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ABSTRACT 

Two- and three-dimensional 6-function interactions in SchrOdinger theory 

are the formal non-relativistic limits for the scalar field 1.p4 self-interactions 

of relativistic quantum field theory in (2 + 1)- and (3 +!)-dimensional 
space-time, respectively. The quantum mechanical problems possess non­
trivial dynamics if infinite renormalization or self-adjoint extension of the 
Hamiltonians is performed. The field theory is known to exist for the 

lower dimensionality, but for the higher dimensionality it is conjectured to 
be trivial. Thus the non-relativistic limits, supplemented by renormaliza­

tion or self-adjoint extension, do not show this variety. Also the planar 
£-function interaction formally admits an 50(2, 1) dynamical symmetry, 
but quantization necessarily spoils the invariance, putting into evidence 
the simplest example of quantum mechanical symmetry breaking. In this 

pedagogical essay, dedicated to the memory of M. A. B. Beg. work initi­

ated by him is elaborated. 
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I. INTRODUCTION 

Baqi Beg was an eminent particle theorist who never lost sight of the physical 
goals of our profession -so much more difficult to attain than the purely mathe­
matical. Nevertheless, he used mathematical tools with ease, and at various times 
during the development of modern fundamental physics Beg illuminated crucial phe­
nomenological/experimental issues. The importance of Baqi's work and the esteem 

in which it is held are well exemplified by "Beg's Theorem" of nuclear physics, which 
"surprised" R. Peierls and figures in his memoirs;1 "Beg's Sum Rule" of current 
algebra, discussed in S. Adler's and R. Dashen's definitive book on that subject; 2 

his many contributions to the quark model, through the framework of higher sym­
metries, a selection of which is collected in F. Dyson's reprint volume;3 and also 

his attempts to complete the "standard model" by urging a dynamical mechanism 
for its spontaneous symmetry breaking, as documented in the collection of sources 
for these ideas. 4 

Spontaneous symmetry breaking in the standard model concerned Beg in the 
final period of his research. The tension between the model's unquestioned phe­
nomenological success and the theoretical inadequacy of the scalar f1eld (Higgs) 

mechanism for its spontaneous symmetry breaking informed his activity. Taking 
account of the conjectured non-existence of the scalar field self-interaction in four­
dimensional space-time,5 Baqi on the one hand attempted to do away with the 

Higgs sector of the model, replacing its function by a dynamical mechanism;4 on 
the other hand he tried, characteristically, to extract phenomenologically useful and 
experimentally verifiable information from the conjectured triviality of Higgs field 
dynamics. 6 

In order to understand better the nature of the scalar field t.p4 self-interaction 

Beg and Furlong7 had the good idea to consider the non-relativistic limit of the 
model. When that limit is taken formally, particle number is conserved, the interac­
tion between particles becomes the zero-range 6-function and dynamics is governed 
by tractable quantum mechanics. But even though one is dealing with quantum 
mechanics, there arise ultraviolet divergences, reminiscent of quantum field theory 

and renormalization is required. Beg and Furlong then showed that the 6-function 
interaction in three-dimensional space gives rise to a trivial S-matrix, when the 
bare/unrenormalized coupling constant is finite, a result that does not disagree 
with triviality of the relativistic theory, but of course neither does it establish triv­

iality relativistically. The same conclusion was later obtained by K. Huang8 in an 
independent investigation. 

Owing to the distress inflicted on the standard model by the absence of the 

Higgs interaction, various proposals have been made for defining a non-trivial rela­
tivistic <p4 theory. While one cannot deem these attempts convincingly successful, 
it is natural to inquire whether one can evade the Beg-Furlong-Huang result in the 
non-relativistic theory. 

In this essay, which is inspired by Baqi's work and is dedicated to his memory, 
I point out that indeed procedures are available for defining a non-trivial 6-function 
interaction in three dimensions. Moreover, the same methods work in the same 
way in two dimensions; indeed they must be used if triviality is to be avoided 
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there, because also the planar 6-function interaction needs renormalization, which 

extinguishes a finite barefunrenormalized coupling. 

