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Abstract

We develop algebraic methods to find the eigenenergies and eigenstates of reflectionless potentials

in one dimension.
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I. INTRODUCTION

A few interesting problems in wave mechanics have exact solutions in terms of simple

functions. The best known examples – the harmonic oscillator and the hydrogen atom –

teach us so much about the structure of quantum systems that they are firmly established

in the syllabi of elementary courses. Another class of one-dimensional potential problems

also have exact solutions in terms of simple functions. The potentials are inverse hyperbolic

cosines,

v`(x) = −`(`+ 1) sech2 x (1)

where ` is any positive integer (` = 0, 1, 2, . . .). Both the bound states and scattering states

can be found analytically for these potentials in terms of elementary functions. In fact this is

the only example (other than step potentials and δ-functions) I know of where the scattering

states can be found by elementary means. These potentials have remarkable properties

including bound states at zero energy, and reflectionless scattering. The latter means that

a particle incident on the potential is transmitted with unit probability, albeit with an

interaction-dependent phase. As a result they are known as “reflectionless potentials”.

The Schrödinger equation for the harmonic oscillator and the Coulomb potential can be

either by the more-or-less standard analysis of differential equations, or by algebraic meth-

ods. The algebraic solution to the harmonic oscillator using raising and lowering operators

can be found in any textbook. The algebraic solution to the hydrogen atom using the com-

mutation relations of the “Runge-Lenz” vector and the angular momentum is treated in

some texts [1].

Eq. (1) can also be solved by a direct attack on the differential equation. The approach

can be found in Ref. [2]. The solutions are expressed in terms of confluent hypergeometric

functions that reduce to elementary functions when the strength of the potential is `(`+ 1).

On the other hand, the eigenstates of reflectionless potentials can be found very easily using

operator methods very similar to those that are used to solve the harmonic oscillator in

elementary quantum mechanics texts. This does not appear to be very widely known. In

this short paper, I will develop the operator solution to reflectionless potentials [3].
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II. GENERAL FORMALISM

We begin with the one-dimensional Schrödinger equation,

[

−
h̄2

2m

d2

dξ2
− V0 sech2(bξ)

]

ψ(ξ) = Eψ(ξ) . (2)

For convenience we scale out the dimensionful quantities by defining x = bξ, v0 = 2mV0b
2/h̄2,

and k2 = 2mb2E/h̄2, so for v0 = `(`+ 1),

H` ψ(x) =
[

p2 − `(`+ 1) sech2 x
]

ψ(x) = k2ψ(x) (3)

where p = −i d
dx

. k2 ≤ 0 corresponds to bound states and k2 > 0 corresponds to scattering.

Bound states should have normalizable wavefunctions,
∫

dx |ψ(x)|2 < ∞, and scattering

states should be defined in terms of incoming, transmitted, and reflected waves. I will show

that H` has ` bound states and also exhibit explicit wave functions for the bound and

scattering states of H`.

In an analogy to the harmonic oscillator we introduce operators

a` = p− i` tanh x

a†` = p + i` tanhx . (4)

Using the canonical commutator between p and x, [x, p] = i, it is easy to show that

A` ≡ a†`a` = p2 + `2 − `(`+ 1) sech2 x

B` ≡ a`a
†
` = p2 + `2 − `(`− 1) sech2 x . (5)

First we look for the ground state – a normalizable state annihilated by a`. We define

the state |0〉` by the equation

a` |0〉` = 0

or
(

−i
d

dx
− i` tanh x

)

ψ0`(x) = 0

where ψ0`(x) = 〈x|0〉` (6)

which has the normalizable solution

ψ0`(x) = N` sech`(x). (7)
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Since ψ`0 is normalizable[4] it is a bound state. Since it has no nodes, a standard theorem

on the one-dimensional Schrödinger equation guarantees it is the ground state.

