Phonons | - Crystal Vibrations
(Kittel Ch. 4)
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Displacements of Atoms

« Positions of atoms in their perfect lattice positions are given by:
RNy, ny,ng) =nPx+n’y+nydz

i
For simplicity here we consider = D

only one atom per cell and assume \

an orthogonal coordinate system «

For convenience let n, = (n;,° n.,% n.;0) denote atom i which has
position R®

e Thedisplacement of atom i can be written

AR = U X +V; Y + w; z=(ny- n;°) X + (Ny- Ny°) v+ (Ngy- ny°) z



Energy & Force due to Displacements

The energy of the crystal changes if the atoms are displaced.

The change in energy can be written as a function of the positions
of al the atoms:

E(R;, Ry Ry, - )=E(R°+AR;, R +AR,, )

There are no linear terms if we expand about the equilibrium
positions — equilibrium defined by dE/d R (R=R°)=0

To lowest order in the displacements the energy is quadratic -
Hooke' s law - harmonic limit



Energy & Force due to Displacements

The general expression for force on atom sis
Es =-d&/d Bs

From the harmonic expression the force is given by
Es: ) 2j Dsj 'ABj

The D’s are called force constants - the ratio of force on atom sto
displacement of atom | - the generalization of the force constant of

aspring
There are no forces at the equilibrium positions.

The force is due to the displacement of atomsi and the lowest
order terms are linear in the displacements

Note that D exists and its sign is negative!
What mattersis the distance between R, and R



e Consider atomsin aline restricted to move along the line

Linear chan

i u.=AR,
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FS:_zj DSjuj

Consider the case of only nearest neighbor interactions.
Fs = - (Ds s1 UsqT Ds S us+Ds sl us—l)

Or, in analogy with elastic springs,
assume that force depends on the relative displacements

FS - - Zi C (US - Us+i)

Fo=-C[(Ug - Ug,q) + [(Ug- Ugy) |
) :6[u§+1+us_1$-2[j_

O



Oscillations of linear chain
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* Newton'sLaw:
Md?u/dt?=F,=C[ug,+Uy,-2u]

e Time dependence: Let u(t) = u,exp(-iot) )
(also sin or cos s correct but not as el egant)
Then

Mo?us= C[ Uy +Ugq-2U

 How to solve? Lookscomplicated - an infinite number of coupled
oscillators!



Oscillations of linear chain

ANANA)
A VRY

Since the equation is the same at each s, the solution must have the
same form at each s differing only by a phase factor. Thisis most
easlly written

u.= uexp(ik (sa))

 Then
M w?u=Cl[exp(ika) +exp(-ika)-2]u
or
= (C/ M) [2 cos(ka) - 2]



Oscillations of linear chain

N VAR

A more convenient formis
®w?= (C/M) [2cos(ka) - 2]
= 4(C/M) sn?kal2)
(using cos(X) = cos? (x/2) - sin?(x/2) = 1 - 2 sin?(x/2))

e Findly: o= 2(C/M)¥2|sin(kal2) |



Oscillations of alinear chain

* We have solved the infinite set of coupled oscillators!

 The solution isan infinite set of independent oscillators, each
labeled by k (wavevector) and having a frequency
o, = 2(C/M)?|sin(kal2) |

« Therelation o, asafunction of k is called the dispersion curve

0 mt/a 2m/a




Brillouin Zone

e Consider k ranging over all reciprocal space.
The expression for o, Is periodic

o, = 2(C/IM) 7 | sin(ka/2)]|
Brillouin Zone

B U

2n/la  —-m/a 0 mt/a 27/a

e All theinformation isin the first Brillouin Zone - therest is
repeated with periodicity 2n/a - that is, the frequencies are the

same for o, and o,.; Where G is any reciprocal |attice vector G =
Integer times 2rnt/a

e What does this mean?



Meaning of periodicity in reciprocal space

In fact the motion of atoms with wavevector k is identical to the
motion with wavevector k + G

 All independent vibrations are described by k inside BZ

VT

sin (ka/2) with k ~ 27/3 sin ( (k + 2n/a) a/2)



Group velocity of vibration wave

« Thewaveu,= uexp(ik (sa) - im t) iIsatraveling wave
* Phasevelocity v, = o /k
* Group velocity v, =d o, / dk = slope of o, VSkK

o, = 2(C/M)Y2sin(ka/2)

v,= a(C/M) Y2 cos(ka/2)

A BZ boundary
- \/

-tt/a 0) \ n/a

V=V

sound



What is significance of zero Group velocity at BZ
Boundary?
Fundamentally different from elastic wave in a continuum
Since o, isperiodicink it must havev, =d o, /dk =0
somewhere!

Occurs at BZ boundary because o, must be symmetric about the
points on the boundary

v, = 0 at
— BZ boundary

o | \/

-mt/a 0 nt/a




What is significance of zero group velocity at BZ
Boundary?

