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362 12 @ DYNAMICS OF RIGID BODIES

where

Tirwns =3 ), m, V? = {MV? (12.6a)

T =% Y. my(o x 1,)* (12.6b)

Tians and T, designate the translational and rotational kinetic energies,
respectively. Thus, the kinetic energy separates into two independent parts
as mentioned in the first section of this chapter.

The rotational kinetic energy term can be evaluated by noting that

(A x B)? =(A x B)* (A x B)
= A2B? — (A B)?
Therefore,

Tt = 5 ), mLw?rg — (@ 1,)*] (12.7)
We now express T,,, by making use of the components w, and r, ;- of the

vectors @ and r,. We also note thatr, = (x,,;, X, », X, 3) in the body system
so that we can write r, ; = x, ;. Thus,

TS (307) (32 - (o) (Fou)] 029

Now, clearly, we can write ; = ) w; §;;, so that
7

ror. %Z Z m [CO CO 51_}(2 xac k) - a)iwjxa,ixe:,j:l

=% Z ; ; Z m, |:5ij Z -’-C‘i,’k - x:x, ixa,j] (12.9)
If we define the ijth element of the sum over « to be I,
j=ym [ i 0 Xa k= Xa, i1 %X, j] (12.10)
[ k )
then we have
T =% Lm0, (12.11)
i J

This equation in its most restricted form becomes

T, = 3Ho® (12.12)
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12.2  THE INERTIA TENSOR 363

where I is the (scalar) moment of inertia about the axis of rotation. This
equation will be recognized as the familiar expression for the rotational
kinetic energy given in elementary treatments.

The nine terms /;; constitute the elements of a quantity which we designate
by {I}. In form, {1} is similar to a 3 x 3 matrix. Now, {} is the proportionality
factor between the rotational kinetic energy and the angular velocity and
has the dimensions (mass) x (length)?. Since {I} relates two quite different
physical quantities, it is to be expected that {I} is a member of a somewhat
higher class of functions than has heretofore been encountered. Indeed, {1}
is a tensor and is known as the inertia tensor.* Note, however, that T, can
be calculated, without regard to any of the special properties of tensors,
by using Bq. (12.9) which completely specifies the necessary operations.

The elements of {I} can be obtained directly from Eq. (12.10). We write
the elements in a 3 x 3 array for clarity:,

g mnc(xatz,2 + xuzc,s) '"Z; My X, 1%4,2 - era Xa,1%a,3
{1} = “‘“% My Xg,2 Xg,1 za: my(X2, +x53)  — Za Ay X2 X3
_g, My Xg,3 Xg,1 —; My Xg,3 X2 :L my(xZ, + x5 2)
(12.13)

The diagonal elements, I,4, I,,, and I35, are called the moments of inertia
about the x,-, x,-, and xj-axes, respectively, and the negatives of the off-
diagonal elements I,,, I 4, etc., are termed the products of inertia.t Clearly,
the inertia tensor is symmetric; that is,

I, =1, (12.14)

and, therefore, there are only six independent elements in {I}. Furthermore,
the inertia tensor is composed of additive elements; the inertia tensor for a
body can be considered to be the sum of the tensors for the various portions
of the body. Therefore, if we consider a body as a continuous distribution of
matter with mass density p = p(r), then

Iij:.[y P(l‘)[&JZkle —xin] dv (12.15)

where dv = dx, dx, dx; is the element of volume at the position defined by
the vector r, and where V is the volume of the body.

