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On Accidental Degeneracy in Classical and Quantum Mechanics

HaroLp V. McINTOSH
RIAS, Inc., Baltimore 12, Maryland

(Received March 2, 1959)

The theory of accidental degeneracy is surveyed, particular attention being paid to the
connection between the accidental degeneracy of the two-dimensional isotropic harmonic

oscillator and the theory of angular momentum.

NE of the reasons for introducing group

theory into the study of quantum mechan-
ics is that some of the degeneracy of many
quantum mechanical problems may be accounted
for as a forced degeneracy that is due to some
symmetry possessed by the system. For instance,
the spherical symmetry of the central force
problems has as a consequence the conser-
vation of angular momentum; in addition
there are many states, possessing different
values of the 2z component of angular momentum,
which have the same total angular momentum
and the same energy. The forced degeneracy is
a consequence of Schur’s lemma, which restricts
the form of a Hamiltonian that is invariant
under all the transformations of a symmetry
group.

Many problems have an obvious geometrical
symmetry, such as the spherical symmetry of a
central force, the crystallographic symmetry of
a solid body, or the polyhedral symmetry of a
molecular system. Yet in a great many of the
textbook examples, even after the degeneracy
due to this symmetry has been identified and
explained, it will be found that there are some
levels which have no need to be degenerate due
to the symmetry but which nevertheless possess
the same energy. This is the so-called ‘‘acciden-
tal” degeneracy. It is accidental in the sense
that although Schur’s lemma tells when certain
eigenvalues of the Hamiltonian are necessarily
equal, there is no reason that different sets of
these eigenvalues cannot be equal to one another.

Even though accidents of this nature occur,
it is nevertheless tempting to think that there
may be present a higher symmetry which has
been overlooked, and that the symmetry group
which expresses this point of view will completely
explain all the degeneracies present. As Alliluev

points out in a recent paper,! such hidden
symmetry actually exists in a number of familiar
instances—the Kepler problem and the isotropic
harmonic oscillator, for instance. In a sense,
however, the problem is not so much to find a
larger group, for it is easy to imagine the group
of all transformations which leave a Hamiltonian
invariant, and even to hope that it will be a
Lie group. A more serious problem is to identify
the group with something which possesses
physical significance—its generators with con-
stants of the motion, for instance.

Instances of accidental degeneracy are abun-
dant in the soluble problems of quantum
mechanics. One of the best known is the Kepler
problem, or, in its more usual quantum mechan-
ical formulation, the hydrogen atom. A particle
moves in three-dimensional space subject to the
influence of an attractive potential which varies
inversely as the radius, 1/7. If the states are
cataloged according to the three quantum
numbers m, [, and #, where [ is the angular
momentum, m the z component of the angular
momentum, and # is the total quantum number,
it is well known that the energy depends only
upon the total quantum number # and not upon
! or m. However, the spherical symmetry of the
potential (and kinetic energy) would only require
a degeneracy in m, and not in / as well. In fact,
there are #? states, with [ values ranging from
0 to n—1; and m values from —I to 41, rather
than the (2/41) degenerate states which we
would expect from the conservation of angular
momentum alone.

Another prominent example, or rather class
of examples, is composed of isotropic harmonic
oscillators of various dimensionalities. In two

dimensions, for instance, the potential has

LS. P. Allituev, Soviet Phys. JETP 6, 156-159 (1958).
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cylindrical symmetry, and thus the Hamiltonian
is invariant under the two-dimensional rotation
group, which has at most two-dimensional
irreducible representations. Nevertheless, it is
found that the energy is proportional to (m-+n
+1), where m and #» are the quantum numbers
arising from the separation of the harmonic
oscillator equation in Cartesian coordinates.
Thus, the multiplicity of a level is equal to the
number of ways that an integer N may be
written as the sum of two non-negative integers;
this number is N4+1, which stands in marked
contrast to the twofold degeneracy which was
expected. Similar anomalies exist in higher
dimensions, for which the harmonic oscillator is
always much more highly degenerate than its
spherical symmetry would indicate.