Now consider the relation between the operators A`, B`, and H`. Comparing eqs. (3) and

(5),

A` = H` + `2

B` = H`−1 + `2 . (8)

Suppose ψ is an eigenstate of A`,

A` |ψ〉 = α |ψ〉 . (9)

Then it is also an eigenstate of B` with the same eigenvalue, α, as shown by the following

algebra:

a`{A` |ψ〉} = αa` |ψ〉

= {a`a
†
`}a` |ψ〉 = B`a` |ψ〉 . (10)

The only exception to this is the state |0〉`, because a` |0〉` = 0. So |0〉` is an eigenstate of

A` with eigenvalue α = 0, which has no corresponding eigenstate of B`.

Eq. (8) enables us to turn this into a statement about the Hamiltonians, H`: H`−1 and

H` must share the same spectrum except for the single state |0〉`. These simple results allow

us to construct the eigenstates and eigenenergies of all the Hamiltonians.

III. EIGENSTATES AND EIGENENERGIES

The easiest way to see how the information of the preceding section enables us to solve for

eigenstates and eigenenergies is to start with ` = 0, then consider ` = 1, and so on until the

pattern becomes obvious.

A. ` = 0

For ` = 0, H0 = p2. This is a free particle. We know the eigenstates, |k〉0. They are labeled

by the wave number k, and the subscript, 0, which refers to ` = 0,

ψ0(k, x) ≡ 〈x|k〉0 = exp ikx . (11)
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The corresponding eigenenergies are E(k) = k2. According to our operator analysis, there

should be a state, |0〉0, determined by a0 |0〉0 = 0, or d
dx
ψ0(0, x) = 0. The solution is simply

a constant, ψ0(0, x) = const.

B. ` = 1

For ` = 1 the results become nontrivial. The Hamiltonian is

H1 = p2 − 2 sech2 x . (12)

According to our work in Section II, the spectrum of H1 is identical to that of H0 except

for the state |0〉1. Thus we have established that H1 has a continuum of eigenstates with

E = k2.

The ` = 1 ground state is determined by A1 |0〉1 = 0. Using eq. (8), H1 = A1 +1, we find

the ground-state energy,

H1 |0〉1 = − |0〉1 . (13)

So ` = 1 has a bound state with E
(0)
1 = −1. The spectrum of H1 is now complete: a bound

state at E = −1 and a continuum E = k2. It is shown in Fig. 1 along with other values of `.
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FIG. 1: Energy levels in reflectionless potentials.

The wavefunctions of the eigenstates can be constructed using methods quite similar to

those used for the harmonic oscillator. The ground state is easy; from eq. (7) we have

ψ
(0)
1 (x) = 〈x|0〉1 = N1 sech x . (14)



An Algebraic Approach to Reflectionless Potentials in One Dimension 6

To construct the continuum eigenstates, consider the state obtained by acting with a†1 on

the continuum eigenstates of H0,

|k〉1 ≡ a†1 |k〉0 . (15)

The action of H1 on these states can be related to the ` = 0 problem as follows:

H1 |k〉1 = (A1 − 1)a†1 |k〉0

= a†1B1 |k〉0 − a†1 |k〉0

= (k2 + 1)a†1 |k〉0 − a†1 |k〉0

= k2a†1 |k〉0 = k2 |k〉1 . (16)

Thus |k〉1 is an eigenstate of H1 with eigenvalue k2.

The continuum state wavefunctions are given by

ψ1(k, x) = 〈x|k〉1 = 〈x| a†1 |k〉0

= (−i d / dx+i tanhx) exp ikx

= (k + i tanhx) exp ikx . (17)

To interpret the continuum states we have to relate them to the usual parameterization

of scattering in one dimension,

lim
x→−∞

ψ(k, x) = eikx +R(k)e−ikx

lim
x→∞

ψ(k, x) = T (k)eikx. (18)

When we take the appropriate limits of eq. (17),

lim
x→−∞

ψ1(k, x) = (k − i)eikx

lim
x→∞

ψ1(k, x) = (k + i)eikx (19)

and compare with eq. (18) we find

R(k) = 0

T (k) =
k + i

k − i
(20)

As promised, the reflection coefficient vanishes, and the transmission coefficient is a pure

phase,

T (k) = exp
(

2i tan−1(1/k)
)

. (21)

This completes the construction for ` = 1.



