- 1. Read Griffiths sections 4-3 and 4-4. Did you read all the pages?
- 2. Let \hat{A} and \hat{B} be two hermitian operators and let c be a complex number. Show your work in all of the following.
 - (a) Is the sum $\hat{A} + \hat{B}$ hermitian?
 - (b) Under what conditions is the product $\hat{A}\hat{B}$ hermitian?
 - (c) Under what conditions is the product $c\hat{A}$ hermitian?
 - (d) Is the commutator $[\hat{A}, \hat{B}]$ hermitian?
 - (e) Is $\exp(i\hat{A})$ unitary? (The exponential of an operator is defined through the Taylor series.)

3. Spectrally decompose the 2 × 2 hermitian matrix $M = \begin{pmatrix} 4\pi & i\pi \\ -i\pi & 4\pi \end{pmatrix}$ as

$$M = \sum_{i=1}^{2} \rho_{i} \vec{u}_{i} \vec{u}_{i}^{\dagger} = \sum_{i=1}^{2} \rho_{i} P_{i}$$

where ρ_i is the *i*th eigenvalue and \vec{u}_i is the *i*th orthonormalized column eigenvector. That is,

$$M\vec{u}_i = \rho_i \vec{u}_i$$
 and $\vec{u}_i^{\dagger} \cdot \vec{u}_j = \delta_{ij}$

- (a) Find ρ_1 , \vec{u}_1 , ρ_2 , and \vec{u}_2 .
- (b) Find the projector matrices, P_1 and P_2 .
- (c) Find $\sin(M)$ two ways:
 - i. By taking advantage of the spectral decomposition:

$$\sin(M) = \sum_{i=1}^{2} \sin(\rho_i) \ \vec{u}_i \vec{u}_i^{\dagger} = \sum_{i=1}^{2} \sin(\rho_i) \ P_i$$

- ii. By using the first few (?!) terms of a Taylor expansion: $\sin(M) = M M^3/3! + M^5/5! + \dots$
- iii. Comment on the convergence of the series.
- 4. Consider the three-dimensional isotropic quantum simple harmonic oscillator.
 - (a) Write the potential energy in Cartesian coordinates V(x, y, z).
 - (b) Write the potential energy in spherical polar coordinates $V(r, \theta, \phi)$.
 - (c) Write the Schrödinger equation in Cartesian coordinates in detail.
 - (d) Write the ground state wavefunction in Cartesian and in spherical polar coordinates.
 - (e) What is the ground state energy?
 - (f) Find the four lowest unique energy eigenvalues and their degeneracies.

Bonus:

- 1. Find the formula for the degeneracy of the nth energy level of the three-dimensional quantum SHO.
- 2. Find \sqrt{M} , where M is given above.