- 1. Read Griffiths sections 3-3 and 3-4. Did you read all the pages?
- 2. Simplify these expressions:
 - (a) $\int_{x=-\infty}^{+\infty} \delta(x) \sin(x) dx$
 - (b) $\int_{x=-\infty}^{+\infty} \delta(x) \sin(y) dx$
 - (c) $\int_{x=-\infty}^{+\infty} \delta(x-y) \sin(x) dx$
 - (d) $\int_{x=-\infty}^{+\infty} \delta(x-y) \sin(x+y) dx$
 - (e) $\int_{x=-\infty}^{+\infty} \delta(3x) \cos(x) dx$
 - (f) $\int_{x=14}^{+\infty} \delta(3x) \cos(x) dx$
 - (g) $\int_{x=-\infty}^{+\infty} \delta'(x)(3x^2+x+7)dx$, where the prime means derivative.
 - (h) Sketch the graph of $\int_{y=-\infty}^{x} \left[\int_{z=-\infty}^{y} \delta(z) dz \right] dy$ vs. x.
- 3. Consider the wave function $\psi(x) = \begin{cases} Ax, & 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$.
 - (a) Find A.
 - (b) Graph the function $\psi(x)$.
 - (c) Find the Fourier transform c(k) of $\psi(x)$.
 - (d) Graph the real part of c(k) vs. k.
 - (e) Is c(k) normalized?
 - (f) Find $\langle x \rangle = \langle \psi | x | \psi \rangle$, $\langle x^2 \rangle$, and σ_x .
 - (g) Find $\langle k \rangle = \langle c|k|c \rangle$, $\langle k^2 \rangle$, and σ_k .
 - (h) Is the Uncertainty Principle satisfied?

Bonus: Redo the last problem for a Gaussian wave function $\psi(x)$ with standard deviation 2 centered around the origin.