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Postulates of Quantum Mechanics
In this section, we will present six postulates of quantum mechanics. Again, we follow the presentation of McQuarrie [1], with the
exception of postulate 6, which McQuarrie does not include. A few of the postulates have already been discussed in section 3.

Postulate 1. The state of a quantum mechanical system is completely specified by a function  that depends on

the coordinates of the particle(s) and on time. This function, called the wave function or state function, has the
important property that  is the probability that the particle lies in the volume element  located at 

 at time .

The wavefunction must satisfy certain mathematical conditions because of this probabilistic interpretation. For the case of a single
particle, the probability of finding it somewhere is 1, so that we have the normalization condition 

(110)

It is customary to also normalize many-particle wavefunctions to 1.2 The wavefunction must also be single-valued, continuous,
and finite.

Postulate 2. To every observable in classical mechanics there corresponds a linear, Hermitian operator in quantum
mechanics.

This postulate comes about because of the considerations raised in section 3.1.5: if we require that the expectation value of an

operator  is real, then  must be a Hermitian operator. Some common operators occuring in quantum mechanics are collected
in Table 1.

Table 1: Physical observables and their corresponding quantum operators
(single particle)

Observable Observable Operator Operator

Name Symbol Symbol Operation

Position Multiply by 

Momentum

Kinetic energy

Potential energy Multiply by 

Total energy

Angular momentum

 

 

Postulate 3. In any measurement of the observable associated with operator , the only values that will ever be
observed are the eigenvalues , which satisfy the eigenvalue equation

(111)
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This postulate captures the central point of quantum mechanics--the values of dynamical variables can be quantized (although it

is still possible to have a continuum of eigenvalues in the case of unbound states). If the system is in an eigenstate of  with
eigenvalue , then any measurement of the quantity  will yield .

Although measurements must always yield an eigenvalue, the state does not have to be an eigenstate of  initially. An arbitrary

state can be expanded in the complete set of eigenvectors of  (  as 

(112)

where  may go to infinity. In this case we only know that the measurement of  will yield one of the values , but we don't

know which one. However, we do know the probability that eigenvalue  will occur--it is the absolute value squared of the

coefficient,  (cf. section 3.1.4), leading to the fourth postulate below.

An important second half of the third postulate is that, after measurement of  yields some eigenvalue , the wavefunction

immediately ``collapses'' into the corresponding eigenstate  (in the case that  is degenerate, then  becomes the

projection of  onto the degenerate subspace). Thus, measurement affects the state of the system. This fact is used in many
elaborate experimental tests of quantum mechanics.

Postulate 4. If a system is in a state described by a normalized wave function , then the average value of the

observable corresponding to  is given by

(113)

Postulate 5. The wavefunction or state function of a system evolves in time according to the time-dependent
Schrödinger equation

(114)

The central equation of quantum mechanics must be accepted as a postulate, as discussed in section 2.2.

Postulate 6. The total wavefunction must be antisymmetric with respect to the interchange of all coordinates of one
fermion with those of another. Electronic spin must be included in this set of coordinates.

The Pauli exclusion principle is a direct result of this antisymmetry principle. We will later see that Slater determinants provide a
convenient means of enforcing this property on electronic wavefunctions.
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