Free Electron Fermi Gas
(Kittel Ch. 6)




Role of Electronsin Solids

 Electrons are responsible for binding of crystals --
they are the “glue” that hold the nuclei together
Types of binding (see next slide)
Van der Waalls - electronic polarizability
lonic - electron transfer
Covalent - electron bonds

 Electrons are responsible for important properties:
Electrical conductivity in metals
(But why are some solids insulators?)
Magnetism
Optical properties



Closed-Shell Binding
Van der Waals
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Starting Point for Under standing
Electronsin Solicgljs

w

* Nature of a metal: D O (
Electrons can become O O
“free of the nuclel” and D O (
move between nuclel — ) O
since we observe D O (
electrical conductivity o a

 Electron Gas
Simplest possible model
for a metal - electrons are
completely “free of the
nuclel” - nuclel are replaced

by a smooth backgrOV
“Electrons in a box”



Electron Gas- History

Electron Gas model predates quantum mechanics
Electrons Discovered in 1897

Drude-Lorentz Model (1905)-
Electrons - classical particles
free to move in a box

Model: All electrons
contribute to conductivity.
Works! Still used!

But same model predicted
that all electrons contribute
to heat capacity. Disaster.
Heat capacity is MUCH less
than predicted.



Quantum M echanics
1911: Bohr Model for H

1923: Wave Nature of Particles Proposed
Prince Louis de Broglie

1924-26: Development of Quantum
Mechanics - Schrodinger equation

1924: Bose-Einstein Statistics for
Identical Particles (phonons, ...)

1925-26: Pauli Exclusion Principle,
Fermi-Dirac Statistics (electrons, ...)

1925: Spin of the Electron (spin =1/2) = gcprodinger
G. E. Uhlenbeck and S. Goudsmit




Schrodinger Equation

* Basic equation of Quantum Mechanics
[-(hi2m) A= +V(r) [¥(r)= EY (L)

where
m = mass of particle
V(r) = potential energy at point r
A? = (d?/dx? + d?/dy? + d?/dz?)
E = eigenvalue = energy of quantum state
Y (r) = wavefunction
n(r) =|¥(r)|? = probability density



Schrodinger Equation — 1D line

e Suppose particles can move freely on a line with
position x, 0 <x<L

0

e Schrodinger Eq. In 1D withV =0
- (h2/2m ) d?/dx2 ¥ (X) = E ¥ (X)

.- Boundary Condition

o Solution withW (x) =0atx=0,L
¥ (x) = 212 L2 sin(kx) , k=nr/L,n=1,2, ...
(Note similarity to vibration waves)

Factor chosen so JOL dx | W (x)|? =1

e E(K) = (h%2m) k2



Electronson aline
o Solutionwith W (x) =0 atx=0,L

Examples of waves - same picture as for lattice
vibrations except that here ¥ (x) is a continuous wave
Instead of representing atom displacements




Electronson aline

* For electrons in a box, the energy is just the kinetic
energy which is quantized because the waves must fit
Into the box

E®k=(h22m)k2,k=nn/L,n=1,2, ...

E

Approaches
continuum
as L becomes large

K




Schrodinger Equation — 1D line
e E(K)=(h22m)k2,k=nn/L,n=1,2, ...

e Lowest energy solutions with ¥ (x) =0 at x =0,L

¥ (X)




Electronsin 3 dimensions
-(h3/2m ) [d?/dx? + d?/dy? + d?/dz? | V¥ (X,y,2) = E WV (X,Y,2)

YXX)=0atx=0,L; Y(y)=0aty=0,L;¥Y(z)=0atz
=0,L

Y = 232 32 sin(k,x) sin(k,y) sin(k,z) ,
K.=nn/L,n=1,2, ..., same fory,z
E (k) = (h212m) (k2 + k2 + k,2) = (h22m ) k2
E

Approaches
continuum
as L becomes Erge




Electronsin 3 dimensions - continued

e Just as for phonons it is convenient to define W with
periodic boundary conditions

 Yis atraveling plane wave:
¥ =L32 exp(i(kx + ky +K,2)
K.= £n(2n/L), etc., n=0,1,2,..

