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The calculation of the d-spacings, the angles between planes and zones, the bond lengths
and angles and other important geometric relationships for a mineral can be a tedious task
both for the student and the instructor, particularly when completed with the large as-
sortment of trigonometric identities and algebraic formulae that are available (d. Crystal
Geometry (1959), Donnay and Donnay, International Tables for Crystallography, Vol. II,
Section 3, The Kynoch Press, 101-158). However, such calculations are straightforward and
relatively easy to do when completed with the metrical matrix and the interactive software
MATOP. Several applications of the matrix are presented below, each of which is worked
out in detail and which is designed to teach you its use in the study of crystal geometry.

SOME PRELIMINARY COMMENTS

We begin our discussion of the matrix with a brief examination of the properties of the
geometric three dimensional space, S, in which we live and in which minerals and rocks
occur. For our purposes, it will be convenient to view S as the set of all vectors that radiate
from a common origin to each point in space. In constructing a model for S, we chose three
noncoplanar, coordinate axes denoted X, Y and Z, each radiating from the origin, O. Next,
we place three nonzero vectors denoted a, band c along X, Y and Z, respectively, likewise
radiating from O. Since the vectors D = {a, b, c} are nonzero, noncoplanar vectors, they
qualify as basis vectors for S. This means that for each vector v in S there exist three real
numbers x, y and z such that v can be written uniquely as v = xa + yb + zc.

In the study of minerals, the coordinate X -, Y - and Z-axes and the basis vectors
are chosen to coincide with three intersecting, noncoplanar edges of a representative block
(parallelepiped) of the crystal structure called the unit cell. The magnitudes (lengths) of the
basis vectors, a, band c, denoted a, band c, respectively, are each taken as equal to the
lengths of the three edges of the cell. In many cases, the cell edges are different in length
such that a 0/= b 0/= c. The angles between the basis vectors ex=< b /\ c, f3 =< a /\ c and
'Y =< a/\ b are taken as the interaxial angles; angles other than 90°,60°,120°,109.47° etc.,
are often encountered. (d. Fig 2.3, MSA Reviews in Mineralogy, Vol. 15, by Boisen and
Gibbs, 1990 (B&G)). Once the size, shape and orientation of a unit cell is determined in an
X-ray diffraction experiment, the choice of the origin, the coordinates axes and the basis
vectors for a mineral is completely determined.

As it is difficult to enter a directed line segment v directly into a computer, a correspon-
dence is established between each vector v E S and its triple representative [V]D. A set of
three real numbers x, y and z form a triple representation of each vector v = xa + yb + zc
E S symbolized as

V=[V]D= m
As the components of the triple are real numbers, they can be easily read into the computer
or used in a calculation with a hand-held calculator B&G, 21-25).
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In most math courses, S is usually defined in terms of the well-known Cartesian basis
C = {i.j, k} such that each vector v E S can be written uniquely as v = xi + yj + zk where
x, y and z are again real numbers. The triple representative for a vector v, written in terms
of the C-basis, is denoted as

Although the components of the triples [vle and [VlD are identical in appearance, the sub-
scripts tell us that they can represent quite different vectors in S, one written in terms of
the C-basis and the other in terms of the D-basis. When we use these components in a
calculation or enter them into a computer, we require a metrical matrix, denoted G, that
completely characterizes the geometry of the basis vectors and makes the arithmetic come
out right regardless of whether one is using the natural basis in studying minerals or the
Cartesian basis in studying mathematics.