Other problems exhibiting a high degree of
accidental degeneracy are the free particle
enclosed by an impenetrable cubic box, and the
quantum mechanical rigid rotor. The spherical
rotor has (2j4-1)*fold degeneracy rather than
the (2j41)-fold degeneracy which would be
expected by virtue of its spherical symmetry;
the symmetric rotor has (2j-41) or 2(2j+1)-fold
degeneracy rather than the 1- or 2-fold degen-
eracy known to be caused by its cylindrical
symmetry, and even the asymmetric rotor has
the degeneracy of a sphere. The motion of a
particle in a homogeneous magnetic field is
another example of an excessively degenerate
problem, although this degeneracy may be made
more obvious by enclosing the particle in an
impenetrable box so that the symmetry of the
Euclidean group is lost. The Kepler problem in
non-Euclidean space also yields some interesting
results, as does the relativistic Kepler problem,

The fact that these accidental degeneracies are
connected with the existence of constants of
the motion in their classical analogues seems to
have been clearly recognized by Pauli in 1926.2
The constants of the motion may generate a Lie
group which is larger than the group of obvious
geometric symmetries of the configuration space
of the problem. He made use of the stability
of the semiaxes of the Keplerian orbits to
employ constants of the motion in addition to
the components of angular momentum in his
discussion of the hydrogen spectrum. Actually

¢ W. Pauli, Jr., Z. Physik 36, 336-363 (1926).
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these new constants date far back into the history
of the Kepler problem. They are the components
of a vector which points along the semimajor
axis of the orbit, and whose length is equal to
the eccentricity, and which depends only upon
the semimajor axis. This vector establishes the
direction of the orbit, just as the angular
momentum determines its plane.

Although Pauli worked out the commutation
rules for the components of angular momentum
and of this new vector, called the Lenz vector,?
it was apparently Klein who recognized them as
the commutation rules of the four-dimensional
rotation group.* Fock, by writing an integral
equation for the hydrogenic wave functions in
momentum space, was able to recognize the
kernel of the equation as the Jacobian of a
stereographic projection, and thereby by a
transformation of wvariables to change the
Schroedinger equation for the hydrogen atom
into Laplace’s equation for hyperspherical surface
harmonics.® This made the role of the four
dimensional rotation as a symmetry group—for
the bound states, at least—of the Kepler
problem quite obvious. For the unbound states,
the symmetry group was the Lorentz group; for
the parabolic orbits, the Euclidean group in
three dimensions. In a commentary on Fock's
paper, Bargmann showed explicitly that Fock’s
group is generated by the constants of the
motion of the Kepler problem.$

Laporte reported on work of his own on this
problem at a meeting of the American Physical
Society in 1936,7 and in a paper by Laporte and
Rainich,? discusses a mathematical theory of ster-
eographic projections, and the hidden symmetry
groups which they may involve. Sienz, a student
of Laporte’s, wrote a thesis in 1949 in which he
developed the idea of the stereographic param-
eters and applied it to the symmetric rotor, the
Kepler problem, and the harmonic oscillator.?
The idea was to find those problems whose
Hamilton-Jacobi equations, under suitable trans-

3W. Lenz, Z. Physik 24, 197-207 (1924).

4 See L. Hulthen, Z. Physik 86, 21-23 (1933).

5 V. Fock, Z. Physik 98, 145-154 (1935).

8 V. Bargmann, Z. Physik 99, §76-582 (1936).

7 Otto Laporte, Phys. Rev. 50, 400(A) (1936).

8 Otto Laporte and G. Y. Rainich, Trans. Am. Math.
Soc. 39, 154-182 (1936).

*A, Sdenz, “On integrals of the motion of the
runge type in classical and quantum mechanics,” Ph.D.
thesis, University of Michigan (1949).
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formation, became identical to the corresponding
equation for force-free motion on a hypersphere
of some dimensionality. He also attempted to
account for the excess degeneracy in the Dirac-
Kepler problem, but showed that a similar ex-
planation would not work for the accidental
degeneracy in that case; that is, it could not be
reduced to force-free motion on a hypersphere.

The occurrence of accidental degeneracy in a
large class of problems seems to be connected
with the existence of bounded closed orbits in
the analogous classical problem, and the destruc-
tion of the Keplerian constants in relativistic
motion can be traced to the precession of the peri-
helion, by which the directional stability of the
orbit is lost.