While the positive non-relativistic results are pleasing, they do not of course 

illuminate the situation in the relativistic quantum field theories, though it is reas­

suring that in three-dimensional space-time the relativistic cp4 interaction is known 

to be alive and well, just like the "improved" non-relativistic 6-function interaction. 

The procedures for defining two- and three-dimensional 6-function interactions 

are two fold. One may simply perform infinite renormalization, arriving at ampli­

tudes parametrized by a finite (by definition) renormalized coupling, which in the 

case of attraction may be alternatively expressed in terms of an uncalculable bound 

state energy. More satisfactory, especially within a mathematical frame, is the 

view that the 6-function interaction is merely a self-adjoint extension to a formally 

Hermitian, non-interacting Hamiltonian on a space with one point removed. The 

parameter in the extension is finite and plays the role of renormalized coupling 

strength. 

These approaches to the 6-function interaction are as old as the subject. The 

first analyses, in three dimensions, were performed in physicists' terms by Bethe, 

Peierls and Fermi.9 Mathematically rigorous treatments begin with the work of 

Berezin and Faddeev10 and now there is even a monograph on the subject. 11 These 

days the two-dimensional 6-function interaction, and the equivalent self-adjoint 

extension have arisen in discussions of point particle dynamics in (2+ 1 )-dimensional 

gravity12 and in Chern-Simons gauge theory (Aharonov-Bohm/Ehrenberg-Siday 

interaction). 13 

Section II is devoted to qualitative remarks about quantum mechanical inter­

actions and their symmetries. The 6-function Hamiltonians that we shall consider 

are introduced. The two-dimensional model is especially noteworthy, because on 

the classicaljformallevel it possesses a dilation symmetry, which is then necessarily 

destroyed by quantization -an effect seen in quantum field theory as the anomaly 

phenomenon, 14 but not previously identified in quantum mechanics. 

In Section Ill the Beg-Furlong-Huang calculation is reconsidered but with 

infinite renormalization yielding non-trivial dynamics, and this is repeated in two 

dimensions. The same results are regained by the method of self-adjoint ex~ension, 

whose symmetry breaking properties in two dimensions are highlighted. 

In Section IV, the Aharonov-Bohm/Ehrenberg-Siday effect in the Dirac equa­

tion is shown to lead in an equivalent SchrOdinger equation to a 6-function interac­

tion, which for consistency must be interpreted as a self-adjoint extension. In this 

way the identification of the 6-function interaction with the self-adjoint extension 

is made complete. 

The final Section V comprises concluding remarks. 
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II. DISCUSSION 

The typical quantum mechanical Hamiltonian operator consists of a kinetic 
term involving spatial derivatives and a potential function of position. Of course, 
the expression appears Hermitian. However, appearances can be misleading, and 
experience shows that when the short-distance behavior of the potential function 
is the same or more singular than that of the kinetic operator pathologies can 
mar the eigenvalue problem. These arise because the Hamiltonian operator though 
formally Hermitian ("symmetric" in mathematical terminology) is not self-adjoint 
(the domain of definition of the operator does not ooincide with the domain of the 
adjoint). 

Some familiar examples: The non-relativistic r- 2 potential shares an r- 2 sin­
gularity with the laplacian kinetic operator; when the potential is too strongly 
attractive (the strength depends on the dimension of space) the bound state spec­
trum is not discrete. For the Dirac-Coulomb problem, both the kinetic term a· f V 
and the r- 1 Coulomb potential behave as an inverse length at short distances, and 
the bound state energies become complex for sufficiently strong attraction. 

less familiar, but similar examples arise with vector potentials in Dirac theory· 
the Hamiltonian Q · ( t \7 - A). is not self-adjoint when A ex r- "t ~.m"' · '"- ~or 
a point monopole in three dimensions15 or a point vortex in two dimensions 

The above information points to the following conclusions about Hamiltoni­
ans with 6-function potentials in non-relativistic SchrOdinger equations for various 
dimensions. 