The metrical matrix is found by evaluating the inner (dot) product of the nonzero vectors

v = VIa + V2b + V3C and W = Wia + W2b + W3C

where the product, denoted VoW, is defined to be V·W = vw cos (J, where (J is the angle between
v and W such that 00

::; (J ::; 1800 and where V and ware the lengths of v and w, respectively.
Hence, the angle between the two vectors is given by the expression cos (J = (v· w) / (vw). The
length of a vector v, for example, is found by forming the inner product V·V = v2 cos 00 = v2.
When written in terms of the triple representative of v, [VlD (d. B&G, 25-28),

v . v = v2 = [vl~G[vlD
where

[
a2 ab cce v accosf3]

G = ab cos "( b.2 be cos ex
ac cos f3 be cos ex c2

and where [v]b = [VI V2 V3] and [V]D = [~:l.By evaluating (v . V)'/2 = ([v]bG[v]D)'/2.

the length of the vector v is found. Likewise, v . w = [vl~G[wlD) and since

v .w = vw cos (J = ([vl~G[vlD)1/2([wl~G[wlD)1/2 cos (J = [vl~G[wlD'

it follows that

([vl~G[wlD)
cos (J = ([vlhG[vlD)I/2([wlhG" ... ,~

where [vi\' = [VI V2 V3], [w]b = [WI W2 W3], [V]D = [~:land [WiD = [~:].

For a Cartesian basis, the metrical matrix G is equal to the identity matrix I3; G = I3
because i, j and k are mutually perpendicular, unit length vectors. Hence, the inner product
of a vector v = xi + yj + zk, written in terms of a Cartesian basis, becomes
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As indicated above, a unit cell, an origin, a set of basis vectors and a coordinate system
is defined, in a crystal structure analysis, in a natural way for each mineral. Without these
constructs and the model for S, the study of the geometry and symmetry of minerals becomes
a qualitative chore, providing little meaningful insight into the nature of their properties and
their possible uses. The C-basis is not without its use in studying minerals. For example, it
can be used to generate the ¢ and p angles for plotting face poles and zones in stereographic
projection (d. B&G, 75-83).

Miller indices, zone axes and the positions of the atoms in the unit cell are defined in
terms of the basis vectors and the coordinate system that correspond with those of the lattice
representation, LD, of the periodic symmetry of a mineral. Mineralogy students are often
taught this but they may not appreciate the full power and convenience of basis vectors unless
they attempt to calculate the angular and spatial relationships that exists among the faces
and zones for a triclinic mineral like kyanite. In this note, a number of worked examples
of useful crystallographic calculations are presented that could be included in mineralogy
lectures or homework assignments. If you would like to convince your students that unit
cells, zones and Miller indices are really useful, read on. In the pages that follow, interzonal
and interfacial angles, d(hkl)-spacings, bond lengths and angles and unit cell volumes are
calculated, each with the metrical matrix. The calculations entail adding, subtracting and
multiplying vectors and matrices (evaluating inner products). These are relatively simple
operations for a system defined in terms of a Cartesian basis and surprisingly straightfor-
ward operations when completed for the natural basis of a mineral. The derivation of the
expressions used in this note together with a number of additional problems and examples
can be found in B&G. Also, a review of matrices and determinants and the rules of matrix
multiplication and matrix inversion are given in Appendix 2 of B&G or in almost any text
on linear algebra.

As is well-known, crystallographic calculations are usually time consuming and open to
error when completed by hand or with a calculator. To avoid these problems, the program
MATOP was written for our students at Virginia Tech and for anyone else who has need of
it. MATOP is an interactive program that begins by asking the user for the cell dimensions
of a mineral. It then proceeds by calculating the metrical matrix G and its inverse, G-1. Up
to three 3 x 3 matrices can be entered into MATOP. Upon request, it multiplies and inverts
these matrices including the metrical matrix, it multiplies a matrix by a triple (a vector), it
evaluates inner and cross products of vectors, etc. With MATOP, the problems in this note
and those in B&G can be completed rapidly and with little effort (See Boisen, Jr., M.B. and
G.V. Gibbs, (1988), MATOP: An interactive FORTRAN 77 Program for Solving Problems
in Geometrical Crystallography. Computers & Geosciences, 14, 37-53; problems similar to
those worked here as well as others are solved step by step in this paper with MATOP).
The note ends with a brief discussion of the connection that exist between the periodic
crystal structure of a mineral and its lattice representation together with a discussion of the
connection that exists between planes and lines of the lattice and faces and zones of the
mineral. A simple rule is given that can be used to find the equation of a lattice (crystal)
plane and its Miller indices.