Hill, at the University of Minnesota, has been
interested in the accidental degeneracy problem,
and one of his students, J. M. Jauch, discussed
the harmonic oscillator at some length in his
thesis.!® They discuss the two-dimensional Kepler
problem, and find that its bound states, like
those of the two-dimensional harmonic oscillator,
are degenerate under the three-dimensional
rotation group. They find a two-dimensional
analogue of the Balmer formula, which has been
found in the general case by Alliluev.! The fact
that the half-integral representations of the
rotation group occur with the harmonic oscillator
attracted their notice and they remark that it
is interesting that this is the first time that
half-integral quantum numbers have occurred
in connection with a problem involving non-
relativistic quantum mechanics. Another prob-
lem which interested them was the anisotropic
harmonic oscillator, which still seems to have
the three-dimensional rotation group as a
symmetry group when the two frequencies are
commensurable.

Hill has prepared a very interesting set of
notes in which he discusses the philosophy of
guantum mechanics at some length and gives a
particularly nice survey of the accidental
degeneracy problem.!!

©J. M. Jauch, Phys. Rev. 55, 1132(A) (1939); J. M
Jauch and E. L. Hill, Phys. Rev 57, 641-645 (1940)
J. M. Jauch, “On contact transformatxons and group
theory in quantum mechanical problems,” Ph.D. thesis,
University of Minnesota (1939).

#E, L. Hill, “Seminar on the theory of quantum

mechanics” (unpubhshed) University of Minnesota
(1954).
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Perhaps one of the most interesting aspects
of the theory of the two-dimensional harmonic
oscillator has been the use made of it by
Schwinger to develop the theory of angular
momentum,? by exploiting the appearance of
the three-dimensional rotation group as the
symmetry group of the plane isotropic harmonic
oscillator. In Schwinger's paper the language is
that of second-quantized field theory, and of
course no connection is made with the theory of
accidental degeneracy. Nevertheless the two
theories are intimately related, and a very
far-reaching theory of angular momentum may
be created by the use of the properties of the
harmonic oscillator.

Schwinger’s operator techniques are used very
nicely in a paper by Johnson and Lippmann,®
in which the problem of nonrelativistic cyclotron
motion is treated and which involves the
properties of the harmonic oscillator in its
solution. In another paper they discuss the
relativistic motion,”* and in an abstract of a
paper presented at a meeting they incidentally
discover a constant of the motion which accounts
for the accidental degeneracy in the Dirac-Kepler
problem.1®

In fact, Schwinger has done a very interesting
job of reducing the radial equation of the
Kepler problem to the radial equation of the
harmonic oscillator.'® This reduction depends
upon the known fact that the substitution p=172
will convert Hermite functions into Laguerre
functions, and thus will interconvert the two
radial equations in question.

Perhaps the deepest connections of all between
all these theories are to be found in the theory
of the properties of the three-dimensional
rotation group. The connection with the theory
of the rotation group comes about in roughly
the following fashion, and is a unique property
of the three-dimensional rotation group. When
the rotation group is parameterized, the param-

12 T Schwinger, “On angular momentum,” NYO-3071
(Office of Technical Servxces, Department of Commerce,
Washmg'ton D. C,, 1952).

]ohnson and B. A. Lippmann, Phys. Rev. 76,
828—832 (1949)

4 M. H. Johnson and B. A. Lippmann, Phys. Rev. 77,
702-705 (1950).

15 M. H. Johnson and B. A. Lippmann, Phys. Rev. 78,
329(A) (1950).

16 W, Furry (private communication).
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eter space may be described in a number of
ways. For instance, when a rotation is written as
the exponential of an antisymmetric matrix, it
is natural to parameterize it in terms of the
direction cosines of the axes of rotation and the
angles of the rotations; the result being a solid
ball of radius » with diametrically opposite points
upon its surface identified. The Cayley param-
eterization makes it more natural to use all of
3-space with diametrically opposite points at
infinity identified, since the radius of a point
is not now ¥, the angle of rotation, but rather
tandy. This is actually projective 3-space and
may be regarded as a gnomonic projection of
the hypersphere, upon which diametrically
opposite points have been identified. The
hypersphere itself becomes the parameter space
of the covering group of the three-dimensional
rotation group (i.e., the 2 X 2 unitary unimodular
group) if one uses as parameters either the
quaternions or the Cayley-Klein parameters.

