in the Laboratory.”

I have a brief sample tape that was provided by Mark Bowick. Unfortunately,

I don’t have a picture of a monopole-string interaction, but we can watch both

twisted and untwisted string loops as they shrink to a point and annihilate. The

untwisted loops can disappear completely, but the annihilation of a twisted loop

leaves behind a pointlike defect, a monopole, that won’t go away.

Exotic Quantum Statistics

Now I would like to turn to a different topic related to the Aharonov-Bohm

effect, exotic generalizations of quantum statistics. In three spatial dimensions,

indistinguishable particles are either bosons or fermions, but more general possi-

bilities exist in two dimensions. As a concrete example, imagine a charge q bound

to a flux Φ. If two such objects are interchanged, there is an Aharonov-Bohm in-

teraction between the charge of each object and the flux of the other object. As a

result, under the interchange, the two-body wave function acquires the Aharonov-

Bohm phase

eiqΦ = eiθ .

Since there is no restriction on the allowed flux, this exchange phase θ can take

any value. Thus, Frank Wilczek suggested the name “anyon” for such objects.
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What is special about two spatial dimensions? To understand the difference

between two and three dimensions, imagine performing two exchanges in succes-

sion. A double exhange is equivalent to winding one object around the other, and

returning it to its original position. In three dimensions, carrying one particle

around a closed path that encloses the other particle is really the same as doing

nothing at all, for we can smoothly deform the path to a trivial path in which

the particle doesn’t go anywhere. Thus, a double exchange leaves the two-body

wave function invariant, and the exchange phase is restricted to take the values 1

and -1. But in two dimensions, carrying one particle around another is not the

same as doing nothing at all—the path has a winding number with an invariant

topological meaning. A history in which one particle winds around another cannot

be smoothly deformed to a history in which no winding occurs, unless the particles

meet at some point in spacetime. So the phase e2iθ acquired by the two body wave

function under the double exchange need not be trivial.

Nor do anyons exhaust the possibilities for unusual quantum statistics in two

dimensions; other possibilities can arise in non-abelian gauge theories. Before, we

considered what happens when a colored particle is transported around a non-

abelian flux. Now let’s ask what happens when two fluxes are interchanged.

As we’ve seen, a flux can be labeled by an element of the local symmetry group.

We can establish a Color Bureau of Standards, and when our standardized colored

objects are carried around an isolated flux and returned to the CBS, the color has

been rotated by a transformation U . For the purpose of describing the exchange

of two fluxes, it is convenient to adopt a particular convention for measuring color

on the background of a flux. The color of an object can be identified by carrying it

back to the Color Bureau of Standards, where it can be compared to the standard

colored objects that are stored there. To avoid any ambiguities, as in our discussion

of Alice strings, we choose a “cut” terminating on the flux, and agree that no

colored object will be allowed to cross the cut when it is brought back to the CBS.

A way to characterize the flux, then, is to say that the color of an object, measured

using this convention, jumps discontinuously when the object crosses the cut. We
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have

|ψ〉below cut = U |ψ〉above cut ,

where |ψ〉 is the wave function of a colored object, and U is the element of the

local symmetry group that is associated with the flux. Of course, the cut is purely

an artifact of our conventions, and has no physical significance of its own.

Now if we exchange two fluxes labeled by group elements U and V , we must

drag their cuts along during the exchange. We see that after the exchange (shown

here) the effect of carrying a colored object around the flux that was originally

labeled by the group element U is still the color rotation U . But a path that winds

around the flux that was originally labeled by V must cross the U cut both before

and after crossing the V cut; thus the effect is the color rotation UV U−1. After

the exchange, the two flux state is modified according to

|U, V 〉 → |UV U−1, U〉 ;

the fluxes differ from the original values if U and V do not commute.

As a concrete example, suppose that the color SU(3) group of QCD is spon-

taneously broken down to the subgroup S3, the group that permutes the three

colors R, G, and B. In this Higgs phase, flux is confined to strings, such that the

effect of voyaging around the string is a transformation in this unbroken group, a

transformation that preserves the value of the Higgs condensate. In two spatial

dimensions, these strings are pointlike particles, which we will call “vortices.”