APPLICATIONS OF THE METRICAL MATRIX

EXAMPLE 1: Constructing a metrical matrix
Suppose that the unit cell dimensions of a triclinic rhodonite crystal are a = 10.497 A, b

= 9.797A, c = 12.185A, ex= 103.00°, f3 = 108.51° and "( = 82.50°. With this information,
the metrical matrix becomes

[

110.187009
G = 13.423197

-40.606321

13.423197
95.981209
-26.853857

-40.606321]
-26.853857 .
148.474225

203



PROBLEM 1: Calculate the metrical matrix for an orthorhombic crystal with cell di-
mensions a = 3.397A, b = l1.321A, c = 6.516A, ex= 90.00°, f3 = 90.00° and"( = 90.00°.

SOLUTION

[
11.539609 0.0

G = 0.0 128.165041
0.0 0.0

0.0 ]0.0
42.458256

DEFINITION 1: An expression for calculating the angle between two zones
Suppose that [Ul VI WI]and [U2 V2 W2] are the indices of two zones defined by the vectors

rl = UIa + VIb + WI C and r2 = U2a + V2b + W2C, respectively, in a crystal, then the angle 8
between the two is given by the expression

EXAMPLE 2: A calculation of the angle between two zones
Given the unit cell dimensions for rhodonite (Example 1), calculate the angle 8 between

the zones [-1 1 2] and [2 1 3]. To find the angle, the following three expressions are
evaluated: ([rl]~G[r2]D)' ([rl]hG[rdD)I/2 and ([r2]hG[r2]D)1/2. Setting [rl]b = [UIVIWI] =
[-1 1 2] and [r2]h = [U2 V2 W2] = [2 1 3], we can write

[
110.187009 13.423197 -40.606321] [2]

([rl]~G[r2]D) = [-1 1 2] 13.423197 95.981209 -26.853857 1 =
-40.606321 -26.853857 148.474225 3

[
111.9782508]

[-1 1 2] 42.2660321 = 605.000131,
337.3561748

[
110.187009 13.423197 -40.606321] [-1]

([rl]~G[rl]D) = [-1 1 2] 13.423197 95.981209 -26.853857 1 =
-40.606321 -26.853857 148.474225 2

[
-177.9764547]

[-1 1 2] 28.8502974 =828.228581,
310.7009143

[
110.187009 13.423197 -40.606321] [2]

([r2]~G[r2]D) = [2 1 3] 13.423197 95.981209 -26.853857 1
-40.606321 -26.853857 148.474225 3

[
111.9782508]

[2 1 3l 42.2660321 = 1278.291058.
337.3561748

Recalling that
cos8 = ([rdhG[r2lD)

([rl]hG[rl]D )1/2([r2lhG[r2lD)1/2'

cos 8 = 605.000131
(828.228581)1/2(1278.29105)1/2= 0.587984.
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Hence, 8 = 53.99°.

PROBLEM 2: Calculate the angle between the zones [1 -1 2] and [3 1 1] for the or-
thorhombic crystal described in Problem 1.

SOLUTION
91.70°

DEFINITION 2: An expression for calculating d(hkl)-spacings
Given the indices h, k and l of a lattice plane and a set of unit cell dimensions, the

d(hkl)-spacing of the plane can be found with the quadratic expression

Q(hkl) = l/d~kl = [S]~*G-I[S]n*

where [sil:,o = [h k I] and [slDo = [~]. Hence, it follows that

[
a2 abcos"( accosf3]-1 [h]