An Algebraic Approach to Reflectionless Potentials in One Dimension 7

C. ` = 2

Armed with the methods developed for ` = 1, we can construct the solution for ` = 2 more

quickly. The Hamiltonian is

H2 = p2 − 6 sech2 x . (22)

According to our general result, the spectrum of H2 coincides with that of H1 except for

the ground state, |0〉2. So there must be two bound states. One with energy E = −1 is

obtained by acting with a†2 on |0〉1, with energy E = −1, and wavefunction

ψ
(1)
2 (x) = 〈x| a†2 |0〉1

∝ (p+ 2i tanhx) sech x

∝ tanhx/ cosh x . (23)

Note that this wavefunction is antisymmetric in x → −x as we would expect for the first

excited state in a one-dimensional potential. The ground-state energy is determined to be

E
(0)
2 = −4 by following an argument analogous to eq. (17). Its wavefunction is given by

eq. (7),

ψ
(0)
2 (x) = 〈x|0〉2 = N2 sech2 x . (24)

Finally, the continuum state wavefunctions are constructed by following a procedure

analogous to the ` = 1 case. In short,

ψ2(k, x) = 〈x| a†2 |k〉1

= (p+ 2i tanhx)(k + i tanh x)eikx

= (1 + k2 + 3ik tanh x− 3 tanh2 x)eikx. (25)

Comparison with the definition of transmission and reflection coefficients gives

R2(k) = 0

T2(k) =
(k + i)(k + 2i)

(k − i)(k − 2i)

= exp 2i
(

tan−1(1/k) + tan−1(2/k)
)

. (26)

Clearly we have outlined a method that can be extended to arbitrary `. The explicit

expressions for the wavefunctions are not as interesting as the spectrum and the transmission

coefficients.
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• A sequence of bound states beginning at E
(0)
` = −`2 and continuing with E

(j)
` =

−(`− j)2 until j = ` and E
(`)
` = 0.

• The scattering is reflectionless, and the transmission coefficient is given by

T`(k) = exp
(

2i
∑̀

j=1

tan−1(j/`)
)

. (27)

IV. DISCUSSION

Many interesting features of scattering theory are nicely illustrated by the bound states

and transmission coefficients of reflectionless potentials. A full discussion would lead us far

afield, so we simply quote some of the most important results:

1. The transmission coefficient, T`(k), has a pole at every value of k at which the potential

`(`+ 1) sech2 x has a bound state. For ` = 1 we see a pole at k = i. For ` = 2 we see

poles at k = i and k = 2i.

2. In addition to the bound states at k = i, 2i, 3i, . . ., the potential `(` + 1) sech2 x has

a bound state at zero energy. The solution to the Schrödinger equation at k2 = 0

must become asymptotic to a straight line, ψ`(0, x) → A + Bx as x → ±∞. When

the slope (B) of the straight line vanishes, the system is said to possess a bound

state at zero energy. The name is justified by the fact that making the potential

infinitesimally deeper (and the problem no longer exactly solvable) gives a state bound

by an infinitesimal binding energy. Bound states at zero energy are very special to

reflectionless potentials.

3. If we parameterize T`(k) in terms of a phase shift, T`(k) = exp
(

2iδ`(k)
)

, then it is

easy to show that the difference between the phase shift at k = 0 and k →∞ counts

π times the number of bound states, with the bound state at zero energy counting as

1
2
. This result, known as Levinson’s theorem, holds for arbitrary potentials in three

dimensions as well as one dimension.

In summary, reflectionless potentials form a simple and versatile laboratory for studying the

properties of bound states and scattering.



An Algebraic Approach to Reflectionless Potentials in One Dimension 9

Acknowledgments

The author is grateful to Jeffrey Goldstone for conversations on reflectionless potentials.

This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.)

under cooperative research agreement #DF-FC02-94ER40818.

[1] See, for example, R.L. Liboff, Introductory Quantum Mechanics, 3rd Ed. (Addison-Wesley,

Reading, MA, 1998) problem 10.58, page 481.

[2] P. Morse and H. Feshbach, Methods of Mathematical Physics (McGraw-Hill, New York, 1953),

page 1650.

[3] I learned these methods in conversation with Jeffrey Goldstone, who claims they are well known.

[4] ` = 0 is a special, very simple, case that is treated in the next section.


