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Abstract

We review the “hidden” SO(4) symmetry of the bound hydrogen atom.
We first take an algebraic approach using the quantum mechanical ana-
logue of the Laplace-Runge-Lenz vector in the classical Kepler problem.
We then take an analytical approach by applying a stereographic projec-
tion to the momentum-space wavefunction of a hydrogen atom solution.

Introduction
This paper studies the simplest bound state hydrogen atom problem. Consider
the Hilbert space H = L2

(
R3
)
1. We ask if there exists E < 0 and ψ ∈ H such

that
−~2

2me

(
∇2ψ

)
(r)− k

r
ψ(r) = Eψ(r) (1)

where k = e2

4πε0
, meis the mass2 of an electron, and r = |r|. The solutions to

this problem are of course known exactly. We shall demonstrate an alternative
approach to this problem that was apparently originally developed by Pauli and
Fock [6, 5]. Aside from being “elegant,” this new approach gives insight into a
so called “hidden symmetry” of the hydrogen atom.

In short, we will do the following. We will first consider the quantummechan-
ical analogue of the Laplace-Runge-Lenz vector (see below). Using this operator
along with usual orbital angular momentum operators, we will determine the
allowed energies of bound hydrogen states without solving equation 1. We will
remark that angular momentum operators and Laplace-Runge-Lenz operators
“generate” the Lie group SO(4) when we are considering bound states. The ap-
pearance of SO(4) will finally be explained as follows. When we properly apply
a stereographic projection of a momentum space hydrogen wavefunction onto
the 3-sphere S3 (see below), the projected wavefunction satisfies the Schrödinger
equation of a “free particle on S3.”

1Roughly speaking, L2
(
R3

)
is the set of measurable functions ψ : R3 → C such that´

R3 |ψ|2 converges.
2Throughout the entirety of this paper, it is acceptable to replace mass by a reduced mass

to handle a two-body problem.
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1 The Algebraic Approach3

The classical LRL vector
The reader already familiar with the Laplace-Runge-Lenz vector may skip this
section. Consider the classical Kepler problem (the classical analogue of the hy-
drogen atom). Fix a three-dimensional Cartesian coordinate system. A particle
of mass m in three dimensions subject to a potential V (r) = −k

r for some posi-
tive constant k. The manifold of states for the particle is now R3 ×R3 where
the first R3 gives the position r of the particle and the second R3 gives the
momentum p of the particle. We now define a vector field A : R3×R3 −→ R3

on the manifold of states by

A(r,p) =
1

m
p× L− k r

r

where L denotes r×p. This function is called the Laplace-Runge-Lenz vector4.
The most important fact about A is that it is a conserved quantity. That

is, if r(t) is a curve in R3 satisfying Newton’s second law mr̈ = −k
r2 r̂, then

A (r(t),mṙ(t)) is a constant function of time. The following proof is given by
[3]:

Ȧ =
1

m
ṗ× L− k ṙ

r
+ k

r

r2
ṙ

=
−k
m

r

r3
× (r× p)− k

m

p

r
+ k

r

r2
ṙ

=
−k
mr3

(
(r · p)r− r2p

)
− k

m

p

r
+ k

r

r2
ṙ

=
−kr
2r3

d

dt

(
r2
)

+
kr

r2
ṙ

= 0.

(The only nontrivial parts of this proof are the use of conservation of angular
momentum in the first line, the use of Newton’s second law in the second line,
and a cross product manipulation in the third.)

One can think of the LRL vector as follows. In an elliptical orbit, A con-
stantly “points” from the origin (the sun, perhaps) toward the periapsis. This
interpretation fails for circular orbits where A is equal to 0. A similar interpre-
tation is valid for orbits which are not bound.

The quantum mechanical LRL vector and the energy levels
of hydrogen
Consider the hydrogen atom described in the introduction. Motivated by the
conservation of the classical LRL vector, we define the quantum LRL vector as

3Our discussion closely follows those of Mahajan [3] and of Bander and Itzykson [1].
4Two remarks should be made. First, note that the LRL vector is only defined for the

Kepler problem. Second, many authors define this vector as m multiplied by our definition.
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the Hermitian operator

A =
1

2me
(p× L− L× p)− k r

r

where p, r, and L denote the Hermitian operators for momentum, position,
and angular momentum respectively. Note that the “anti-symmetrization” in
this definition makes A Hermitian. A certainly reduces to the classical LRL
vector in the “classical limit”. We will see shortly that this operator plays a very
important role in the hydrogen atom.