1/ dChkl)= [h k l] ab cos "( b2 be cos ex k.
accos f3 bccos ex c2 l

The subscript D* denotes an important set of basis vectors D* = {a", b", c*} defined on S
that playa central role in the interpretation of the X-diffraction record of a mineral and
the solution of its crystal structure. The geometry of the D*-basis is completely defined
by G* = G-1 just as that of the D-basis is defined by G. It is important to note that
there exists a vector s = ha* + kb* + lc* perpendicular to each potential plane (hkl) of a
mineral. In addition, the vector s has the length s = l/d(hkl) such that the inner product
s v s = l/dChkl) = [s]h*G*[S]D*.The reciprocal metrix matrix

[

a*2 a*b*cos"(* a*c*cosf3*]
G*= a*b*cos"(* b*2 b*c*cosex*

a*c* cos f3* b*c* cos ex* C*2

completely defines the geometry of the reciprocal lattice, LD*, just as G defines the geometry
of the direct lattice, LD.

EXAMPLE 3: A calculation of a d(hkl)-spacing

Given the cell dimensions for kyanite a = 7.126A, b = 7.852A, c = 5.572A, ex= 89.99°,
f3 = 101.11° and "(= 106.03°, calculate the d-spacing for the plane (2 -3 1).

SOLUTION

As defined above,

[
a2 abcos"( accosf3]-l [h]

l/dChkl) = [h k l] abcos"( b2 bccoe a k.
ac cos f3 be cos ex c2 l

Replacing the entries of the matrix with the given cell dimensions and h, k and l by 2, -3
and 1, respectively, we have

[
50.779876 -15.450994 -7.651091]-1 [2]

1/ dC2-31) = [2 -3 1] -15.450994 61.653904 0.007636 -3.
-7.651091 0.007636 31.047184 1
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Next, inverting the G matrix to obtain G-l,

[
0.022211 0.005566 0.005472]

1/ dC2-31)2= [2 -3 1] 0.005566 0.017614 0.001367
0.005472 0.001367 0.033557

[
0.0331971 ]

[2 -3 1] -0.0403442 = 0.22783.
0.0403999

Hence, d(2-31) = 2.095A.

PROBLEM 3: Calculate the d(123)-spacing for the plane (123) for the orthorhombic
crystal discussed in Problem 1.

SOLUTION

d(123) = 1.741A

DEFINITION 3: An expression for calculating the angle between two face poles.
Suppose that (hI, kl, ll) and (h2' k2' l2) are two planes of a crystal, then the angle, ~,

between the poles to these faces is given by the expression

A ([sl]h·G-1[S2]D·)cos L.l. =
([SI]~.G-l[SI]D' )1/2([S2]h.G-1[S2]D' )1/2

where [sr]\,o = [h, k, 1,], [s211,0 = [h2 k2 121, [sIIDO = [~:] and [s2lDo = [~f]·
EXAMPLE 4: Calculation of the interfacial angle between two planes

The structure of kyanite can be viewed as based on a cubic close-packed array of oxide
anions with close-packed monolayers layers paralleling (110), (-122), (0-11) and (3-20) (d.
B&G, 65-71). Determine the interfacial angle ~ between the planes (-122) and (3-20).

SOLUTION

Our task is to evaluate

cos zx= ([sl]h·G-1[S2]D·)
([sl]h. G-1 [Sl]D' )1/2([S2]h.G-l [S2]D' )1/2

which is done by evaluating [SI]~.G-l[S2]D" ([sl]h.G-1[Sl]D.)1/2 and ([s2]h.G-1[S2]D·)1/2.
With hI = -1, ki = 2, h = 2, h2 = 3, k2 = -2 and l2 = 0 and with the cell dimensions of
kyanite (Example 3),

[
50.779876 -15.450994 -7.651091]-1 [-1]

[Sl]~.G-l[Sl]D' = [-1 2 2] -15.450994 61.653904 0.007636 2.
-7.651091 0.007636 31.047184 2

Next, inverting the G matrix,

[
0.022211 0.005566 0.005472] [-1]