1 2 1 2 
H = :? + v6(r) = -;{V + v6(r) (2 1) 

(Mass and Tz are set to unity.) In two and three dimensions, where a 6-function 
scales as r-n. n = 2 and 3, the short-distance singularity of the potential is re­
spectively comparable to, and more singular than the kinetic term. Consequently, 
we anticipate difficulties with the eigenvalue equation. 

H,P=E,P (2.2) 

Only the one-dimensional 6(x) potential presents a simple problem- one that is 
found in most quantum mechanical texts- but a 6'(x) potential exhibits patholo­
gies similar to the above higher-dimensional cases. 11 

The two-dimensional 6-function [and the one-dimensional 6'-function] are ad­
ditionally interesting in that the Hamiltonian does not contain dimensional param­
eters: v in (2.1) is dimensionless. This property, shared by the r- 2 potential in any 
number of dimensions, renders the theory scale invariant, at least formally. 

Specifically, what is meant here is that there exists a dilation operator D 

D =IH- Hr p+p·r) (2.3) 

that implements the dilation transformation on the dynamical variable r, 

6vr = i[D,r] = tr- ~r (2.4) 
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showing that r has the scale dimension ~1/2. Moreover, commuting with the 
Hamiltonian gives 

i[D,H]=H (2.5) 

z.e. H has unit scale dimension. Therefore Dis a constant of motion. 

dD aD 
dt = i[H, D] + &t = 0 (2 6) 

Establishing (2.5) requires the identity 

i [r · p, 6(r)] = r · V6(r) = -26(r) (2.7) 

[In one dimension, what is needed is i[xp, 6'(x)] = x6"(x) = -U'(z).] This insures 
that the interaction scales with r as r- 2 , so that its scale dimension is unity. 

One consequence of scale invariance is that quantum scatterin! phase shifts 

must be energy-independent (there is no scale to give an energy dependence!) -

a fact which is explicitly verified by the energy-independent phase shifts of the r- 2 

potential. 16 

Another consequence, which follows from (2.3) in those simple models where 

r · p + p · r = ftr2 , is that D may be written as a total time derivative. 

D = :!._ (t2 H - ~r2) 
dt 2 4 

This reveals the presence of one more constant of motion, 

I 
K = -t2 H +2tD+ 2r 2 

dK 
-=0 
dt 

which is the conformal generator that transforms r according to 

6Kr = i[K, r] = l'r- tr 

(2.8) 

(2.9) 

(2.10) 

Here we have another example of how scale invariance sometimes (but not always!) 

implies conformal invariance. 
The operators H, K, D close on commutation: in addition to (2.5) it is true 

that 

i[K,D] = K 

i[H,K] = -2D 

(2.11) 

(2.12) 

These commutators not only verify (2.9), but also show that the m-iance algebra 

is 50(2, 1). 
To conclude: 50(2, 1) is a symmetry group of the r- 2 potelllial -a well­

known fact that can be maintained quantum mechanically. provided there is not 

too much attraction17 - and formally appears also to be a symmetry of the 6(r) 
potential in two dimensions. (50(2, 1) is also known to be a quantum mechanical 

symmetry of the non-relativistic point magnetic monopole18 and poiltt vortex. 19] 

Our reason for entering upon this discussion of S0(2, 1) dynamical symmetry 

is that we shall soon establish the remarkable result that any quantum mechanical 

definition of the apparently 50(2, 1) invariant, two-dimensional h(r) potential, 

necessarily violates 50(2, I) invariance. Doubtlessly this is the most elementary 

manifestation of quantum mechanical symmetry breaking. 
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IlL SOLVING THE 6-FUNCTION SCHRODINGER 
EQUATION 