Turning to the representation theory of the
rotation group, we find that there are three
ways to derive and discuss the irreducible
representations in common use. One is to
represent the rotation group as a group of
transformations on the spherical harmonics.
Another is to allow them to act as a transforma-
tion group on the functions of a complex variable
through the unitary unimodular group as a group
of fractional linear transformations of the
complex plane. Finally group theory itself
teaches us that the regular representation of the
group may be used, acting as a group of sub-
stitutions on the arguments of functions defined
over the group manifold. Since the group
manifold may be taken as the unit hypersphere
and since the Haar measure is nothing but the
Lebesgue measure induced from 4-space, this
means that it may be represented as a group of
transformations acting on the hyperspherical
harmonics.

Between the left and right regular representa-
tions, the left and right translations generate
the entire four-dimensional rotation group.
The left and right translations do not operate on
the hypersphere in the manner in which one
might expect, and it is fairly interesting to
examine their trajectories. All the left transla-
tions commute with all the right translations;
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and it is only the sums and differences of the
infinitesimal operators representing rotations
about the coordinate axes (considered as left
and right translations on the group manifold)
which generate the rotations in the coordinate
planes of four-space which one is used to finding
in the exponential parameterization of the
four-dimensional rotation group. In fact if we
use the following table to indicate that, for a
given operator, there will be an antisymmetric
4X4 matrix possessing a +1 in the position
occupied by its name (— indicates a —1),

—L.~L, A,
~L.4,
_Az

and if we let Ei=Li+A¢; H,'=L5—Ai, we have
the operators generating the left and right
translations. The trajectory of any point on the
hypersphere, under E,, for instance, is a great
circle of the sphere. In fact, the hypersphere
partitions itself into a bundle of great circles
under the action of E,. The H, trajectories are a
family of great circles orthogonal to the E,
trajectories.

It is against the relationship between the
three-dimensional rotation group and the hyper-
sphere that one must examine the accidental
degeneracy of the two-dimensional isotropic
harmonic oscillator. The relationship is just
that phase space for the harmonic oscillator is
four-dimensional, and if the coordinates are
so normalized that the frequency of the oscillator
is one rad/sec, the constant energy surfaces are
hyperspheres,

2H = p2+po*4qi2+g2,

where H=constant. It is easy to calculate
the quadratic constants of the motion, which
are clearly closed under the Poisson-bracket
operation :

L=pig1—pog,

K=p:1p2+q1ge,

D=3(p*+4q1%) — 3 (P22 +qsh).
These satisfy, except for a factor §, the commuta-
tion rules of the three-dimensional rotation

group. The significance of L is that it is the
angular momentum of the oscillator in the plane,
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and D is apparently the energy difference
between the two oscillators formed by the
individual coordinates. The third constant of the
motion, K, is a constant which is peculiar to the
harmonic oscillator problem, and measures the
tendency of one of the coordinates to follow
the motion of the other.

Considered as the generators of infinitesimal
contact transformations, these constants of the
motion have the following significance: L
generates infinitesimal rotations of the orbits,
while K generates infinitesimal changes in
eccentricity while preserving the sum of the
squares of the semi-axes. D is a composite of the
two, advancing the phase of one oscillator while
retarding that of the other. It is while making
this interpretation that we find the reason that
it is the unitary unimodular group and not the
rotation group which is generated by these
constants of the motion. If K acts, it takes an
orbit—let us say nearly circular—and pinches
it down into an orbit of higher and higher
eccentricity until it collapses into a straight line.
Continued application of K produces again an
elliptical orbit, but now fraversed in the opposite
sense, so that it takes a 720° rotation to bring
the orbit back into itself. The two-valuedness of
the mapping arises from the fact that the
orbits are oriented.

The significance of the constants of the motion
becomes even more illuninating in quantum
mechanics ; the operator K +4L is not Hermitian,
but is nevertheless a (complex) constant of the
motion :

K+iL = (p1—1iq1) (patigs)-

Upon factorization it is revealed as a product of
ladder operators belonging to the one-dimensionat
coordinate oscillators. A quantum of energy
is annihilated from one coordinate, but that
coordinate is left in an eigenstate. Meanwhile a
quantum of energy is created in the other
coordinate, which is also left in an eigenstate.
All told, the energy of the two-dimensional
oscillator has not changed, but nevertheless a
quantum of energy has been shifted from one
coordinate to the other, which leaves the
oscillator in a different eigenstate.

