- 1. Read Griffiths section 5-4. Did you read all the pages?
- 2. For each of the following systems, find a formula for E_n in terms of fundamental constants, find E_1 numerically in eV, find the Bohr radius in terms of constants and numerically, and find the wavelength of the n = 2 to n = 1 photon (the analog of the Lyman-alpha line in hydrogen).
 - (a) positronium (positron and electron)
 - (b) muonium (μ^+ and an electron)
 - (c) ${}^{12}C^{+++++}$ (carbon-12 nucleus and one electron)
 - (d) antihydrogen (antiproton and positron)
 - (e) an anti-alpha particle and a ¹²C nucleus (ignore the strong nuclear force interaction).
- 3. In step one, the square of the orbital angular momentum of a particle L^2 is measured and found to have the value 20 \hbar^2 .
 - (a) If L_z were then measured in step 2, what values could possibly result?
 - (b) If instead of L_z , L_x were measured in step 2, what values could possibly result?
 - (c) Suppose that in step 2, L_z is measured and the value zero is obtained. Now in step 3, L^2 is measured. What values can result and with what probabilities?
 - (d) In step 4, L_z is measured. What values can result and with what probabilities?

Bonus:

- 1. For $\ell = 1$, construct the 3 by 3 matrices for L_+ and L_- .
 - (a) What is $(L_+)^2$?
 - (b) What is $(L_{+})^{3}$?
 - (c) What is L_+L_- ?
 - (d) What are the eigenvalues and eigenvectors of L_+