Let H be the Hamiltonian for the system: H = p2

2me
− k

r . We claim that the
following commutation relations hold.

[H,Li] = 0

[H,Ai] = 0

[Li, Lj ] = i~εijkLk (2)
[Li, Aj ] = i~εijkAk

[Ai, Aj ] = −i~εijkLk
2

me
H.

The first two commutators give the quantum mechanical version of statement
that L andA are conserved (the vanishing commutators imply that the time evo-
lution operator for our system commutes with L and A). The third commutator
is usual angular momentum commutation relation. The fourth commutator fol-
lows from the fact that A is a vector operator (for a more precise discussion
of this, see [4]). The last commutation relation is the result of a fairly tedious
calculation.

Two more useful facts are the following:

A · L = L ·A = 0 (3)

A2 .
= A ·A = k2 +

2

me
H
(
L2 + ~2

)
(4)

The first result is trivial from the definition of A. Both of these facts will be
vital for us shortly.

Now suppose that there exists a bound state with energy E < 0. Let H(E)
be the eigenspace in H with eigenvalue E. We will restrict the action of all of
our operators to this eigenspace5. In particular, the restricted Hamiltonian is
H|H(E) = E where E denotes the “multiplication by E” operator (we apologize
for overloading notation). In this subspace, we can make sense of the operators

Ãi =
√
−m
2E Ai for i = x, y, z. We now define six more operators on H(E):

Ti =
1

2
(Li + Ãi) (5)

Si =
1

2
(Li − Ãi). (6)

5Because A and L commute with the unrestricted Hamiltonian, the action of A and L
fixes H(E). That is, if ψ ∈ H(E), then Aiψ and Liψ are also in H(E). This remark allows
us to restrict our operators of interest to H(E).
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Note that these operators are Hermitian. The following additional facts about
the T and S operators will be important for us.

[E, Ti] = [E,Si] = 0 (7)
T 2 = S2 (8)

[Ti, Sj ] = 0 (9)
[Ti, Tj ] = i~εijkTk (10)
[Si, Sj ] = i~εijkSk. (11)

All of these results follow easily from our definitions and from the commutation
relations labeled as 2. Note that equation 8 follows from the fact that A · L =
L ·A = 0.

Equations 9,10, and 11 mean that we have two “angular momentum-like”operators
which commute with each other. We can therefore apply raising and lowering
operator techniques simultaneous eigenkets of T and S. It is not the purpose
of this paper to discuss this technique in general, so we simply assert a result
without proof6. The interested reader can consult [4] or, for an extremely deep
discussion, [7].
Claim. Suppose that ψ ∈ H(E) is a simultaneous eigenvalue of T 2, Tz, and Sz.
Then there exists t ∈

{
0, 12 , 1,

3
2 , . . .

}
such that T 2ψ = t(t+ 1)~2ψ. Conversely,

for each t ∈
{

0, 12 , 1,
3
2 , . . .

}
, there exists exactly (2t+1)2 independent simultane-

ous eigenvectors of T 2, Tz, and Sz with eigenvalue t(t+1)~2. Furthermore, these
eigenvectors can be denoted by {|t,mt,ms〉 : mt,ms ∈ {−t,−t+ 1, . . . , t}} in
such a way that Tz |t,mt,ms〉 = mt~ |t,mt,ms〉 and Sz |t,mt,ms〉 = ms~ |t,mt,ms〉.

We now have enough information to find the energy levels of the hydrogen
atom. Using equations 3 and 4, the reader can check that

Ã2 + L2 = 4T 2 = ~2 − k2me

2E
.

Thus, the action of T 2 on H(E) is simply multiplication by the constant 1
4~

2 −
k2me

8E . By our claim above, this eigenvalue must be exactly equal to t(t+ 1)~2.
By solving for E, we arrive at the following result

Fact. The negative eigenvalues of of the Hamiltonian H (not restricted to
H(E)) are in one-to-one correspondence with the eigenvalues t(t + 1)~2 of T 2.
For a given t ∈

{
0, 12 , 1,

3
2 , . . .