A. Renormalization 

We seek scattering solutions to (2.1) and (2.2) for the spatial dimensionalities 

n, n = 2, 3, which we treat simultaneously. 
In terms of momentum-space wave functions 

I"(P) = J d"reipr'l/;(r) (3.1) 

equations that we solve are 

I 2 (p2 
- k2

) I"(P) = -v'l/;(0) 

k2 
-=E 
2 

(3.2) 

The scattering solutions are 

I"(P) = (2,.)"6(p- k) ~'1/;(0) , , (J.J) 

Evidently the scattering amplitudes are proportional to v'l/;(0), which is self­
consistently determined from (3.3) by 

'1/;(0) = J (;::f. I"(P) = 1- 2vln (-k2
- ic) '1/;(0) 

(
1 )-! 

v'!f;(O) = ; + 2In ( -k2
- ic) 

where In is the integral 

I. (z) - J d"p _I -
n - (27r)" p2 + Z 

which diverges in the ultraviolet for n 2: 2. 

To make progress, we regulate, for example by limiting IPI at A. 
large A that 

I A2 

I~(z) = -ln-
4,. z 

A ) I 1 f: 
13 ( z = -2,-2 A - 4,. v z 

Alternatively one may use dimensional regularization and find 

1 47Te--r+l/t: 
I;(z) =-In----

4,. z 

I,i(z) = _ __!_..;z 
4;r 
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It follows for 

(3.G 

(3.7) 

(3.8) 

(3.9) 



In (3.8) we calculate with n = 2 - 2c and take the limit c ---+ 0, obtaining a 

result identical to (3.6). In (3.9) there is no dependence on '· the departure from 

three dimensions; a finite answer is obtained as is characteristic for dimensionally 

regulated, odd-dimensional integrals. From (3.4) v,P(O) is determined for the two 

cases as 

n = 2: 

n = 3: 

( 
1 1 A 1 k i) -1 

v,P(O) = -+-In-- -In-+­
V1fP,1fJ-'2 

(
1 1 ik)-1 

v,P(O) = -+-A+-
v 11"2 211'" 

(3.10) 

(3.11) 

except that with dimensional regularization ;,A is absent from (3.11). In (3.10) 1-' 

is a convenient normalization point. 

As A is removed to infinity, v,P(O) and therefore the scattering amplitudes 

vanish, both for n = 2 and n = 3, provided v is finite. At n = 3 the result of 

Beg-Furlong and Huang is thus regained, but note the curiosity that with dimen­

sional regularization the three-dimensional answer is cut-off independent and finite. 

Moreover, the two-dimensional scattering amplitude vanishes for both regularization 

procedures. 
In the spirit of quantum field theory, it is very plausible to take the bare coupling 

to be cut-off dependent and to introduce a renormalized coupling constant g, in 

terms of which (3.10) and (3.11) read 

n = 2: (
1 1 k i)- 1 

v,P(O) = - - -In-+ -
g 1f 1-' 2 

(3.12) 

n = 3: v,P(O) = (.!. + ik) -l 
g 21f 

(3.13) 

These are finite and well-defined, provided 1/v absorbs by definition the cut-off 

dependence. 

n=2: 

n = 3: 

1 1 1 A 
-=-+-ln-
g v 1f 1-' 
1 1 1 
-=-+-A 
g v 11'"2 

To obtain the scattering amplitude, we present (3.3) in position space 

,P(r) = e'k r- 2vG,(r),P(O) 

(3.14) 

(3.15) 

(3.16) 

where Gk(r) are the Green's functions appropriate to the two dimensionalities. 