[SI]~.G-I[Sl]D' = [-1 2 2] 0.005566 0.017614 0.001367 2 = 0.193683,
0.005472 0.001367 0.033557 2
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[
0.022211 0.005566 0.005472] [ 3]

[s2l~*G-1 [s2lD* = [3 -2 0 1 0.005566 0.017614 0.001367 -2 = 0.203567,
0.005472 0.001367 0.033557 0

[
0.022211 0.005566 0.005472] [ 3]

[s2l~.G-l[S2lD* = [-1 2 2] 0.005566 0.017614 0.001367 -2 = -0.065201.
0.005472 0.001367 0.033557 0

Hence, cos ~ = -0.065201/((0.193683)1/2 X (0.203567)1/2) and ~ = 109.17°. This angle is
closed to the ideal tetrahedra angle of 109.47° that would have obtained if the oxide anions
in the kyanite structure were ideally cubic close-packed.

PROBLEM 4: Calculate the angle between the close-packed monolayers of oxide anions
that parallel (-122) and (3-20) in kyanite.

SOLUTION

~ = 109.17°

DEFINITION 4: An expression for calculating the angle between a face pole and a zone
The angle, E, between a face pole (hkl) and a zone [uvwl is given by the expression

cos E = ([slh.G-I[SD* )1/2([rlhG[rlD)1/2

where [slbo = [h k l] and [riD = [~].

EXAMPLE 5: Calculation of the angle between a zone and a face pole
Calculate the angle, E, between the close-packed plane (-1 2 2) and the zone [8 7 2l of

kyanite where [8 7 2l defines a zone that is perpendicular to one of the oxide monolayers in
the cubic close-packed structure. The angle is given by the expression

[slh. [rlD

hu + kv + lw
cos E = ([S]h*G-I[SD' )1/2([rlhG[rlD)1/2

SOLUTION

10
cos E = = 0.341601(0.193883)1/2(4420.009648)1/2

and E = 70.03°. This angle is close to the. ideal angle of 70.53° expected between a vector
perpendicular to an oxide anion monolayer and another monolayer in a cubic close-packed
structure.

PROBLEM 5: Calculate the angle between the monolayer of oxide anions that parallels
the (1 1 0) plane and the [0 1 2l zone in kyanite.
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SOLUTION

71.04°

DEFINITION 5: An expression for calculating the unit cell volume

The volume v of the unit cell is given by the expression

EXAMPLE 6: Calculation of the volume of the unit cell
Given that the cell dimensions of coesite, a high pressure monoclinic form of silica, are

a = 7.135A, b = 12.372A, c = 7.173A, ex= "(= 90° and f3 = 120.36°, calculate the volume
of its unit cell. The unit cell volume of coesite is obtained using the expression

[

50.908225
det 0.0

-25.867658

0.0 -25.867658]
153.066384 0.0 =

0.0 51.45192

[
a2 ob coe-» accosf3]

v2 = det G = det ab cos "( b2 bccos ex
ac cos f3 bc cos ex c2

which for coesite becomes

153.066384(50.908225 x 51.45192 - 25.867658 x 25.867658) = (546.36)2 A6

Hence, the volume of the unit cell of coesite is v = 546.36A 3.

PROBLEM 6: Calculate the volume of the unit cell in quartz given that a = b = 4.914A,
c = 5.409A, ex= f3 = 90° and "(= 120°.