E (k) = (h22m) (k2 + k2 + k,2) = (h2/2m ) k2

E

Approaches
continuum

s L becomes large
K




Density of states

Key point - exactly the same as for vibration waves

We need the number of states per unit energy to find
the total energy and the thermal properties of the
electron gas.

Difference: density of states is defined in terms of
energy E, not angular frequency.

D(E)dE - number of states in energy range E to E+dE
States in interval (k, E) to (k+ Ak, E+ AE)

AN= N(k) Ak=N(E) AE

dN/dE=(dN/dk)/(dE/dk)



Density of Statesin 3D

 The values of k, k, k, are equally spaced: Ak, = 2x/L ,.
Thus the volume in k space per state is (27/L)3
and the number of states N with |k| < k; IS
N = (4n/3) k3 / (2n/L)3 = V/67? ky® 3=V
* The density of states per unit energy Is
D(E) = dN/dE = (dN/dK) (dk/dE)

E=(h%2m) k2, dE/dk = (h?/m ) k
—> D(E) = (V/272) k2 [ (hé/m ) k = (V/2r?) k[ (h?/m)
= (V/4n2) EYZ (2m [ K2)32
Kittel adds a factor of 2 for multiplicity of electrons in the
same state (spin): D(E) = (V/27?) EY2 (2m [ h?)3/2



Electron orbitals

InN1D E(k)=(h22m)k2,k=nn/L,n=1,2, ...
In3D E (k) = (h42m) (k2 + k2 +k,2) = (h2/2m ) k*
ki k, k, = £ n (2n/L), etc., n =0,1,2,..

Thus E,p (k) = n?(h?/2m ) (m /L)?

Esp (K) = (n,+n,+n,)2 (h%12m ) (2r /L)2

To describe a system of N, electrons, we assign
the electrons to orbitals of increasing energy, until all
orbitals are filled.

Order of filling: n=1, 2, .. n¢
N - topmost filled energy level (Fermi level)



Electron orbitals

« D(E)= (V/212) EY2 (2m | h2)3/2

E
D(E) " | Em pty
Filled [—
E

 Now we need to figure out how many electrons are on
a given orbital (electron occupancy)



What Is special about electrons?

Fermions - obey exclusion principle

Fermions have spin s = 1/2 - two electrons (spin up and
spin down) can occupy each state

Kinetic energy = ( p%/2m ) = ( h?/2m ) k?

Thus if we know the number of electrons per unit
volume N../V,

the lowest energy allowed state Is for the lowest N_../2
states to be filled with 2 electrons each,

and all the (infinite) number of other states to be empty.

The number of states with |k| <k, is N = (V/67°) k3
(from before)



Fermi momentum and energy

Thus all states are filled up to the Fermi momentum

ke and Fermi energy E- = (h?/2m ) k-2, given by
elec/2 = (VI6n?) k.3

—

= (312 Ny /V )3 and Eg = th?/2m) (372 Ny /V )?3

elec
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Fermi Distribution

« At finite temperature, electrons are not all in the lowest energy
states

* Applying the fundamental law of statistics to this case (occupation
of any state and spin only can be O or 1) leads to the Fermi
Distribution giving the probability that an orbital of energy E is
occupied (Kittel appendix)

f(E) = L/[exp((E-p)/kgT) + 1]
— Chemical potential
H for electrons =

f(E) Fermi energy at T=0
D(E)

1/2 u is temperature

dependent




Ex. How does the Fermi distribution
f(E) = 1/[exp((E-p)/kgT) + 1]

compare with the Planck distribution for phonons?
NE)= 1/[exp (E/ky T) -1]

Sketch them as a function of energy for different
temperatures.



Typical valuesfor eectrons?

