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1. Introduction 

The last twenty years have produced a rather extensive literature on the 
exact mathematical treatment of general features of the Schrodinger equation 
for one or many particles. One of the more intriguing questions concerns the 
presence of discrete eigenvalues of positive energy (that is square-integrable 
eigenfunctions with positive eigenvalues) . There is a highly non-rigorous but 
physically appealing argument which assures us that such positive energy “bound 
states” cannot exist (c.f. [l], pages 30 and 51). On the other hand, there is an 
ancient, explicit example due to von Neumann and Wigner [2] which presents 
a fairly reasonable potential V, with V(r)  -+ 0 as r .--f CO, and which possesses an 
eigenfunction with E = 1 (in units with fi2/2m = 1). 

According to the excellent review article of Kato [3], Section 8, there are two 
general results which yield cases where H = - A  + V(r) has no positive eigen- 
values : 

(a) In  [4], Kato has proven that if V = o(l/r), then H has no positive eigen- 
value. 

(b) In [ 5 ] ,  Odeh has proven a similar result in case V(r) .--f 0 as r + 00 and 
aV/ar < 0 for sufficiently large r .  

Both of the above statements require certain regularity conditions along with 
the indicated asymptotic behavior. For the case of spherically symmetric 
V, stronger results do exist (see e.g. [9]). 

In  this paper, we prove 

THEOREM 1. Suppose V is a real-valued function on IR3 with the following properties: 

(a) V E L ~ ( I R ~ )  + Lm(IR3); 
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V = Vl + Vz with 1 

(b) f o r  some R, , Vl and V, are C" in {r 1 r > R,}, 
(c) lim rVl(r) = 0, 

(d) lirn V,(r) = 0, 

r+ m 

r- m 

a V, 
r- m ar 

(e) limsupr- (r)  E, < 00. 

Then - A  + V(r) has no eigenvalues in (E ,  , a). 

We intend limr-m to be in the sense of 00 having a neighborhood base of the 
exteriors of spheres, i.e., the limits are "uniform with respect to direction". We 
finally remark that this theorem clearly generalizes the results of Kato and Odeh. 

2. Proof of the Main Result 

The proof is unfortunately rather technical. We first prove a rather weak 
looking result which generalizes a result of Weidmann [6]  (he deals with the 
many particle case; Theorem 2 is a generalization of his result when restricted to 
the one-particle case which is much simpler than the general case). An important 
input to the proof of the theorem is a series of technical lemmas from Kato [4] 
in a modified form. Finally, using a simple trick, we can turn the weak result of 
Theorem 2 into the stronger Theorem 1. 

THEOREM 2. 

(a) V E  L2 + L"; 

Let V be a real valued function on R3 with the following Properties: 

V = Vl + V, with 

(b) f o r  some R, , V, and V2 are C" in A4 = {r I r > R,}, 
(c) lim rVl(r) = 0, 

r- m 

(4' for  r > R, , Vz(r) < 0, 

avz 1 
(e)' for r > R , ,  - I - - V, , 

ar - r 

Then H = - A  + V(r) has no eigenvalues in (0, a). 

Proof Suppose Hu = Eu with u E L2(R3) and E > 0. Without loss of 
generality we may assume that u is real-valued. By the Weyl lemma ([8], pg. 36), 

The decomposition V = Vl + V, is unrelated to the decomposition assured by assumption (a). 
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so that 

where AB,+ is the Laplace-Beltrami operator on the sphere S2: 

(L --sine-+-- a a a 2 ) .  
Ae,+ = - sin e ae ae sin2e a p  

Following Kato [4], we regard w as depending parametrically on r by viewing 
W ( Y ,  -) in L2(S2). We remark that is a positive (unbounded) operator on 
L2(S2). Following Odeh and Weidmann, we define for r > R, 

where w’ E awl& is regarded as lying in L2(S2) and ( ,  ), 11 1) represent the 
inner product and norm in L2(S2) .  (We remark that F has no direct physical 
interpretation; in particular it is not simply T + Vor T - V ) .  By Kato’s theorem 
[7] and hypothesis (a) of the theorem, u and its first partial derivatives all lie in 
L2(IR3) and V, is bounded in M. Thus, 