}
the energy eigenvalue is E2t+1 = −mek

2

2~2(2t+1)2 .

We can now identify the usual principle quantum number n with 2t + 1.
Furthermore, for a given value of of t, our claim above tells us that there are

6The proof of the claim may be non-trivial. How do we know, for instance, that there
does not exist a third non-trivial operator R that commutes with T and S, and satisfies the
angular momentum commutation relations? One proof is to solve the hydrogen atom by brute
force and reverse engineer the first part of this paper (it will turn out that if a third operator
existed, the energy level degeneracy of the hydrogen atom would not be n2). The claim is
undoubtedly related to the fact that in the classical Kepler problem, if we know E, L, and A
for an orbit, we have enough information to fully constrain the orbit.

4



exactly (2t+ 1)2 = n2 linearly independent states in H(En). Thus, our second
result is

Fact. Given a principle quantum number n, the degeneracy of the eigenvalue
En is n2.

The Lie algebra so(4)

If the reader is familiar with the mathematics of Lie groups and Lie algebras,
he or she may have noticed that the commutation relations 9,10, and 11 are, up
to a constant, the Lie bracket requirements for the Lie algebra su(2) ⊕ su(2).
More precisely:

Fact. Let V=Span {Ti, Sj |i, j ∈ {x, y, z}} denotes the 6 dimensional real vector
space of linear combinations of the operators Ti and Sj (with coefficients in R).
Define a function {, } : V × V → V by {P,Q} = 1

i~ [P,Q]. Then, V equipped
with this bracket is exactly the Lie algebra su(2)⊕ su(2).

Now it is easy to show that su(2) ⊕ su(2) is isomorphic to the Lie algebra
so(4). This is the Lie algebra that generates the Lie group SO(4) of rotations in
R4 (among other Lie groups7). We may, therefore, have reason to expect some
kind of “hidden symmetry” of the hydrogen atom that will look like rotation in
R4. This turns out to be case, and we will spend most of the rest of this paper
discussing this symmetry.

2 The Analytic Approach

The stereographic projection and classical Kepler orbits
In this section, we follow Norcliffe and Percival [2] fairly closely. As with the
LRL vector, we will motivate the use of stereographic projection in the hydrogen
atom by its use in the classical Kepler problem.

Definition. Let n be a natural number. The n-sphere is the set

Sn =
{
x ∈Rn+1|x21 + x22 + . . .+ x2n+1 = 1

}
.

The most familiar examples of spheres are S1 and S2 which are the surfaces
of the unit circle and the “usual” unit sphere respectively. The sphere which will
be of relevance to us is, unsurprisingly, S3 (which “exhibits SO(4) symmetry”).

7While a Lie algebra V may generate many Lie groups, all of those Lie groups will “look
the same” at the identity. More precisely, suppose G and H are two Lie groups generated by
V . Then there exist manifold charts around the identities of each group and a diffeomorphism
between those two charts which preserves the group structure.
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Definition. ViewR3 as the hyperplane
{

(x1, x2, x3, 0) ∈ R4
}
. Let n̂ = (0, 0, 0, 1) ∈

R4. The stereographic projection of S3 is the map ϕ : R3 → S3 given by8

ϕ(x1, x2, x3, 0) =
2x + (|x|2 − 1)n̂

|x|2 − 1
.

We remark now that it is possible to construct a version of classical mechan-
ics in the configuration manifold R4 rather than the usual three dimensional
classical mechanics. Newton’s second law is given as usual, except that force
has 4 components. The following example will be relevant to us

Example. Consider a free particle constrained to S3. Its classical trajectories
will be “great circles at constant speed,” where by a great circle on S3, we mean
the intersection of S3 with any 3 dimensional hyperplane in R4 that contains
the origin.

Now consider a bound state solution to the classical Kepler problem r(t).
This gives rise to a momentum function p : R → R3 given by p(t) = mṙ(t).
Let E be the energy of the Kepler orbit (E = p2(t)

2m − k
r(t) for any t ∈ R). Let

pE =
√
−2mE. Now view the space of momentum states R3 as a hyperplane

embedded in R4. Let ϕ denote the stereographic projection defined above, and
define a “normalized” stereographic projection u : R3 → S3 as

u(p, 0) = ϕ(
p

pE
, 0) =

2pEp + (p2 − p2E)n̂

p2 + p2E
.