« Example of Bragg Diffraction!

Any wave (vibrations or other waves) is diffracted if kisonaBZ
boundary

U= uexp(ik (sa))=uexp (xist) = u(-1)
» Leadsto standing wave with group velocity =0
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Meaning of periodicity in reciprocal space -- |l

Thisisagenera result valid in al crystalsin all dimensions

The vibrations are an example of excitations. The atoms are not in
their lowest energy positions but are vibrating.

The excitations are labeled by awavevector k and are periodic
functions of k in reciprocal space.

All the excitations are counted if one considers only k inside the
Brillouin zone (BZ). The excitations for k outside the BZ are
Identical to those inside and are not independent excitations.



Diffraction and the Brillouin Zone

®
e Brillouin Zone formed by
perpendicular bisectors |
of G vectors
» Specia Role of Brillouin Zone \
(Wigner-Seitz cell of recip. lat.) P Brillouin Zone
as opposed to any other primitive cell ®

No diffraction for any k
inside the first Brillouin Zone

Now we see that there are no independent excitations
outside of the first Brilluin Zone



Sound Velocity

In the long wavelength (small k) limit the atomic
vibration wave u, = uexp(ik (sa) - io t) iIsan elastic

wave

Atoms act like a continuum for ka<< 1

o, = (C/M)2ka

Sound velocity

Vsound: a(C/M)llz

—

-nt/a 0 \ n/a

Vk =V sound



Normal modes of afinite set of oscillators

N independent oscillators, each labeled by k (wavevector) and
having a frequency

o, = 2(C/M)Y2|sin(ka/2) |
 Leadingtoawaveu,= ucos(ksa-mt)

 |f end atoms are fixed at u, = 0, possible wavelenghts
—) k=nn/(N-1)a, N values <=n/a

 |f periodic boundary conditions Uy, = U
) k=+-2zn/Na, N values<= r/a
These discrete choices for waves are called the normal modes of
crystal excitations.
The normal modes serve as abasis for describing arbitrarily
complex excitations.



Oscillations in higher dimensions
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e For kin x direction each atom in the planes perpendicular to x
moves the same:
u,= uexp(ik (sa) - o t)
e For motion in x direction, same as linear chain

w=2(C/M)¥2]sin(ka/2) |
e |ongitudinal wave



Oscillations in higher dimensions
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e Transverse motion: k in x direction; motion v iny direction
V.= vexp(ik (sa) -iomt)

« Central forces give no restoring force! Unstable!

* Need other forces - non-central or second neighbor




Oscillations in higher dimensions
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 Transverse motion: k in x direction; motion v, iny direction
V.= vexp(ik (sa) -imt)
« Second neighbor forces —

®2= (U2)(C/M )[4 cos(ka) - 4]

4 neighbors

Geometric factor = cos?(p/4)

e Theend result isthe samel




Two atoms per cell - Linear chain

o Tolllustrate the effect of having two different atoms per cell,
consider the simplest case atoms in aline with nearest neighbor
forces only

Ce”S usl u82
A~ mé@/ ~ N A
O U—O0—U—F o—O—o0—(O-
] —
* Now we must calculate force and acceleration of each of the atoms

in the cell
Fl=Clug,,2+us-2ul] =M, d?ul/ dt?

and
F2=Clu,+ul-2u?] =M, d?uz?/dt?

e

Note subscripts



Oscillations with two atoms per cell

e Sincethe equation isthe same for each cell s, the solution must
have the same form at each s differing only by a phase factor. This
IS most easily written
ul= utexp(ik (sa)-iot)
uzZ= wexp(ik (sa) -iot)
* |Inserting in Newton'’s equations gives the coupled equations
-M; o? ut = C[(exp(-ik @ + 1) u? - 2 u']
and
-M, o?u?=C[(exp(ika) + 1) ul - 2 u?

2C-M; ®? - C(exp(-ik a) + 1)

-C(exp(ika)+1) 2C-M, ®?




Oscillations with two atoms per cell

2C-M; »? - C(exp(-ik a) + 1) =0

-C(exp(ika)+1) 2C-M,®?

Exercise: Find the ssimplest form of the equation connecting o
and k

Use cos(X) = cos? (X/2) - sin?(x/2) =1 - 2 Sin?(x/2))

How many dispersion relations (branches) does this correspond to?