(-V2
- k') G,(r) = 6(r) (3 17) 
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n = 2: . 1 i(kr+r/4 ) ' (1)(k ) ~ e 
G,(r) = 4Ho r r-= 2-../21rkr (3.18) 

n=3: 
1 eikr 

G,(r) = 4,- -r- (3.19) 

Upon identifying the scattering amplitude from the asymptotic behavior of the 

scattering wave function, 

n=2: ,P(r) ~eikr + ____!__f(O)e'(kr+•/4) 
..jT 

(3.20) 

,P(r) ~ eikr + _!_ f(O)eikr 
r 

(3.21) n=3: 

we obtain 

n= 2: f(O) = ---v,P(O) = --- ---In-+-1 1 (I 1 k i) -1 

-../'iik -../'iik y 'if I' 2 
(3.22) 

n = 3: 1 (2-;r . ) -1 

f(O) = --v,P(O) =- - + tk 
21f g 

(3.23) 

Only s-wave scattering takes place, whose phase shifts may be read off from 

standard formulas. 

n=2: f(O) = __ 1 ~ ( w ,..j'iik L.J e m - 1) eim8 

m=-co 

(3.24) 

n=3: 
1 00 

f(O) = 2ik L (e2
"'- 1) P,(cos8) (3.25) 

l=O 

Comparison with (3.22) and (3.23) yields 

n=2: ctn 8o = _!_ In k2 2 
1r 2--

1-' g 
(3.26) 

tan8o = _gk 
271' 

(3.27) n=3: 

Note that the two-dimensional scattering phase shift has acquired an Ink 

dependence, in dear violation of scale invariance, except of course at g = 0, which 

corresponds to no interaction. 

With attractive 6-functions there exist bound states, provided v is renormal­

ized. Then in the scattering amplitudes the renormalized coupling constant may 

be replaced by the bound state energy, which in two dimensions is an example of 

dimensional transmutation within quantum mechanics. 20 
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The bound state, momentum space wave functions )OB(P) satisfy (3.2) with 
E = ~B, and the solution are 

This implies 

or 

I"B(P) = 
2vl/>s(O) 
p2 +2B 

J d"p 1 1/>s(O) 
1/>s(O) = -2v (21r)" p2 + 2B 

_2_ = In(2B) 
2v 

(3.28) 

(3.29a) 

(3.29b) 

which should be used to determine B in terms of v, but of course (3.29) exhibits 
divergences that shall be discussed presently. First let us express everything in terms 

of the bound state energies B. 
The wave function normalizations fix 2v1/>s(O). 

n = 2: I"B(P) = ,JB;jj_
1 

p 2 +2B 
(3.30) 

n=3: I"B(p)=(1281r2B)1/4 1 
P2 +2B 

(3.31) 

Equation (3.29b) may be used to eliminate 1/v in the scattering solutions. In 

(3.4) v,P(O) becomes 

v,P(O) = ~ [In ( -k2
- it) - In(2B)j-

1 
(3.32) 

Since a single subtraction renders In finite for n = 2 and 3, the scattering ampli­
tudes can be expressed in terms of "physical" quantities. 

n=2: 

n=3: 

1 ( 1 2B i) -1 

f(O) = --- -ln-+­
,fhk 27r p 2 

f(O) =- ( J2B + ik) -1 

(3.33) 

(3.34) 

Because of the divergences, bound state energies are not calculable: from 
(3.6), (3.7) [or (3.8), 3.9)) and (3.29b) we get 

n = 2: 
1 1 A2 

--=-ln-
v 21r 2B 

(3.35) 

n = 3: -~ = _!,A- 2_J2B 
v 7r~ 27r 

(3.36) 
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The A dependence may be combined with 1/v and hidden in the renormalized 
coupling 1/g as in (3.14) and (3.15). Then B is related tog by 

n = 2: 

n = 3: 

hE= p.e•fg 

hE= 2.-
g 

(3.37) 

(3.38) 

This is also seen in (3.22), (3.23): the scattering amplitudes posses poles on the 
positive imaginary k axis corresponding to the above bound state energies. Note 
that (3.38) requires g to be positive, but no sign restriction on g need be made in 
(3.37). 