It turns out that the path in S3 given by u ◦ p (where ◦ denotes function
composition) is exactly that of a free particle on S3.9 This fact is shown in
detail, via the stationary action principle, by Norcliffe and Percival [2].

The quantum mechanical stereographic projection10

We now describe the analogous stereographic projection for the hydrogen atom.
Let ψ be a bound state solution to the hydrogen atom. That is, ψ ∈ L2

(
R3
)

8The stereographic projection we have defined has the following geometrical interpretation.
Let (x, 0) be a point in the hyperplane described in this definition. Construct the straight line
segment in R4 that connects (x, 0) and the “north pole” of S3. This line segment intersects
S3 at exactly one point besides the north pole. This point is ϕ(x, 0). We should note that
stereographic projections are also sometimes defined in a similar manner except with the
sphere placed “on top” of the plane.

9This result may be slightly less surprising given the following. If the orbit r(t) has eccen-
tricity ε, then it can be shown that the momentum vector p(t) travels through a circle in R3

with center at a distance pEε
(
1− ε2

)−1/2 from the origin and with radius pE
(
1− ε2

)−1/2

(see [2]). However, it is a fact that the stereographic projection ϕ takes circles in R3 to circles
on S3. It would seem however, that we are lucky in that the stereographic projection makes
the speed of the path on S3 constant.

10In this section, we will unfortunately omit almost every proof. For this reason, the inter-
ested reader is strongly encouraged to look at Bander and Itzykson’s paper on the subject [1].
Their paper, which we follow fairly closely, presents this material in greater detail and goes
significantly beyond the scope of this paper.
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satisfying Hψ = Eψ for some E < 0, where H = p2

2m −
k
r . As before, let

pE =
√
−2mE. Motivated, once again, by the classical Kepler problem, we

consider the momentum-space wave function. This is an element Φ ∈ L2
(
R3
)

given by11

Φ(p) =
1

(2π~)3/2

ˆ
R3

ψ(x)e−ip·x/~d3x. (12)

Now we wish to let this momentum-space wave function undergo a stereo-
graphic projection analogous to the function u defined in the last section. In
order to make sense of this problem, we first remark that S3, being a smooth 3-
manifold embedded in R4, has an induced three dimensional Lebesgue measure
(the same is true for S2, and in this case that measure simply tells us how to
measure the areas of regions on S2). Given this measure, we can now perform
Lebesgue integration on S3 and can thus consider the Hilbert space L2(S3).

Let u denote the stereographic transformation R3 → S3 discussed in the
last section. We now define a map ξ : L2(R3) → L2(S3) which will “preserve
probability” with respect to the transformation u. Because u is one-to-one, we
may define

(ξΦ) (u(p)) =
1

p
5/2
E

(
p2E + p2

2

)2

Φ(p).

Now the “coordinate transformation” u induces the transformation of measure
(we omit the proof):

dΩ =
(2pE)

3

(p2E + p2)
3 d

3p.

Using this fact, the following can be shown (this is the reason that we consider
the definition of ξ to be “correct”)

Claim. Let Φ ∈ L2(R3) and let ξ be the map defined above. If V is a measurable
subset of S3 which does not intersect the north pole (0,0,0,1), then

ˆ
V

|(ξΦ)|2dΩ =

ˆ
u−1(V )

Φd3p.

Now in the classical Kepler problem, the stereographic projection of p(t)
behaved like a free particle on S3. The exactly analogous thing happens for the
stereographic projection of the momentum-space wavefunction. The reader may
not be familiar with the quantum mechanical free particle on S3, so we briefly
describe it.

Definition. Fix a natural number n. Let F denote the smooth functions from
Rn to C. The Laplacian in Rn is the map ∇2

Rn : F→ F defined as ∇2
Rnf =

∂2f
∂x2

n
+ . . .+ ∂2f

∂x2
n
.