Oscillations with two atoms per cell
e Solution

11 OptiC”

—

“Gap” frequencies at which
no vibrations can occur

| ACO>US“C”/_\

0 nt/a 2n/a



Oscillations with two atoms per cell

e Limits Acoustic - Optic -
-0 Total Mass Reduced Mass

Acoustic. ®?= (/2) (C/(M,+M,) ) k> &
Optic: 0’=2C[(1/M} )+ (IUM,)]=2C/u

e k=mn/a
Acoustic: ®?=2C/ M 44 Optic: 0*=2C/ M

“ OpN

“Gap” frequencies at which
no vibrations can occur

"’ | ACO>USUC”/\

0 n/a 2mn/a

small




Modesfor k near O

e Acoustic at k near 0 - motion of cell asawhole

u.l u.2

S S
—O:Q Cane O, G-L—g0= Q: O=<>=>

a

e Opticat k =0-opposed motion - larger displacement of
smaller mass

usl u82
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Modes for k at BZ boundary

e Each type of atom movesin opposite directionsin adjacent cells
« Leadstotwo modes, each with only onetype of atom moving
e Acoustic at k = r/a- motion of larger mass

oo
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 Opticat k =r/a- motion of smaller mass
ul us=0

—o—O—o—D<%—0——0——0
/ ) a
Atom 2 does not move
because there are no forces on it!




Oscillations in 3 dimension with N atoms per cell

e Resault

| 3(N-)Opiic Modes

\/3Acwstic modes
Each has o ~ k at small k
’ A

0 nt/a 2n/a




Quantization of Vibration waves

« Each independent harmonic oscillator has quantized energies.
e, =(n+12)hv=(n+1/2) hw
* We can use this here because we have shown that vibrationsin a
crystal are independent waves, each labeled by k (and index for the

type of mode - 3N indicesin a3 dimen. crystal with N atoms per
cell)

e Sincethe energy of an oscillator is 1/2 kinetic and 1/2 potential, the
mean square displacement is given by
(/2) M ? u? = (1/2) (n+ 1/2) ho
where M and u are appropriate to the particular mode
(e.g. total mass for acoustic modes, reduced mass for optic modes,

)



Quantization of Vibration waves
Quanta are called phonons
Each phonon carries energy 1o

For each independent oscillator (i.e., for each independent wave in
acrystal), there can be any integer number of phonons

These can be viewed as particles

They can be detected experimentally as creation or destruction of
guantized particles

Later we will see they can transport energy just like a gas of
ordinary particles (like moleculesin agas).



Inel as% c Scattering and Fourier Analysis
N

« Thein and out waves have the form:
exp( i Kin' r-i (Dint) and exp( Kout' r-| (Doutt)
» For éastic scattering we found that diffraction
occursonly fork.. - K,=G

—out —

» For inelastic scattering the lattice planes are
vibrating and the phonon supplies wavevector
Kphonon and frequency (Dphonon



Inelastic Scattering and Fourier Analysis

e Result:
e |nelastic diffraction occurs for .
_ Quantum Mechanics
Kin Kout G T kphonon

Wi = Ogyt = T Mphonon or En B Eout =x I‘Toophonon

Kout Dout

®

—phonon ~~phonon



Experimental Measurements of Dispersion Curves

» Digpersion curves o as afunction of k are measured by inelastic
diffraction

 |If the atoms are vibrating then diffraction can occur with energy
loss or gain by scattering particle

* In principle, can use any particle - neutrons from areactor, X-rays
from a synchrotron, He atoms which scatter from surfaces, ......



Experimental M easurements of Dispersion Curves

* Neutronsaremost useful for vibrations

For A ~atomic size, energies ~ vibration energies

BUT reguiresvery large crystals (weak scattering)

o X-ray - only recently hasit been possible to have enough
resolution (meV resolution with KeV X-raysl)

« “Triple Axis’ - rotation of sample and two monochrometers

D;tector

| q selected
selectec energy out
energy in

e

e

] / —  Single crystal
Neutrons or X rays/ // monchrometer

with broad range Sinale crvstal
of energies d y
monchrometer



Experimental M easurements of Dispersion Curves

« Alternate approach for Neutrons

Use neutronsfrom a sudden burst, e.g., at the new “spallation”
sour ce being built at Oak Ridge

« Measurein and out energies by “time of flight”

Mechanical chopper
selects velocity, I.e.,
energy in

Timing at detector
selects energy out

Detector

Burst of neutrons at measured
time (broad range of energies)



More on Phonons as Particles
Quanta are called phonons, each with energy ha”
k can be interpreted as “ momentum”

What does this mean?
NOT really momentum - a phonon does not change the total
momentum of the crystal
But K is“conserved’” amost like real momentum - when a phonon
IS scattered it transfers “k” plus any reciprocal lattice vector, i.e.,
Z Kbefore = Z Kafter t g
Example : scattering of particles
ki=k,,+G+tK

—in — out —phonon

where + means a phonon is created, - means a phonon is destroyed



Summary

Normal modes of harmonic crystal.:

Independent oscillators labeled by wavevector k and
having frequency o,

Therelation o, as afunction of k is called a dispersion
curve - 3N curvesfor N atoms/cell in 3 dimensions

Quantized energies (n + 1/2) h o,

Can be viewed as particles that can be created or destroyed
- each carries energy and “momentum”

“Momentum” conserved modulo any G vector

Measured directly by inelastic diffraction - differenceinin
and out energies is the quantized phonon energy

Neutrons, X-rays, .....