SOLUTION

113. 114A3

BOND LENGTH AND ANGLE CALCULATIONS
A close connection exists between crystal chemistry of a mineral and the bond lengths

and angles exhibited by its crystal structure. Indeed, a knowledge of the bond lengths
and angles is necessary for determining the likely coordination numbers of the atoms, for a
description of the structure and for an understanding of certain physical properties. This
example illustrates how the SiO bond lengths in two corner sharing silicate tetrahedra and
the SiOSi angle that links the tetrahedra into a chain in pectolite can be calculated with the
metrical matrix. The cell dimensions of pectolite are a = 7.988 A, b = 7.040 A, c = 7.025
A, ex= 90.51°, f3 = 95.18° and "( = 102.47°. A structure analysis of the mineral shows that
the fractional positional coordinates (x, y, z) of the two Si atoms, (denoted Si2, and Si3) are
(0.2150, 0.9544, 0.3440) and (0.4505, 0.7353, 0.1447), respectively, while that of the a atom
(denoted as) is (0.3955, 0.9092, 0.2746). In this example, the separations (bond lengths)
between Si2 and as and Si3 and as and the Si20sSi3 angle are calculated. The two bond
lengths, denoted R(Si20s) and R(Si30s), are calculated below in three steps followed by a
calculation of the angle.
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EXAMPLE 7: Calculation of SiO bond lengths

Step 1: Calculation of the metrical matrix for pectolite:

[
a2 abcos"( accosf3] [63.808144 -12.142846 -5.066403]

G = ab coe-» b2 bccoe a = -12.142846 49.561600 -0.440211
accosf3 bccce a c2 -5.066403 -0.440211 49.350625

[
0.3955] [0.2150] [0.4505][Vl]D = 0.9092 ,[V2]D = 0.9544 and [V3]D = 0.7353 ,
0.2746 0.3440 0.1447

Step 2: If we denote the vectors that radiate from the origin of the unit cell, 0, to as,
Si2 and Sh, to be VI, V2and V3respectively, and those that radiate from as to Siz and Si3
to be V4and V5, respectively, then the lengths of the Si20s and the ShOs bonds are equal
to IV41and IV51,respectively. The triple representatives of these vectors are:

[
0.4505] [0.3955] [0.0550][V5]D = [V3]D - [Vl]D = 0.7353 - 0.9092 = -0.1739 .
0.1447 0.2746 -0.1299

[
0.2150] [0.3955] [-0.1805][V4]D = [V2]D - [Vl]D = 0.9544 - 0.9092 = 0.0452 and
0.3440 0.2746 0.0694

Step 3: With the triples for [V4]D and [V5]D and the metrical matrix G, we can write the
equality

IV412= R(Si20s)2 = [V4]~G[V4]D=

[
63.808144 -12.142846 -5.066403] [-0.1805]

[-0.1805 0.0452 0.0694] -12.142846 49.561600 -0.440211 0.0452
-5.066403 -0.440211 49.350625 0.0694

[
-12.4178350]

[-0.1805 0.0452 0.0694] 4.4014173 = (1.655336)2.
4.3195216

IV512= R(Si30s)2 = [V5]~G[V5]D=

[
63.808144 -12.142846 -5.066403] [ 0.0550 ]

[0.0550 -0.1739 -0.1299] -12.142846 49.561600 -0.440211 -0.1739
-5.066403 -0.440211 49.350625 -0.1299

[
6.2792145]

[0.0550 -0.1739 -0.1299] -9.2294354 = (1.676112)2and
-6.6127457

hence, the lengths of the SizOs and Si30s bonds are 1.655Aand 1.676A, respectively.
EXAMPLE 8: A calculation of the SiOSi angle

Step 1. The SiOSi angle is calculated with the expression
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We next evaluate

and obtain

[
63.808144 -12.142846 -5.066403] [-0.1805]

[0.0550 -0.1739 -0.1299] -12.142846 49.561600 -0.440211 0.0452
-5.066403 -0.440211 49.350625 0.0694

-2.009493.

Hence,
cos < (Si30sSiz) = -2.009493/(1.676112 x 1.655336)

from which it follows that

PROBLEM 7: Calculate the Si103 and the Si104 bond lengths and the 03Sil04 angle for
coesite given that a = 7.1367 A, b = 12.3695A, c = 7.1742A, ex= "(= 900 and f3 = 120.3370
and that the fraction coordinates of Si1, 03 and 04 are (0.14034, 0.10832, 0.07233), (0.26628,
0.12309, -0.05990) and (0.31097, 0.10374,0.32799), respectively.