5

* The true test of a tensor is in its behavior under a coordinate transformation (see
Section 12.6).
1 Introduced by Huygens in 1673; Euler coined the name.
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12.3 ANGULAR MOMENTUM 365

12.3 Angular Momentum

With respect to some point O that is fixed in the body coordinate system,
the angular momentum of the body is

L=>r,%xp, (12.16)
The most convenient choice for the position of the point O depends on the
particular problem. There are only two choices of importance: (a) If one or
more points of the body are fixed (in the fixed coordinate system), O is chosen
to coincide with one such point (as in the case of the rotating top, Section

12.10}; (b) if no point of tlgé body is fixed, O is chosen to be the center of mass.
Relative to the body coordinate system, the linear momentum p, is

Py = Wiy ¥, == M, 0 X T,
Hence, the angular momentum of the body is
' L=Y m,r,x(®xr,) (12.17)
The vector identity
A x(BxA)=A*B— A(A-B)

can be used to express L as

L=>Y mfrle —r,r, o] (12.18)

The same technique that was used to write T,,, in tensor form can now be
applied here. But the angular momentum is a vector, so that for the ith
component we write

Li = Z mtx[mi ; xozt',k — Xa, i Zxa,jwj]
a J
= Z m, Z [UJ; Sy g xf.k - wjxa,txa,j]
[+4

J

= Z ;) ma[éij ; X = Xa,1%a, ;] (12.19)
J o

The summation over « will be recognized [cf. Eq. (12.10)] as the ijth element
of the inertia tensor. Therefore,

L=} Iiw; (12.20)

F
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or, in tensor notation
L={}o (12.20a)

Thus, the inertia tensor relates a sum over the components of the angular
velocity vector to the ith component of the angular momentum vector.
This may at first seem a somewhat unexpected result; for, if we consider a
rigid body for which the inertia tensor has nonvanishing off-diagonal elements,
then even if @ is directed along, say, the x,-direction, @ = (w,, 0, 0), the
angular momentum vector will be general have nonvanishing components
in all three directions: L = (L, L,, L;). That is, the angular momentum
vector does not in general have the same direction as the angular velocity
vector, (It should be emphasized that this statement depends upon I;; # 0
for i # j; we shall return to this point in the next section.)

As an example of a situation in which ® and L are not co-linear, consider
the rotating dumbbell in Fig. 12-2. (The shaft connecting m, and m, 1s

¥y m,

_—
-
- -
-
!

Rotation axis
G, 12-2

considered to be weightless and extensionless.) The relation connecting
T,, ¥, and o is

VY, = O X I,
and the relation connecting r,, v,, and L is
L=) mr, %YV,
o

Then, clearly, o is directed along the axis of rotation, while L is perpendicular
to the line connecting »; and m, .
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12.4  PRINCIPAL AXES OF INERTIA 367

We note, for this example, that the angular momentum vector L does not
remain constant in time, but rotates with an angular velocity w in such a way
that it traces out a cone whose axis is the axis of rotation. Therefore, I +#0;
but Eq. (2.11) states that

L=N
where N is the torque applied to the body. Thus, in order to keep the dumbbell
rotating as in Fig. 12-2, a torque must be constantly applied.

We can obtain another result from Eq. (12.20) by multiplying L; by w;
and summing over i:

1Yo Li=1% ) Ljww;= T (12.21)
i o . l’J

where the second equality is just Eq. (12.11). Thus,

Ty=1%0'L (12.21a)

Equations (12.20a) and (12.21a) illustrate two important properties of
tensors. The product of a tensor and a vector yields a vector, as in

L={}"o
and the product of a tensor and two vectors yields a scalar, as in
Tp=30 L=}o{} o

We shall not, however, have occasion to use here tensor equations written
in the above form, but will always use the summation (or integral) expressions
as in Eqgs. (12.11), (12.15), (12.20), etc.

12.4 Principal Axes of Inertia*

It is clear that a considerable simplification in the expressions for T" and L
would result if the inertia tensor consisted only of diagonal elements. If we
could write

Iy =18y (12.22)
then the inertia tensor would be
I, 0 0
M={0 1, 0 (12.23)
0 0 I

* Discovered by Euler, 1750,
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(a) Diagonalization may be accomplished by an appropriate rotation of
axes, i.e., a similarity transformation.

(b) The eigenvalues* are obtained as roots of the secular determinant and
are real.

(c) The eigenvectors* are real and orthogonal.