In the rotation group, on the other hand,
K4-1L is the creation operator for the azimuthal
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quantum number; it is this relationship which
lies at the basis of Schwinger’'s paper. He uses
the harmonic oscillator operator in the form of
an occupation number operator for a second-
quantized spin } particle, but the difference is
purely formal. This interpretation of energy
transfer between coordinates is also strikingly
verified when one writes out the wave functions
for the oscillator and applies K+iL to them;
then one can watch the nodes disappear from
one coordinate and appear in the other.

The idea to interpret p47g as a complex
variable is not new to Hamiltonian mechanics;
however when we complexify the phase space in
this manner we obtain an interesting result.
Namely, the Hamilitonian now acts as multiplica-
tion by the complex number ¢¥, and advances
the phases of all points uniformly in their orbits.
Defining

wi=p;+1igi,

and forming the ratio wi/w,, we find that the
time dependence of the coordinates disappears.
Geometrically the formation of this ratio is
the equivalent of a gnomonic projection, such as
the one which carried the quaternion parameter-
ization of the rotation group into the Cayley
parameterization. However that was a real
gnomonic projection; this one is complex. The
Hamiltonian is the analog of H,, and thus we
have a mapping collapsing the orbits of H, into
points; likewise it maps the orbits of the
harmonic oscillator into points. This mapping is
intimately related to the Euler angle parameter-
ization of the rotation group.

This preliminary gnomonic projection carries
complex two-dimensional space (the four real
dimensional phase space) into a projective
one-dimensional complex space, which we may
as well regard as a two-dimensional real space—
the Argand diagram of complex variable theory.
It in turn is a stereographic projection of the
Riemann sphere, of radius %, so that after dilation
we have mapped the hypersphere onto the
sphere. This is the celebrated Hopf mapping.
Orbits of the harmonic oscillator are collapsed
into points, and in no more striking way could
the three-dimensional rotation group be exposed
as the symmetry group of the harmonic oscillator.
The constants K, L, and D go over, under this
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mapping, into the three angular momentum
operators generating infinitesimal rotations about
the coordinate axes.

An alternative Hopf mapping is the following :
we define

z1= pr1+ips,
2= Q1+’1:(12,

as two complex variables and carry out the
same mapping. Now if we take as new coordinates
the quantities

Q1+1Q2 = (p1+1p2)/ (q1+1g2),
P1+iPe= (41+i42)2,

the result is a canonical contact transformation
and we obtain the coordinates used by Sienz and
Laporte. In this coordinate system L, K, and D
are also recognizable as angular momentum type
operators in virtue of their commutation rules.
The presence of the three-dimensional rotation
group as a symmetry group in this case is made
apparent by the fact that the orbits are now
great circles upon the unit sphere, corresponding
to the force-free motion of a particle constrained
to lie upon the spherical surface. This mapping is
particularly interesting for the way it shows how
parabolic coordinates enter the problem of the
harmonic oscillator and Kepler problem as well.
Thus we see why Fock had to work in momentum
space in his paper.

The rotation group and the harmonic oscillator
are linked in one further fashion. The Hopf
mapping first described mapped the trajectories
of the harmonic oscillator into points. These
trajectories are the same as the trajectories of
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H,, if the hyperspherical energy surface and the
parameter space of the rotation group are
compared.

By this survey, we have seen that the subject
of accidental degeneracy is much deeper than it
appears at first sight. Although we have only
touched upon the two-dimensional isotropic
harmonic oscillator at any length, nevertheless
there are many other instances of accidental
degeneracy whose explanations are very interest-
ing and indicative of further results. For instance,
the degeneracy of the various types of rotors is
not at all accidental—one has to realize that
rotations are parameterized by rotations, and
that the hypersphere is the proper configuration
space for the problem, and not three-dimensional
space. Thus, the symmetry group of the spherical
rotor is the four-dimensional rotation group. The
E operators correspond to rotation of the
space-fixed axes and the H operators to rotation
with respect to body-fixed axes. The motion of
a spherical body is clearly insensitive to the
way we set up a reference coordinate system in
space, as well as the orientation with which
we attach a coordinate system to the body to
mark its motion. Since the symmetric rotor has
but cylindrical symmetry only H, remains as a
symmetry operator, rotations about the other
two body-fixed axes being lost, although a
reflective symmetry remains. Thus the symmetry
group of the symmetric rotor is generated by
the E’s and H, and hence is O3 XO; rather than
O; alone. Even the asymmetric rotor retains the
four-group (the axes may still be reversed if
not rotated by arbitrary amounts) and the
space-fixed rotations as a symmetry group.