SOLUTION

R(Si103) = 1.613A; R(Si104) = 1.611A; <03Si104 = 110.380

CRYSTAL FACES, LATTICE PLANES AND MILLER INDICES

Lattices playa fundamental role in the study of crystals in that they can be used to rep-
resent the translational symmetry and the periodic structure of a crystal. For our purposes,
a crystal can be defined as an array of bonded atoms that repeats at regular intervals along
parallel lines in S. By replacing each such array of atoms by a lattice point, a 3D lattice LD
results. In other words, a lattice is an array of lattice points that repeats at regular intervals
along parallel lines in S. As the points in a lattice are all translationally equivalent, the
environment about each array of atoms represented by a lattice point is identical to each
other such array in the crystal.

Each plane of lattice points (lattice plane) in L D parallels a potential face on a crystal
and each line of lattice points parallels the line formed by two or more such intersecting
lattice (crystal) planes. As lattice (crystal) planes and their lines of intersection are defined
by lattice points in S, they are defined by sets of three integers referred to as indices. The line
formed by the intersection of two or more nonparallel lattice planes is called a zone denoted
[uvw] where u, V and ware integers (zone indices), while the lattice planes themselves are
defined by three integers (hkl), referred to as the Miller indices of the plane.

EXAMPLE 9: A derivation of the equation of a lattice {crystal} plane and its Miller indices

RULE: Suppose that the expression VIX + V2Y+ V3Z= 1 defines a plane in S where x, y
and z are indeterminants and VI, V2 and V3 are real numbers. If the end point of a vector
v = pa + qb + TC lies on a plane P, then the equation of the plane is found by simply
replacing the indeterminates x, y and z in the expression VIX + V2Y+ V3Z= 1 by p, q and T,
respectively, to yield the equation VIP + V2q+ V3r = 1. Stated another way, the end point of
a vector v = pa + qb + TC lies on a plane VIX + V2Y+ V3Z = 1 if and only if x = p, Y = q
and z = T.
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For a plane to qualify as a lattice plane in S, it must pass through the end-points of three
noncoplanar lattice vectors in LD. Hence, if P is a lattice plane, then there must exist three
such lattice vectors p = PIa +P2b +P3C, q = qla + q2b + q3C and r = Tia + r2b + T3C in LD
whose end-points lie on P where Pi, qi and Ti are integers. As the end-points of these vectors
are each on P, then the indeterminants x, y and z of the expression VIX + V2Y + V3Z = 1
can be replaced successively by the coefficients of a, band c for each of the three vectors
to yield the following three equations: VIPI + V2P2+ V3P3 = 1, Vlql + V2q2 + v3q3 = 1, and
VlTI+ V2T2+ V3T3= 1. Simultaneously solving these equations for VI, V2 and V3 yields three
rational numbers which can be easily converted into the integers h, k and l by multiplying
both sides of the equation by a common factor and clearing the resulting fractions to obtain
the Miller indices of the plane P.

EXAMPLE 10: A determination of the Miller indices for a lattice plane
Suppose that the end-points of the following three noncoplanar lattice vectors p =

2a - 3b + c, q = -a + b - 2c and r = -3a + 2b + 3c in LD lie on some lattice plane P, find
the equation and its Miller indices.

SOLUTION

As observed above, the equation of a plane in S can be written as VIX+V2Y+V3Z = 1 and
since the end point of the three lattice vectors p, q and r lie on a lattice plane, P, we can
write the following three equations vI(2)+V2( -3)+v3(1) = 1, Vl(-1)+v2(1)+v3( -2) = 1 and
VI (-3) +v2(2) +v3(3) = 1. Simultaneously solving these equations, we find that VI= -23/12,
V2 = -7/4 and V3 = -5/12. Substituting these values into the equation VIX + V2Y + V3Z = 1,
we obtain -23/12x - 7/4y - 5/12z = 1. Multiplying both sides of the equation by each of
the denominators of VI, V2 and V3 and clearing fractions, we obtain -23x - 21y - 5z = 12
as the equation of P where h = -23, k = -21 and l = -5 are the Miller indices of the plane.