(3) 

Since F ( r )  is C“ in r,  we can evaluate, following Weidmann, 

In the above we have used the equation of motion (l), the positivity of A,,+ 
and the fact that (e)’ can be rewritten as 
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Since lim rV, = 0, we choose Xsuch that IrV(r)\ < k = .\/E for r > X. Then, 
1- a0 

for r > X ,  
I(w’, 2rv l (r )w) l  s IIw‘ll 12rvl(r)wl 

We shall show below that, for some r ,  > X ,  F(r,) > 0. Then (4) implies 
that, for r > rl , 

rF(r)  = r lF(r l )  + dr - ( r F ( r ) )  2 rlF(rl)  , l: 
so that 

r l  F(r)  2 - F ( r , )  . 
r 

Since F(r,) > 0, we have drF(r) = co, which contradicts (3) .  Thus we 

have reduced the proof of Theorem 2 to the proof that F(r,) > 0 for some rl > X .  
This is done using Kato’s technical tricks in a series of lemmas (these parallel 
Kato [4], pages 409-410, but are included to make this paper self-contained). 
We define 

I: 

F(m,  t ,  r )  = I I W L ~ ~ ~  + [k2  - 2ktr-l + m(m + l ) r 2 ]  ((wm(I2 

- (wm , vz(r)wm) - r-’(wm 7 ’0.4 wm> > 
( 5 )  

- 
where w,, = rmw and k = 2/E. Note that, for m = t = 0,  F(m, t y  r )  = F(r) .  

LEMMA 1. Suppose 0 < to < kX .  Then there exists m, 0 such that 

d 
- (r2F(rn, t , ,  r ) )  2 0 for m 2 m, and r 2 X .  
dr 

Proof: We first note that w, obeys the differential equation 

(6)  w l  - 2 m r - l ~ ;  + rr2[rn(rn + 1) - Ae.+]wm + (k2 - V(r ) )w ,  = 0 .  
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We also have 

In the above, (6) was used and the fact that (d)' and (e)' imply 

a a 
ar ar 

(r2V2) = -r2V2 - r - (rV2) 2 0 .  - -  

Since r > X ,  

By taking m sufficiently large we can insure that the right-hand side of this 
last equation is positive. 

LEMMA 2. There are constants mo 2 0 and R, 2 X such that 

F ( m o ,  t o ,  r )  > 0 if r >= Rl . 
Proof: 

F(m, t ,  r )  = rarn[llw' + mr-lw1I2 + (k2 - 2ktr-l + m(m + l ) r 2 )  llw1I2 

- (w, V,(r )w)  - r-2(w, A , , p > l  - 
For some R, , Ilw(R,) 11 # 0 (for otherwise u, the original eigenfunction, is 0). 

For no sufficiently large, F ( m o ,  t o ,  R,) > 0 and so, by Lemma 1, r2F(mo, t o ,  r )  
> 0 for all r > R,  . 

LEMMA 3. 

Proof: 

For some r ,  > X ,  F(r,)  G F(0,  0, r,) > 0. 

Choose R, > R, such that, for r > R2 , 

-2kt0r-l + m,(2m0 + I ) Y - ~  < 0 .  
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Since ~ R ~ l \ w [ / z  < 00, llwll is not monotone increasing and so we can find 

rl > R, such that 
d 
dr 

This completes the proof of Lemma 3 and thus also of Theorem 2. We are 
now ready to prove the main result. 

For each tl > 0, let V,(r) = V2(r)  - E, - u. Then we 
can pick R t )  > R,  such that, for r > R p )  , V,(r) < 0 and raV,lar + V,(r) < 0. 
Thus Vl + V, obeys all the conditions of Theorem 2 and hence H, = - A  + 
V(r)  - E, - tl has no eigenvalues in (0, a). Hence, for all u > 0, H = - A  + V 
has no eigenvalues in (E,  + a, co) which proves Theorem 1. 