12.7 . The Eulerian Angles

The transformation from one coordinate system to another can be rep-
resented by a matrix equation of the form

X = Ax'

If we identify the fixed system with x’ and the body system with x, then the
rotation matrix A completely describes the relative orientation of the two
systems. Now, the rotation matrix A contains three independent angles.
There are many possible choices for these angles; for our purposes we will
find it convenient to use the so called Eulerian angles,t @, 8, and .

The Eulerian angles are generated in the following series of rotations which
take the x; system into the x; system{:

(1) The first rotation is counterclockwxse through an angle qo about the
x}-axis, as shown in Fig. 12-6a to transform the x; into the x;’. Since the
rotation takes place in the x{-x3 plane, the transformation matrix is

cosg sing O .
A,=|-sing cosg O ‘ (12.62)
0 0 1

(2) The second rotation is counterclockwise through an angle 8 about
the x'{-axis, as shown in Fig. 12-6b, to transform the x7 into the x;". Since the
rotation is now in the xj-x3 plane, the transformation matrix is

1 0 0
AN=10 cosf sind (12.63)
0 —sinf cos®

(3) The third rotation is counterclockwise through an angle ¥ about the
x4y-axis, as shown in Fig. 12-6¢, to transform the x} into the x;. The

* The terms ‘‘ cigenvalues’” and “ eigenvectors™ are the generic names of the quantities
which, in the case of the inertia tensor, are the principal moments and the principal axes,
respectively. We shall encounter these terms again in the discussion of small oscillations in
Chapter 13.

+ The rotation scheme of Euler was first published in 1776.

1 1t should be noted that the designations of the Euler angles and even the manner in
whlch they are generated are not universally agreed upon. Therefore, some care must be
taken in any comparxson of results from different sources. The notation used here is that
most commonly found in modern texis,
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12.7 THE EULERIAN ANGLES 385

Line of nodes

(c)

Fic. 12-6
transformation matrix is
costy siny O
A= |—siny cosy 0 (12.64)
0 0 1

The line which is common to the planes containing the x;- and x,-axes
and the x|~ and x;-axes is called the line of nodes.

The complete transformation from the x;} system to the x, system is given
by the rotation matrix A:

A=A, A A, (12.65)
The components of this matrix are:
Ay = €os Y cos @ — cos 0 sin ¢ sin i
Az1 = —sin ¥ cos ¢ — cos @ sin ¢ cos
Ay =sinfsin g
Ay = COS ¥ sin @ + cos 6 cos ¢ sin ¥
Ay = =siny sin @ + cos 6 cos ¢ cos v } ' (12.66)
A3y = —sin 0 cos ¢
Ay3 = siny sin 6
A3 = cos iy sin 6

A3z = cos 8
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(The components A,;; are off-set above to assist in the visualization of the
complete A-matrix.)

Since it is possible to associate a vector with an infinitesimal rotation, we
can associate the time derivatives of these rotation angles with the com-
lponents of the angular velocity vector @. Thus,'

W, =

The rigid-body equations of motion are most conveniently expressed in the
body coordinate system (i.e., the x; system), and theréfore we must express
the components of @ is this system. We note that, in Fig. 12-6, the angular
velocities ¢, 0, and {r are directed along the following axes:

¢ along the xj (fixed) axis
®  along the line of nodes
Yy  along the x, (body) axis

The components of these angular velocities along the body coordinate
axes are:

¢y = ¢ sin 0 sin

¢y =¢ sin b cos (12.68a)
@3 =¢cosb

0, =0 cos

6, = —0siny (12.68b)
03 = 0 e

iy =0 Y

Y, =0 (12.68¢)
lffs = l/f

Collecting the individual components of ®, we have, finally,

wy = ¢y +0; + 3y =¢sin Osin y + 0 cos
Wy = @y +0, + 3, =g sin 0 cos y — O sin ¥ (12.69)
W3 = 3 +03 + 5 = cosh +

These relations will be of use later in expressing the components of the
angular momentum in the body coordinate system.
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12.8 Euler’s Equations for a Rigid Body