Let’s consider the three vortices whose flux corresponds to a transposition of

two colors: (RG)—which we’ll call vortex A, (GB)—vortex B, and (BR)—vortex

C. We can establish a Vortex Bureau of Standards, where standard samples are

preserved of vortices A, B, and C. A wild vortex in the field can be carried to the

VBS, where its flux can be identified. Of course, there is the usual ambiguity: if

many vortices are present, the outcome of the flux measurement depends on just

how we weave the vortex to be measured through the others on its way to the VBS.
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Now suppose we are interested in the amplitude for a process in which two

vortices propagate from specified positions at an initial time to specified positions at

a final time, and suppose that the initial vortices are A and B. We may compute the

amplitude by summing over all possible two-vortex trajectories. In the contribution

to the amplitude due to histories in which no exchange takes place, the final vortices

are also A and B. If a single exchange takes place, then, according to the rule found

above, the final vortices are C and A. If there is a double exchange, the final vortices

are B and C, and if there is a triple exchange, the final vortices are A and B. We see

that the single and double exchange processes do not interfere with the no-exchange

process, because the final quantum numbers of the vortex pair is different in these

cases. The triple exchange process does add coherently to the no-exchange process

in the amplitude for AB to go to AB. But notice that in a triple exchange, the

two vortices have changed places—the A vortex has become a B vortex and the B

vortex has become an A vortex.

The existence of an exchange contribution to the amplitude is the hallmark

of identical particles in quantum mechanics; when we say that two particles are

indistinguishable, we mean that it is not always possible to keep track of “who’s

who.” But our non-abelian vortices A and B are indistinguishable particles with

an unusual feature—they have different quantum numbers! It seems that we can

take vortex A or vortex B to the VBS, and verify that they are different types of

objects. They are different, but they are also indistinguishable. Distinct objects

that are indistinguishable are the essence of non-abelian statistics.

Non-abelian Statistics in the Laboratory?

That’s interesting. But do objects like this, obeying non-abelian quantum

statistics, really exist in nature?

There is no (firm) evidence that they have ever been seen. But life is more ex-

citing when you take risks, so I will make the reckless prediction that evidence for

non-abelian indistinguishable particles will eventually be found in condensed mat-

ter systems. Why would I make such a rash statement? It is because our experience
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with condensed matter physics has shown that that a frustrated strongly-correlated

electron system will go to extraordinary lengths to relieve its frustration.

The most spectacular realization of this principle is the fractional quantum

Hall effect (FQHE). The FQHE is one of the most amazing phenomena ever dis-

covered in condensed matter, comparable in its conceptual implications, I believe,

to the discovery of superconductivity or superfluidity. The effect arises when a

two-dimensional electron gas, confined to the interface between two semiconduc-

tors, is cooled and placed in a strong magnetic field normal to the interface. What

two-dimensional electrons in a magnetic field love above all else is to fill a Landau

level. In the filled Landau level, one electron executing quantized cyclotron motion

sits atop each quantum of magnetic flux. A felicitous property of this state is that

it is incompressible—squeezing it an infinitesimal amount costs a finite amount of

energy, because an electron must get bumped up to the next Landau level.

But suppose, for a given value of the magnetic field, that the density of electrons

is too small to fill a Landau level; specifically, suppose the number of electrons per

flux quantum is

ν ≡
electrons

flux quanta
=

1

2m+ 1
,

where m is an integer. The electrons are not very happy, but it is within their

power to improve the situation. If the magnetic field is large enough, the tempera-

ture is low enough, and the mobility of the sample is high enough (small density of

impurities), the interactions among the electrons drive the formation of a remark-

able collective state. Very loosely speaking, each electron forms a bound state with

2m flux quanta, so that the abundance of these charged composites is just right to

fill a Landau level in the remaining, unbound, magnetic field. When two of these

electron-flux composites are exchanged, there is an additional Aharonov-Bohm

contribution to the exchange phase; roughly speaking the exchange phase becomes

eiπ(2m+1)—the phase winds m times around the unit circle before advancing to −1.

These bound “superfermions” can dissociate into 2m+ 1 constituents, each carry-

ing electric charge e/(2m+1), and with exchange phase eiθ, where θ = π/(2m+1).
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These fractionally charged, anyonic quasi-particles are responsible for carrying the

fractional Hall current.

Another way to say what has happened is that the electrons have manufactured

a fictitious “statistical” magnetic flux that partially cancels the applied flux, so

that the electrons can fill a Landau level with respect to the combined total flux.

Any way you look at it, what happens is remarkable. From their short range

mutual interactions, the electrons manage to create an Aharonov-Bohm “gauge

interaction” between distantly separated quasi-particles. It is the incompressibility

of the resulting collective state that makes this trick possible.