Proof of Theorem 1 : 

3. Examples and Remarks 

A. Some typical potentials which have no eigenvalues in (0, 03) and which 
are not covered by any previous results are 

where rf(r) -+ 0 at 00. 

B. The potential 

-32 sin r [ g ( r ) 3  cos r - 3 g ( r ) ,  sin3 r + g ( r )  cos r + sin3 r ]  
V(r) = 

[1 + g(r)212 

withg(r) = 2r - sin 2r is of particular interest. I t  is the original von Neumann- 
Wigner example (with their algebraic mistakes corrected) and has the eigen- 
value + 1 with eigenfunction 
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For large r ,  - .  
-8 sin 2r 

V(r)  = r + O(f) 

so that lim sup r(aV,/ar)  = 16. Thus for this example in which nasty things do 
in fact happen we can still say that there are no eigenvalues in (1 6, 00).  

C. For the spherically symmetric V, a slightly weakened form of Theorem 1 
follows easily from Satz 4.6 of [9] : 

PROPOSITION. If V(r)  is a function on (0 ,  03) which is differentiable and such that 
V(r)  2 y > - 00 and lirn sup rlaV/ar1 = E, , then - A  + V has no eigenvalues in 
(Ell Y a). 

Thus, in particular the conclusion of note B follows from previously existing 
theorems. 

D. Since the existence of E = 0 eigenfunctions is unrelated to the asymptotic 
behavior of V (e.g. there are spherical square wells with E = 0, I # 0, eigen- 
f~nc t ions ) ,~  in general the conclusion (E ,  , CO) of Theorem 1 cannot be replaced 
by [EO, 00). 

E. The regularity conditions of Theorem 2 are slightly stronger than is 
necessary. The C" nature of V was only needed to assure us that u was actually 
a solution of the partial differential equation and that u was C2. For spherically 
symmetric potentials, this is implied by V(r)  continuous in M and for the general 
case, where the Weyl lemma is needed, V(r) E C3 in M is sufficient (see e.g. [8 ] ,  
page 36; note that C3 depends essentially on the fact that we are in R3). 

F. All our results go through in IK" (except in R", one needs C" with 
rn > i n  + 1, rather than C3 as the minimal smoothness necessary for V(r) ) .  

G. In  the case where lim V,(r) does not exist, we can extend Theorem 1 
slightly. The proof of Theorem 1 makes it clear that all we really need is 

ra v, 
lim sup V,(r) E, and lim sup (T + V , ( r ) )  5 E ,  

lT1+OO / T i - + W  

for H = - A + V to have no discrete spectrum in (E ,  , 00). 

H. One can combine remarks F and G above to obtain some control over 
the many-particle problem; however, the condition lim sup V(r)  < co is quite 

8 J. Weidmann, private communication. 
V. Bargmann, private communication. 
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strong for this case. For example consider n equal mass particles with interparticle 
force U and an infinitely heavy “nucleus” with particle nuclear force W,  so that 

Then lim sup V ( r )  < co implies sup U(r)  < co-a condition which for forces 
like Yukawa and Coulomb forces is not satisfied. 

Acknowledgements. The author would like to thank Profs. V. Bargmann, 
J. Weidmann and A. Wightman for their interest in this paper. I am indebted 
to the National Science Foundation for fellowship support during the course 
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Note added in proof: There is a minor technical flaw in the proof of Theorem 
2 that may require a slightly strengthened smoothness condition. We have 
really only proven that w = 0 outside a sufficiently large sphere. To conclude 
that w = 0 everywhere, a unique continuation theorem is needed. For example, 
using the results of Miiller (Comm. Pure Appl. Math. Vol. 7, 1954, pp. 505-516), 
one can prove w 3 0 when V is C2 and bounded on those compact sets which 
avoid a fixed finite set of singularities. 
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