11The reader need not worry about the convergence properties of the Fourier transform of
ψ. It is known that hydrogen wave functions fall off exponentially with r. This means that
ψ is in the Schwartz space of R3 which is, very roughly, a space of functions R3 → C which
become small sufficiently quickly to behave very well under Fourier transformation.
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Fact. Let n > 1. The Laplacian in Rn can be decomposed as

∇2
Rn =

1

rn−1
∂

∂r
rn−1

∂

∂r
+

1

r2
∇2
Sn−1

where ∇2
Sn−1 is an operator that can be written only in terms of angular coordi-

nates and partial derivatives with respect to angular coordinates. The operator
∇2
Sn−1 can therefore be viewed as an operator on smooth functions defined on

Sn−1.

We call the operator above the Laplace-Beltrami operator on Sn−1. The
reader can view this operator as “the angular part of the Laplacian on Rn.

Example. The Laplacian on R3 is (in usual spherical coordinates), ∇2
R3 =

1
r2

∂
∂r r

2 ∂
∂r + 1

r2

(
1

sin θ
∂
∂θ sin θ ∂∂θ + 1

sin2 θ
∂2

∂φ2

)
. The Laplace-Beltrami operator on

S2 is ∇2
S2 = 1

sin θ
∂
∂θ sin θ ∂∂θ + 1

sin2 θ
∂2

∂φ2 . If L is the orbital angular momentum
operator in R3, it is a fact that L2 = −∇2

S2 .
Now in complete analogy to the free particle on S2, we view the “free particle

on S3” as a solution f ∈ L2(S3) satisfying the Schrödinger equation

∇2
S3f = αf

for some energy eigenvalue α. Fortunately, differential equations of this form
are very well studied:

Fact. Fix a natural number n. If f ∈ L2(Sn) satisfies ∇2
Snf = αf for some

α ∈ C, then
1) α = −λ(λ+ n− 1) for some λ ∈ {0, 1, 2, 3, . . .},

2)there are exactly
(
λ+ n
λ

)
−
(
λ+ n− 2
λ− 2

)
linearly independent eigen-

vectors with the same eigenspace, and
3)f is called a spherical harmonic (on Sn) and is denoted Y (n)

λ,q where λ is as
above, and q is another integer to label a basis for the eigenspace of λ.

Example. The usual spherical Harmonics on S2 are, in the above notation,
denoted Y

(2)
l,m where l ∈ {0, 1, 2, . . .} and m takes on 2l + 1 values. We make

the correspondence l ↔ λ and m ↔ α. These spherical harmonics satisfy
L2Y

(2)
l,m = l(l + 1)~2Y (2)

l,m . We remarked in the last example that L2 = −∇2
S2 .

Thus, this new definition of spherical harmonics is compatible with our old
definition. Furthermore, part 2 of the fact above confirms that m can take on
2l + 1 values because(

l + 2
l

)
−
(
l + 2− 2
l − 2

)
= 2l + 1.

We now return to our discussion of the hydrogen atom. It can be shown
that under the transformation Φ → ξΦ of the momentum space wavefunction
for the hydrogen atom, the transformed function will satisfy ∇2

S3(ξΦ) = α(ξΦ)
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so ξΦ = Y
(n)
λ,q . Thus, exactly as in the classical Kepler problem, the electron’s

momentum behaves like a free particle on S3. We can obtain the hydrogen wave
functions by performing ξ−1 followed by the inverse Fourier transform to undo
equation 12. We remark finally that the integer λ corresponds to the principle
quantum number n in the hydrogen atom (see [1] for a proof). The second part
of the fact above gives the correct degeneracy of the eigenvalue En because(

λ+ 3
λ

)
−
(
λ+ 3− 2
λ− 2

)
= (λ+ 1)2 = n2.

Concluding remarks
We have described two very distinct methods for analyzing the hydrogen atom,
both of which have some relation to SO(4) symmetry (the second example
describes that symmetry very explicitly). There is, in fact, a sense in which the
Lie algebra obtained in the first part of this paper generates the symmetry in the
second part. This is discussed in detail by Bander and Itzykson [1] (see their
section on parabolic coordinates). It is pleasing that both of our approaches
have classical analogues. Furthermore, each approach gives a new perspective
on the “accidental degeneracy” of the hydrogen atom’s energy levels.

We finally remark that this symmetry is not limited to the problem discussed
here. It has recently been shown by Chen, Deng, and Hu [8] that the relativistic
hydrogen atom also posseses an SO(4) symmetry.
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