This trick works only for special “magic” values of the filling factor. My spec-

ulation is that, when the filling factor is unfavorable, this electron system, having

exhausted the anyonic tricks at its disposal, may turn to the option of manufactur-

ing a fictitious non-abelian magnetic flux, in order to establish a felicitous collective

state. Quasi-particle excitations in this state could obey non-abelian statistics. A

particulary promising value of the filling factor at which to look for such exotica

would be ν = 1
2 . Similar tricks might turn up in other types of frustrated quantum

many-body systems, for example in frustrated anti-ferromagnets.

An important question is, if a condensed matter system were produced that

supports non-abelian quasi-particles, how would we know? What qualitative fea-

tures of, say, the bulk transport properties would signal that non-abelian statistics

had been discovered? I don’t know—I understand little about the many-body

physics of particles that obey non–abelian statistics. Perhaps an important clue is

that two or more such objects can carry unlocalized charges analogous to Cheshire

charge. The many-body physics remains an intriguing open question.

Some History

Before concluding, I would like to mention some aspects of the history of the

theory of the Aharonov-Bohm effect.
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The idea that the electrodynamic vector potential Aµ is a connection that

determines a notion of parallel transport was actually first put forward in 1918,

by the mathematician Hermann Weyl. General relativity had been proposed only

a few years earlier, and Weyl felt, as Einstein did, that if there is a geometrical

theory of gravity, there should also be a geometric theory of the other interaction

that was known at that time, electromagnetism.

Weyl did not have exactly the right idea in 1918. The trouble was that he

was too far ahead of his time. Quantum mechanics had not been invented yet,

so he could hardly have anticipated that the relevant notion was transport of the

phase of the electron wave function. But he made a clever suggestion. Weyl said

that, just as the Riemannian connection is needed to tell us how to transport a

tangent vector from one point to another without changing its direction, so another

connection is also needed to tell us how to transport a vector from one point to

another without changing its length. He proposed that Aµ is this new connection.

When Weyl’s paper was published, it was followed by a comment by A. Ein-

stein. Einstein remarked that Weyl’s idea was very interesting, but it could not

be right. According to Weyl, if a clock or a meter stick is carried around a closed

path in a magnetic field, the length of the stick or the interval between ticks of the

clock is rescaled by the factor

exp

[

c

∮

~A · d~x

]

,

where c is some constant. We can’t do physics that way, said Einstein, for the way

each clock kept time would depend not just on where it was, but also on where it

had been.

The right interpretation, that the vector potential defines parallel transport

of the phase of the wave function, was proposed not long after the emergence of

quantum mechanics, by London and Fock, independently, in 1927. Weyl returned

to the idea in 1929, and gave the first modern formulation of the notion of a gauge

transformation and of gauge invariance.
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The next important step was taken by Dirac, in his famous 1931 paper on

magnetic monopoles in quantum theory. Dirac proposed that a magnetic monopole

could be envisaged as a semi-infinitely long, infinitesimally thin string of magnetic

flux. The end of the string, where the flux spills out, appears to be a magnetic

charge. But for this picture to make sense, the string would have to be completely

invisible. Dirac was familiar with Weyl’s ideas, and quoted Weyl’s 1929 paper. He

pointed out that an electron would be able to detect the string unless the phase

eieΦ/h̄c acquired by an electron that circumnaviagates the string is trivial. The flux

Φ in the string, and thus the charge of the monopole, must therefore be an integer

multiple of the magnetic charge quantum

Φ0 =
2πh̄c

e
.

Dirac was so fond of his idea that he concluded his paper by saying, “One would

be surprised if Nature made no use of it.” So Dirac was a pioneer of a style of

doing theoretical particle physics that remains popular today.

Though Dirac came remarkably close, neither Weyl or Dirac explicitly de-

scribed what later came to be known as the Aharonov-Bohm interference experi-

ment, in which the change in the flux of a shielded solenoid causes a shift in the

fringes of an electron interference pattern. The first explicit discussion that I know

of was due to Ehrenberg and Siday in 1949. In a crucial passage (accompanied by

a diagram) in the conclusion of their paper, they remarked, “One might therefore

expect wave-optical phenomena to arise which are due to the presence of a mag-

netic field, but not due to the magnetic field itself, i.e., which arise whilst the rays

are in field-free regions only.” Yet Ehrenberg and Siday did not make much of a

fuss about this effect. (It is not mentioned in the abstract or introduction of the

paper.) Their paper seems not to have attracted much attention at the time, and

it remains little known and rarely quoted even today.