Formulas (3.35) and (3.36) may be used to put into evidence a physical effect. 
A regulated expression for the 6-function potential is posited 

Cn 71 

Vn\r) = · · b(r- R) 
27r R"-1 

1 
C2=l, CJ=-

2 

(3.39) 

that effectively reproduces the potential in (2.1) when R ~ 0. Vn supports s-wave 
bound states. The binding energies Bare obtained by matching the discontinuities 
at r = R in the logarithmic derivatives of the wave functions against the coefficients 
of the b-function (3.39). This leads to the equations 

n = 2: 1 1 ( -;; = ;Io J2BR) Ko (hER)"' 2_ln 4e-z"/Rz 
2" 2B 

(3.40) 

n = 3: 
-~=-1- 1-e-v'SBR ~ 1 1 

v 2"R VBB R ~ 2.-R- 2" J2B (341) 

The second approximate equalities are valid as the regulator is removed and R is 
small; they are seen to reproduce (3.35) and (3.36) with A oc R- 1 Similar results 
are obtained by a square well or lattice regularization of the 8-function. 21 

B. Self-Adjoint Extension 

Although regularization and infinite renormalization of the 6-function interac­
tion strength produces physically sensible (unitary) and non-trivial scattering am­
plitudes, and also the possibility of bound states, it would seen preferable to arrive 
at the results without introducing the mathematically awkward "infinite" quantity 
A oc R- 1 . This can be achieved through the method of self-adjoint extension. 11 

Consider the free SchrOdinger operator. 

1 1 
Ho = -pz = --v2 

2 2 
(3.42) 

This is Hermitian and self-adjoint when acting on functions that are finite. How­
ever, for two and three dimensions H 0 remains self-adjoint even when the finiteness 
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requirement is relaxed: functions are permitted to diverge at isolated points, pro­

vided they remain square integrable; and also a boundary condition, consistent with 

self-adjointness of H 0 , needs to be specified. We take a single point of divergence, 

the origin, and the required boundary condition is imposed on s-waves; it involves 

an arbitrary parameter, the self-adjoint extension parameter A.ll 

n=2: 
. ,P(r) A . ( . ,P(r') ) 
hm-

1
- = -hm ,P(r)-hm-

1
-lnr 

r!O nr 7rr!O r 1!0 nr' 
(3.43) 

n = 3: limr,P(r) = -~ lim(,P(r) + r,P'(r)) 
r !0 2tr r 10 

(3.44) 

This defines the extended Hamiltonians H>.; A= 0 corresponds to the conventional 

free Hamiltonian with regular wave functions. 

It is obvious that with (3.43) and (3.44) one can find s-wave eigenfunctions of 

H' that differ from the regular non-interacting ones Jo(kr) (two dimensions) and 

sin kr/r (three dimensions), because the irregular solution is now acceptable. For 

positive energy E = k2 /2 we have 

n = 2: ,P(r) = Jo(kr)- tan 6Yo(kr) 

n=3: ,P(r)=~(sinkr+tan6coskr) 
r 

(3.45) 

(3.46) 

From (3.43) one determines that 6 in (3.45) coincides with the phase shift ho of 

(3.26) when 1/9 is identifies with 1/A --yf-;r- (1/-;r) lnJl/2. while with (3.44) 6 

in (3.46) is the same as bo in (3.27), with ,\ = g. Also there are bound states, 

E=-B. 

n = 2: 1/>n(r) = f!.Ko ( J2Br) (3.47) 

n = 3: 1/>n(r) = (.!!.._) 1/4 ,-v"iiir 
2-;r' --r 

(3.48) 

The binding energies, fixed by satisfying (3.43) and (3.44), agree with (3.37) and 

(3.38), once the above identifications between g and A are made. As before the 

sign of A(g) is immaterial for the two-dimensional bound state, while for the three­

dimensional bound state, it must be positive. Finally, it is readily verified that 

(3.47), (3.48) are the Fourier transforms of (3.30), (3.31). 