In general, it can be shown that the equation of a lattice plane in LD is of the form
hx + ky + lz = m where h, k, land m can adopt all possible integer values, resulting in
as many planes. For example, the equation hx + ky + lz = m defines, for a given set of
integers h, k and l, an infinite number of equally spaced, parallel planes, one for each integer
value of m. It can be shown that each such plane is translationally equivalent to the plane
hx + ky + lz = 1. The spacing between each of these planes is the well-known dChkl)-spacing
for the plane (hkl). The plane hx + ky + lz = 1 intercepts the X -axis of the crystal at a/ h,
the Y-axis at b/ k and the Z-axis at el]. The plane defined by hx + ky + lz = m intercepts
the X -axis of the crystal at mef h, the Y-axis at mb/k and the Z-axis at me]! whereas the
plane defined by the equation hx + ky + lz = 0 passes through the origin, 0, of the unit cell
(cf. Fig. 2.3, B&G). In other words, the plane defined by the equation hx + ky + lz = m is
m times as far from the origin as the plane defined by the equation hx + ky + lz = 1. As
the plane hx + ky + lz = 1 is translation ally equivalent to each of the planes defined by the
equations hx + ky + lz = m, it is taken as the representative plane for this infinite set of
equally spaced, parallel planes in the lattice. By convention, whenever a plane with indices
h, k and l is discussed, it is assumed by convention to be the plane defined by the equation
hx + ky + lz = 1, located at a distance of dChkl) from the origin of the unit cell. For another
but similar development of the equation of a lattice plane, Miller indices and a derivation of
an expression for the d(hkl)-spacing see B&G (p. 42-47 and Appendix 5).

PROBLEM 8: Determine the equation of the lattice plane in LD that passes through
the end-points of the vectors p = 3a, q = -b and r = 2c.

SOLUTION

In this example, we want to find the equation of a plane that passes through the end-
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points of the three vectors p, q and r that lie along the X -, Y- and Z-coordination axes,
respectively. With the information given, the following three equations can be written: 3Vl=
1, -lv2 = 1 and 2V3 = 1. It follows that Vl= 1/3, V2 = -1 and V3 = 1/2. Replacing Vl, V2 and
V3 in VIX+V2Y+V3Z = 1 by 1/3, -1 and 1/2, respectively, the equation 1/3x-y+1/2z = 1 is
obtained. Multiplying both sides of the equation by 6 and clearing fractions, 2x - 6y+3z = 6
results as the equation of the plane that passes through the end-points of the lattice vectors
3a, -1 band 2c. The Miller indices of this plane are (2 -6 3).

PROBLEM 9: Determine the equation and the Miller indices of a lattice plane that passes
through the end-points of the following three noncoplanar lattice vectors Vl = 1a + 2b + 5c,
Vz= 2a - 1b - 6c and V3= -la - 1b + Oc.

SOLUTION
(2, -3 1) and 2x -3y + z = 1

CONCLUDING REMARKS

The selection of a set of basis vectors in an X-ray diffraction study is an important first
step in the study of the geometrical properties of a mineral. Once this is done, the metrical
matrix is easily computed and the geometry of the mineral is completely characterized. With
the matrix and a knowledge of the rules of matrix multiplication and matrix inversion, a
variety of relatively difficult crystallographic problems can be solved with surprisingly little
effort, particularly when the computations are completed with the program MATOP. Also,
with a simple rule for determining the equation of a plane, the Miller indices of a lattice
(crystal) plane can be determined in a straightforward way. With the use of the rule, one
avoids using Weiss parameters which have not only outlived their usefulness but should be
purged from the mineralogical literature.
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