Let us first consider the force-free motion of a rigid body. In such a case,
the potential energy U vanishes and the Lagrangian L becomes identical with
the rotational kinetic energy 7T.* If we choose the x;-axes to correspond to
the principal axes of the body, then from Eq. (12.24b) we have

T =43 1,0} (12.70)

If we choose the Eulerian angles as the generalized coordinates, then
Lagrange’s equation for the coordinate ¥/ is

1 .
or dor
e = 12.71
o dtoy (12.71)
which can be expressed as
0T dw; d o 0T Ow;
il oy (12.72)

w0y di T ow; &

If we differentiate the components of @ [Eqs. (12.69)] with respect to  and
Y we have

&
%mg‘osin()coswmésind/=a)z
%w!f=—c,‘osinﬂsinl,b~—9005l//= —wy ? (12.73)
dw, -
T
and
(3&)1 . awz _
of oY
o, (12.74)
ik
From Eq. (12.70) we also have
T
== I, (12.75)

* Since the motion is force-free, the franskational kinetic energy is unimportant for our
purposes here. (We can always transform to a coordinate system in which the center of
mass of the body is at rest.)
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Therefore, Eq. (12.72) becomes
ILww, + 1, w,(—w,) — 3}13(03 =10
or,
(I, — Lw,w, — Iy, =0 (12.76)

Since the designation of any particular principal axis as the x;-axis is
entirely arbitrary, Eq. (12.76) can be permuted to obtain relations for &, and
th,. By making use of the permutation symbol, we can write, in general,

(I; — 1w, w; — ;}k @y 8y = 0 (12.77)

The three equations represented by Eq. (12.77) are called Euler’s equations
for the case of force-free motion.* 1t must be noted that although Eq. (12.76)
for ¢, is indeed the Lagrange equation for the coordinate , the Euler
equations for ; and ,, which can be obtained from Eq. (12.77), are not
the Lagrange equations for # and ¢.

In order to obtain Euler’s equations for the case of motion in a force field,
we may start with the fundamental relation for the torque N [cf. Eq. (2.11)]:

(d—L) - N (12.78)
At ) gixea '

where the designation “fixed” has been explicitly appended to L since this
relation is derived from Newton’s equation and is therefore valid only in
an inertial frame of reference. From Eq. (11.7) we have

dL dL oo
— =|— +wx L 12.79
(dt)fixed (dt)body ' ( )
or,
dl
(m) +oxL=N (12.80)
dt body

The component of this equation along the x,-axis (note that this is a body
axis) is

L3 + wle - O‘Jz I‘l = N3 (12.81)

* Leonard Euler, 1758.
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12,11 THE STABILITY OF RIGID-BODY ROTATIONS 399

(@) E (b) ©)
. FiG. 12-11

and Fig. 12-11c shows the resulting cusplike motion. It is just this case that
corresponds to the usual method of starting a top. First, the top is set to
spinning around its axis, then it is given a certain initial tilt and released.
Thus, the initial conditions are § = 8, and 0 = 0 = ¢. Since the first motion
of the top is to begin to fall in the gravitational field, the conditions are
exactly those of Fig. 12-11c, and the cusplike motion ensues. Figures 12-11a
and b correspond to the motion in the event that there is an initial angular
velocity ¢ either in the direction of or opposite to the direction of precession.

12.11 The Stability of Rigid-Body Rotations*

We now consider a rigid body which is undergoing force-free rotation
around one of its principal axes and inquire whether such motion is stable,
“Stability”” here means, as before (see Section 8.11), that if a small perturba-
tion is applied to the system, the motion will either return to its former mode
or will perform small oscillations about it. _

We choose for our discussion a general rigid body for which all of the
principal moments of inertia are distinct, and we label them in such a way
that I3 > I, > I;. We let the body axes coincide with the principal axes, and
we start with the body rotating around the x,-axis, i.e., around the principal
axis associated with the moment of inertia 7,. Then,

o = o, e (12.123)

If we apply a small perturbation, the angular velocity vector will assume
the form

® = e, + e, + e, (12.124)

* This problem was first treated by Euler in 1749,
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where A and p are small quantities and correspond to the parameters which
have been used previously in other perturbation expansions. (4 and u are
sufficiently small so that their product can be neglected compared to all other
quantities of interest to the discussion.)