In conclusion we see that the method of self-adjoint extension provides a de­

scription of renormalized 8-function potentials in two and three spatial dimensions 

for the following three reasons: 

1) It is a priori plausible to describe a Hamiltonian with a 8-function potential as 

a free Hamiltonian on a space with one point deleted plus a boundary condition 

specifying what happens at that point. 
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2) The boundary conditions (3.43) and (3.44) permit a ln rand a r- 1 singularity 

in the two- and three-dimensional wave functions., as is seen in (3.45), (3.47) 

and (3.46), (3.48). The effect of the Laplacian on these is indeed a 6-function. 

3) Most convincing is the fact that the scattering data and bound state spectra 

arising from the renormalized 8-function interactions are reproduced by the 

self-adjoint extensions. 

In the next Section, another reason for viewing a 8-function potential as a 

self-adjoint extension is given. 

The boundary condition (3.43) implied by the self-adjoint extension in two 

dimensions shows also why dilation symmetry is broken quantum mechanically. 

Observe first that the logarithms occurring in that equation introduce a scale for 

r, which is not dilation invariant. More formally, we can demonstrate that D is 

not defined on our space. Consider any s-wave energy eigenfunction 'l,bE(r). From 

(2.3) it follows that 

' D,Ps(r) = tE.Ps(r) + 2 (ror + 1)1/>s(r) (3.49) 

The boundary condition (3.43) requires that at small r, ,PE(r) is proportional to 

1 +"'-In r. But then the last term in (3.49) is proportional to 1 +"'-+"'-In r, which 
• • • 

means that D,Ps satisfies (3.43) and exists in the Hilbert space only for ,\ = 022 

IV. AHARONOV-BOHM / EHRENBERG-SIDAY 
INTERACTION 

The two-dimensional 8-function potential arises also in a problem involving 

a point magnetic vortex. The interpretation as a self-adjoint extension serves to 

explain a puzzle that occurs in this context. 

let us first describe the problem and the puzzle. Consider the Hamiltonian for 

a planar Dirac particle interacting with a magnetic field B, described by the vector 

potential A, B = cii8iAi. 

H=a·(p-A)+;Jm ( 4.1) 

In (2 + 1) space-time dimensions, Dirac matrices are 2 x 2 and may be chosen to 

be the Pauli matrices: ai = a.i., i = 1, 2; {3 = o-3 . 

The Dirac eigenvalue equation for the two-component spinor X = (X+) 
x~ 

(a · (p - A) + ;Jm) x = <x 

may be iterated and decoupled. 

( (p - A) 2 
- ;J B) X = ( <2 - m 2) X 

12 

(4.2) 

(4.3a) 



Thus we arrive at two SchrOdinger equations for the two components X±· 

(H~v-A )'"'~B) x± =Ex± 
I 

E=-(<2 -m2
) 

2 

(4.3b) 

Now for the puzzle: we consider a point vortex, as in an idealized description 
of the Aharonov-Bohm/Ehrenberg-Siday effect. 

B = 1>6(r) 
. 1> .. ,.i 1> 

A'= --c'1 - = -O;(J 21r r 2 2,. 

(4.4) 

Since the magnetic field vanishes almost everywhere, the vector potential is a pure 
gauge almost everywhere -it is expressed in (4.4) as a gradient of the angle 
0, tanO = ;, r = (x,y). [Consistency requires the amusing formula <'i&;&;O = 
27r8(r).] Since A is a pure gauge it may be removed from the equations by defining 

X= ei"'6Xo 

where v = ~/2-;r. However, since X is single-valued, 

xl,=2r = xle=o 

it follows that x0 satisfies 

Xol = e-2rvixol 
6=211" 8=0 

So x0 is "multivalued." 
When the change of variables ( 4.5) is made in the Dirac equation 

find that x0 satisfies the free Dirac equation, 

(<>·p+f3m)xo =<xo 

(4.5) 