* Here we count only valence electrons (see Kittel table)

 Element N,./atom E- Te= Elkg
Li 1 4.7 eV 5.5 x104 K
Na 1 3.23eV 3.75 x10% K
Al 3 11.6 eV 13.5 x10% K

* For typical metals the Fermi energy temperature is
much greater than ordinary temperatures — transition
from f(E)=1 to f(E)=0 is sharp at room temperature



Heat Capacity for Electrons

Just as for phonons the definition of heat capacity is C = dU/dT
where U = total internal energy

 When heated from T=0 only electrons within an energy range
kg T of the Fermi energy can be excited thermally
e ForT<<Tg=Eg/kg roughly U~ U,+ N, (T/ T¢) kg T so that

C = du/dT ~ N, kg (T/ Tp)

Chemical
L«  potential
f(E) for electrons
1 — UE)

1/2




Heat Capacity for Electrons

* More precisely, the change in energy when heated
fromOtoTis

AU = |.” dE E D(E) f(E) - |,°F dE E D(E)

e Using the fact that T << T:
C = du/dT = |,” dE (E - E.) D(E) (df(E)/dT)
~ D(E) Jo” dE (E - Ep) (GF(E)/T)

 The integral can be done almost exactly (exact in the
low T limit) to give
C = (n?/3) D(Ep) kg T (valid for any metal)
— (12/2) (Nge/Ep) kg T (for the electron gas)
(using D(Eg) = 3 N o/2EF )

e Keyresult: C~T

elec



Heat capacity

o Comparison of electrons in a metal with phonons

Phonons approach
classical limit
C~3N Kg

atom

Electrons have
C ~ Ngjoc Kg (T/TE)

elec

Heat Capacity C

_ Phonons dominate
Electrons dominate at high T because of
at low T in a metal reduction factor (T/T.)



Heat capacity

o Experimental results for metals
CIT=y+AT?+ ...

» Find the ratio ¥/ Yieer Yiree = (7%/2) (N4 /Ef) kg? is the
free electron gas result. Equivalently since E. o«c1/m,
we can consider the ratio vy / y;.. = Mg /M.*, where
m,,* IS an thermal effective mass for electrons in the

metal

Metal My, */ Mg
LI 2.18
Na 1.26
K 1.25
Al 1.48
Cu 1.38

 m,* close to m(free) is the “good”, “simple metals” !



Electrical Conductivity & Ohm’sLaw

» Consider electrons in an external field E. They
experience a force F = -eE

e Now F =dp/dt = hdk/dt, sincep=hk

 Thus in the presence of an electric field all the
electrons accelerate and the k points shift, i.e., the
entire Fermi surface shifts =
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Electrical Conductivity & Ohm’sLaw
 What limits the acceleration of the electrons?

e Scattering increases as the electrons deviate more
from equilibrium

» After field is applied a new equilibrium results as a
balance of acceleration by field and scattering
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Electrical Conductivity and Resistivity

The conductivity o Is defined by | = ¢ E,
where | = current density

How to find c?
From before F = dp/dt = m dv/dt = H dk/dt

Equilibrium is established when the rate that k
Increases due to E equals the rate of decrease due to
scattering, then dk/dt =0

If we define a scattering time t and scattering ratel/t
h (dk/dt + k /t) = F= g E (g = charge)
Now | = n q Vv (where n = density) so that
j=ng (hk/m)=(ng?m)tE
=l o =(ng4/m) Note: sign of charge
Resistance: p = 1/ ¢ o« m/(n g2 1) does not matter




Scattering mechanisms

e Impurities - wrong atoms, missing atoms, extra atoms,

Proportional to concentration

 Lattice vibrations - atoms out of their ideal places

Proportional to mean square displacement

* (Really these conclusions depend upon ideas from the
next section that there Is no scattering in a perfect
crystal.)



Electrical Resistivity

e Resistivity p Is due to scattering: Scattering rate
Inversely proportional to scattering time t

p oc scattering rate o« 1/t

e Matthiesson’s rule - scattering rates add

P = Pyibration T Pimpurity & 1/Tvibration i 1/Timpurity

Temperature dependent Temperature independent
oc <U2> - sample dependent



Relative resistance

Electrical Resistivity
e Consider relative resistance R(T)/R(T=300K)
« Typical behavior (here for samples of potassium)

0.05

0.01

Phonons dominate at
high T because mean square
displacements <u?>oc T
Leadsto R T
(Sample independent)

Increase as T2

AN

N\ T

Inpurity scattering dominates
at low T in a metal
(Sample dependent)



|nter pretation of Ohm’s law
Electrons act like a gas

A electron is a particle - like a molecule.

Electrons come to equilibrium by scattering like
molecules (electron scattering is due to defects,
phonons, and electron-electron scattering).