(In 1950, London, familiar with the notion of parallel transport of a phase since

1927, first predicted the phenomenon of flux quantization in superconductors.)

22



The Aharonov-Bohm paper appeared in 1959. In spite of all the anticipations,

their paper is justly hailed as a great classic. Much more clearly and comprehen-

sively than previous authors, they stressed the special role of the electromagnetic

potentials in quantum theory, and that non-local gauge invariant quantities can

have observable effects. They also emphasized the experimental implications, and

indeed, experiments confirming the effect were already done within a year after the

appearance of their paper.

Meanwhile, in another important development, Yang and Mills invented non-

abelian gauge theory in 1954. Curiously, they were completely ignorant, at the

time, of Weyl’s geometrical ideas. Yang had learned about gauge invariance from

articles by Pauli, and Pauli had very deliberately stripped away all of the geomet-

rical motivation, which he did not like. What had deeply impressed Yang was that

local symmetry principles can powerfully constain the dynamics of a theory, as

gauge invariance determines the form of the coupling of the electron to the photon

in electrodynamics. It was this feature that he and Mills sought to generalize.

Yang says that it was not until the late 60’s that he recognized that Yang-Mills

theory has a geometrical interpretation, and that the field strength is analogous

to the Riemannian curvature. The geometrical viewpoint re-entered the physics

literature in a 1975 paper by Wu and Yang, which introduced the language of fibre

bundles to many physicists. Since the mid 70’s, geometrical ideas have played a

decisive role in the development of theoretical particle physics.

Conclusions

I have done work related to what I’ve discussed here with a variety of collabora-

tors: Mark Alford, Martin Bucher,∗ Sidney Coleman, Lawrence Krauss, Kai-Ming

Lee,∗ Hoi-Kwong Lo,∗ John March-Russell, Patrick McGraw,∗ Robert Navin,∗ and

Frank Wilczek. Those marked with an asterisk (∗) are current or former Caltech

graduate students.

The main pedagogical goal of this talk has been to explain what non-abelian

gauge invariance is all about. We have also seen that when Yang and Mills meet
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Aharonov and Bohm, novel phenomena arise. I have particularly emphasized the

existence of “Cheshire” charge with no localized source, and of non-abelian quan-

tum statistics in two spatial dimensions (whereby distinct objects must be regarded

as indistinguishable).

Where is the physics in all this? There are a number of interesting implications

that I have not had time to discuss. For example, it is amusing to think about the

consequences if strings with Alice properties were produced in a phase transition

in the early universe. By thinking about the Aharonov-Bohm interactions of black

holes with strings, one gains insight into some of the quantum-mechanical prop-

erties of black holes. The non-abelian Aharonov-Bohm effect provides a powerful

tool for classifying the different possible Higgs phases of a gauge theory.

But the most likely ways of making contact between the ideas I’ve discussed

and natural phenomena come from condensed matter systems. I’ve described the

analog of magnetic Cheshire charge carried by the topological defects associated

with a spontaneously broken global symmetry. I didn’t have time to describe an

analog of electric Cheshire charge that can arise in systems with global symmetries

as a a consequence of the Berry phase. The greatest potential for a truly deep

connection with phenomenology comes from the possibility that strongly-correlated

electron systems, or other frustrated quantum many-body systems, may contain

quasi-particles that obey non-abelian statistics.

That was a pretty good idea that Hermann Weyl had in 1918. His principle,

gauge invariance, turned out to be the key to understanding the electroweak and

strong interactions, as well as electromagnetism. Why did this turn out to be so?

One can think of various explanations, but the truth is that we don’t really

know. This appears to be a good example of what Wigner called “the unreasonable

effectiveness of mathematics in the physical sciences.” At a fundamental level,

geometry seems to govern physics. That conclusion, I think, would have been

satisfying to Weyl, and to Einstein. They both died in 1955, and as far as I

know, neither one of them ever learned anything about Yang-Mills theory. I like
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to believe that they would have both been pleased by Yang-Mills theory, and

especially pleased by the role it has assumed in the description of nature.

Weyl’s principle of gauge invariance, and its implications, are still not com-

pletely understood. I expect that the geometrical principles at the heart of gauge

theory will continue to make contact with physical phenomena in surprising and

highly enlightening ways.
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