(4.6a) 

( 4.6b) 

( 4.2) we 

(4.7) 

and the interaction is entirely hidden in the an~ular boundary condition ( 4.6b ). On 
the other hand, changing to x0 in the Schrodinger equation ( 4.3), removes the 
vector potential but leaves the magnetic field, which is here a 6-function, 

( -~\72 "'1rv8(r)) x~ =Ex~ (4.8) 

while the boundary condition, on X~ remain as in ( 4.6b ). The question now presents 
itself: does x0 satisfy a free equation as in ( 4.7) or does it experience an additional 
6-function interaction as in (4.8)? It appears puzzling that both equations are true. 
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The answer to the question and the resolution to the puzzle resides in the 
self-adjoint extension that has to be performed on the Dirac equation. No matter 
whether the equation is taken with its interaction as in ( 4.2), or without an interac­
tion as in ( 4. 7), but with the angular boundary condition ( 4.6b ), it is impossible to 
satisfy it for v =f. 0 with wave functions that are everywhere finite. One must admit 
an infinite but normalizable solution and once this is allowed, a further boundary 
condition must be specified. In other words neither Dirac operator is self-adjoint 
and a self-adjoint extension is required. 13 On the other hand, in view of what was 
explained in Section 111, the SchrOdinger equation ( 4.8) with a 8-function should 
be viewed as the free equation with self-adjoint extension. Therefore regardless 
whether one works with (4.7) or (4.8), the Hamiltonian is non-interacting, there is 
an angular boundary condition ( 4.6b) that recalls the presence of the vortex, and 
there is further radial boundary condition specifying the self-adjoint extension. 

It must be emphasized that an important difference exists between the self­
adjoint extensions of the free SchrOdinger Hamiltonian H~ = -~\72 with con­
ventional angular boundary conditions and of the free Dirac Hamiltonian HJ; = 
Q · fV +(3m with vortex angular boundary conditions. In the former, no extension 
is needed; H~ has finite eigenfunctions and an extension represents an additional 
interaction- the 6-function. On the other hand, the free vortex Dirac Hamiltonian 
H'jy does not possess finite eigenfunctions; an extension is required and it represents 
further information (beyond total flux) that must be specified when describing the 
physical attributes of the already posited vortex. In contrast to the Schrodinger 
case, the extension in the Dirac equation is not a matter of choice and does not 
reflect additional interactions. 23 

V. CONCLUSION 
There can be no doubt that a b-function interaction in two- and three­

dimensional Schrodinger theory can be defined, and the method of self-adjoint 
extension allows dispensing with infinite renormalization. Of course the relation of 
these non-relativistic theories to relativistic field theories in (2 + 1)- and (3 +I)­
dimensional space-time is purely formal. Thus one cannot draw any definite con­
clusions about the field theory models. 

In (1+1)-dimensional space-time, the cp4 relativistic interaction rigorously goes 
over to the non-relativistic SchrOdinger theory of a one-dimensional 6-function. 24 

Of course, the possibility of carrying out the proof relies on the mildness ofthat field 
theory's ultraviolet divergences. It should also be feasible to carry out an analysis of 
the non-relativistic limit for the super-renormalizable (2+ l)-dimensiona\104 theory. 
While this model is known to exist, the presumed SchrOdinger theory 6-function limit 
shows some unexpected features: the need for infinite renormalization, which is not 
necessary in the field theory; the existence of a bound state, regardless of the sign 
of the renormalized coupling -it is as if only an attractive non-relativistic theory 
exists. 

In conclusion, while the status of relativistic, (3+ I )-dimensiona\104 field theory 
remains unsettled, the non-relativistic theory is not necessarily trivial. Indeed a non­
trivial scattering amplitude exists, but its construction is a subtle task. It remains 
to be seen whether a subtle construction of the field theory is possible. 
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