Electrical conductivity occurs because the electrons
are charged, and it shows the electrons move and
equilibrate

What is different from usual molecules?
Electrons obey the exclusion principle. This limits the

allowed scattering which means that electrons act like
a weakly interacting gas.



Hall Effect |

* Electrons moving in an electric and a perpendicular
magnetic field

 Now we must carefully specify the vector force
F=qg(E+ (1/c)vxB) (note:c — 1 for Sl units)
(g = -e for electrons)

I B Vector directions
— shown for positive g




Hall Effect ||

* Relevant situation: current | = o E = ngv flowing along
a long sample due to the field E

e But NO current flowing in the perpendicular direction

e This means there must be a Hall field E,,, in the
perpendicular direction so the net force £, =0
F =d(Epa + (/) v xB) =0




Hall Effect |11

e Since

F,=d(Eqa+ (M/c)yxB)=0 andv=j/ng

then deflnlngv (Vo Enan = Enan)y: B=(B),,

Epan = - (1/c) (/nq) (-.B)

and the Hall c_oefficient IS
Ryai = Enan /1 B =1/(nqc)  or

Sign from cross product

Ry = 1/(ng) in Sl




Hall Effect |V

Finally, define the Hall resistance as

Each of these quantities can
be measured directly

Phal = Ruan B = Epan /7

which has Ws as ordinary resistivity

Ruyan = Epan /1 B = 1/(nQ)

Note: R, determines sign of charge g

Since magnitude of charge is known R, also

determines density n

The sign of charge in several metals (Mg, Al) is

positive




Electrons act like gas - heat transport

* A electron is a particle that carries energy - just like a
molecule.

» Electrical conductivity shows the electrons move,
scatter, and equilibrate

 What is different from usual molecules?
Electrons obey the exclusion principle. This limits
scattering and helps them act like weakly interacting
gas.

N —
hot &;@&% cold

/

Heat Flow



Heat Transport dueto Electrons

Definition (just as for phonons):
Jthermal = heat flow (energy per unit area per unit time )
= - K dT/dx

If an electron moves from a region with local
temperature T to one with local temperature T - AT, it
supplies excess energy c AT, where c = heat capacity
per electron. (Note AT can be positive or negative).

On average :
AT = (dT/dx) v, T, where t = mean time between
collisions

Then jyema =-N Vi, CV, T1dT/dX =-n cv.21dT/dx

T~ Flux
Density



Electron Heat Transport - continued

e Just as for phonons:
Averaging over directions gives ( V,?) aerage = (1/3) V?
and
| =-(1/3) n c v2 t dT/dx

* Finally we can define the mean free path L=v
and C = nc = total heat capacity,
Then
] =-(1/3) Cv LdT/dx
and
K=(1/3) Cv L =(1/3) C v? t = thermal conductivity

(just like an ordinary gas!)



Electron Heat Transport - continued
 What is the appropriate v?

* The velocity at the Fermi surface = vg
 What is the appropriate t ?
« Same as for conductivity (almost).

e Results using our previous expressions for C:

K = (n2/3) (n'm) tky2 T

e Relation of K and o -- From our expressions:
Kloc =(w?/3) (kg/e)* T

e This justifies the Weidemann-Franz Law that
K/lo T



Electron Heat Transport - continued

e Kco T

e Recallc »constantas T —> 0,0 > 1/Tas T — large

K
o)
@)

Thermal conductivity
W/cm K

o

Low T --K
Increases as heat
capacity increases
(v and L are ~ constant)

Approaches
high T limit
- K constant

100 T



Electron Heat Transport - continued

e Comparison to Phonons
Electrons dominate in good metal crystals
Comparable in poor metals like alloys

Phonons dominate in non-metals



Summary

Electrical Conductivity - Ohm’s Law
c=(ng%m)r p=1/c

Hall Effect
Prail = Ryan B = Epa /] _
and p,,,; determine n and the charge of the carriers

Thermal Conductivity

K=(m?%3) (nfm)tkg?>T
Weideman ;
Klo =(m?3) (kg/e)? T

Metallic Binding
Kinetic repulsion
Coulomb attraction to nuclei
(not included in gas model - must be added)