The Euler equations become [see Eq. (12.77)]:

(I ~ I)Ap — Lidy =0
(I:.;—IO,LLCOI "'Izimo (12.125)
(I ~ I)Awy — I3i=0

Since Ap = 0, the first of these equations requires d; =0, or w, = const.
Solving the other two equations for 4 and j, we find ‘

A= (I3 il wl)u (12.126)

= (Il — L wl)/l (12.127)

where the terms in parentheses are both constants. These are coupled equa-
tions, but they cannot be solved by the method employed in Section 12.9
since the constants in the two equations are different. The solution can be
obtained by first differentiating the equation for A:

. (I3 —1
/1=( 2 lwi)ﬂ , (12.128)
1,
The expression for g can now be substituted in this equation:
. I,-1){I,—1I,)
A+ (( 1 = I = 1) cui‘)/lm—':o (12.129)
IZ IS . \

The solution to this equation is

A(D) = Aei1at | Be~#hat (12.130)
where

\/(11 10— T (12.131)

1,15

and where the subscripts 1 and 4 designate that we are considering the solution
for A when the rotation is around the x;-axis.

By hypothesis, I, < Iy and I, < I,, so that Q, , is real. Therefore, the solution
for A(r) represents oscillatory motion with a frequency Q,,. We can similarly
investigate u(#) with the result that Q,, = Q,; = Q,. Thus, the small pertur-
bations introduced by forcing small x,- and x;-components on @ do not
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increase with time, but oscillate around the equilibrium values A =0 and
¢ = 0. Consequently, the rotation around the x;-axis is stable.

If we consider rotations around the x,- and x;-axes, expressions for Q,
and Q, can be obtained from Eq. (12.131) by permutation:

I —I)I; —1
Q- o, \/(1 D — 1) (12.1328)
IZI3
L,—I1)U,—1
S%:wz(z Uz = 15) (12.132b)
11,
I, = I)YI5 — I
P \/(3 D5 — 1) (12.1320)
N . Il.[z

But since I, < I, < I, we have
Q,, Qj 'real; Q, imaginary

Thus, when the rotation takes place around either the x;- or x3-axes, the
perturbation produces oscillatory motion and the rotation is stable. When the
rotation takes place around x, , however, the fact that Q, is imaginary results
in the perturbation increasing with time without limit; such motion is unstable.

Since we have assumed a completely arbitrary rigid body for this discussion,
we conclude that rotation around the principal axis corresponding to either
the greatest or smallest moment of inertia is stable, while rotation around the
principal axis corresponding to the intermediate moment is unstable. This
effect can be easily demonstrated with, say, a book (which is kept closed by
tape or a rubber band). If the book is tossed into the air with an angular
velocity around one of the principal axes, the motion will be unstable for
rotation around the intermediate axis and stable for the other two axes.

In the event that two of the moments of inertia are equal (I; = I,, say),
then the coefficient of A in Eq. (12.127) vanishes, and we have =0 or
1(f) = const. Therefore, Eq. (12.126) for A can be integrated to yield

Af) = C + Di (12.133)

and the perturbation increases linearly with the time; the motion around the
x,-axis is therefore unstable. We find a similar result for motion around the
x,-axis. There is stability only for the x;-axis, independent of whether I,
is greater or less than Iy = I,

Suggested References

Rigid-body dynamics is a topic discussed in almost every mechanics text. Intro-
ductory accounts are given, for example, by Fowles (Fo62, Chapter 9) and by
Lindsay (Li61, Chapter 8). At a slightly more advanced level are the treatments of
Becker (Be54, Chapter 12), Constant (Co54, Chapter 9), Slater and Frank (Si47,
Chapter 6), and Sommerfeld (So50, Chapter 4).



