quev" son - Sc hvo/- > ads ﬂmrp r'bpmé,
ﬂplqhm

o ———



Thvee Aimensions

—_ _ " Q
?&?Jf) * Vlﬁ ¢) ?Zmu = i} 5;3?(@/

Fayhdd P.E

v
TDSE: "= \V4
auo/—owo?v, Kwear 1 22, L owos naar

’ o ‘ ‘3? fu (&\/ 7"99;0'7 ('oot//f
o o

[ aplecien V"= g5 T oy A ,
[f'é; /53—" E%a@j e.9, [j, @]-”*6//[}1;)’}]:0=[@,/’J

= >h  tap D O @ cuverhidad
= J)(_?;Z:é) @%’2) x 9

\ - MZV
7 "0 r/ ﬂte ?——ﬂ‘wz (Wﬁbyﬂv W e /
(/l/fgga:; f;:?:;:.’(/uf Am’“"ﬂm? O.rc‘e"//aﬁv)- 50/4 /4 Cq'l/’(efrb»

/l//)v~ Y;A;n“c«( /O/a:_ Coe Vﬂw‘( frt 9-/ Pf

Y’: ]?) ;Xfﬁéﬁq -ﬁ/om 071\9:41/
o= = ot prbe L= < gty
€ is 22 urafaed 2ugle Lo 2]

———

ﬁ e pa/av QW;(Q‘
(§‘=/Fﬂo-=7: fs‘?taéﬁ{e

(P Ak oee Cm w-#?va)

i

AR /] 9
[aplacca? 5 3 " L 5
/KLV/{:';ES% rf”)*f‘n%ﬁ%( ‘95) PN
;_.?/mvdﬂ'bu a‘f VinQA(Qg 'I/L(?) = RC;«) Wélqp)

7 7 ufvef
Assene Vei) =100 “foedies



TISE!
2 AR), 2 o7y, K &Y
G 2=
[ y* Jr( rzgq,@ b6 08 . r?;..hzﬁ gt

+VQ:£@X
1Y 'l

——
_2mpS

DIVW(} é}z /?(Y) Y/ﬁ@} M“(r}//)' é/ ,__%—1—_—

V’ T,
/g; d,,, wp,q a’mr V(Y’”CF]F 5,7 (9”5 )":ﬁ%%

{Uhmf\m 4 5‘ “

/M’y a 7[0-16’(}0'4 F v

O .‘[’[r,) +j(%@/ Vhé}? => +)= coapfoai?
ﬂ[é@ = — ot

We could cel %8 7[1/57‘ P/Moa Crers 12T C bheo

o gt we wilt ca ity 0(7)) ;:o;(e/é;; vppler
(3 e

ﬁnyu(av fMO" LS oo @ﬂ«ﬁ )+ e ity)se Y
g-epmaﬁé?m % Veavea bls agam ! _y/é,Q): T/ﬁ)f/?)

5»_7}:[5%19 %(s‘hﬁ ﬁ‘g‘)]vb&@/)%?&)? * ;é_il(}ﬁ &
=il - w

s Ny Lowckom £ ¢

-3



m coald 4
/1/'62’? a Second %/M/M{;M can ol ! ML (owv/’(l’rtz;
7(1"7 poMm 7(

4 5 7
Ag.“maﬁf/ z‘f"dﬁh : —};%@) ZE/?/ =—m = /C[(p) $m Fe)=0

\]

(M(i ge'?'"g/ s she A c/ﬁ,}w

——

— L solne fie SE. 1002 pie wedir
e fevnrnre /m}‘J‘v‘“e

volwes of M,

Usaally bave #he ful [z,om) vege f T

—
Za/f,ey/ whewn W<€ ('W]C\/oa&((e Vd?:,‘uj %og (401»?!/:?‘1) A/t-?l/ﬂ//gvr

,Cv Q"r?a/(CZV "."‘0""—?“7&‘("", nwe ulfll cee 72 2 F
/'—' 7 Jz-/z/ %) 2751 ax M m:;%——/aﬁcf" +/é}

/(7595& vaw, L wanf P avywe fact fov orhff €uol rpu)

d‘tju(at/ M"N""h’-“’"’) ) 274 we st be f»y?l—e;evlupf,f lf#/l‘/n/gﬂly

_—

Th ey meh, Ken Y as a funckpm F e ¥
/amfr-r [ ke @ Fuice cvaund before Wko/flr“j/éu/L
«ﬁs(m V 3 .10'/' 91“17(2-1}'&/&(?/,30 whet 7 clo L «ase 7o
CaMﬁq/fC /arobaﬁi/fﬁ‘es /7

IIIII /4/39 Y cen wot have & yup ’/l"rm”-/"”q'{%?/ D

/\
- /eCawPC AZ-;/(i'La/Q?“ 14/0(4(&( ée do 27 <ﬂ_( J‘WM/ bat™
w = ’{ €.9, ﬁ? Ao,

|

¢

B = m ¥ b

{2 /L’



e
=

NYVAVSyIM 4o 8] 71,
UYTWY) A 0 I Py SY A o)

(2

7

sl Ib N4 2474 #7749

Uy 227

GV(‘H\(\'IZQC' &“f’q/am /Mezéam@g

Sec. 4.1: Schrédinger Equation in Spherical Coordinates 125

You may have encountered this equation already—it occurs in the solution to Laplace's
equation in classical electrodynamics. As always, we try separation of variables:

Y6, ¢) =06)P(d). [4.19]

Plugging this in, and dividing by ®®, we find

1. d (. do .5 1 d*®
{6[sm9d—e (51n9d9)i|+l(l+l)sm 6] az‘p:o

The first term is a function only of 8, and the second is a function only of ¢, so each
must be a constant. This time I’ll call the separation constant m?:*

1 d doe
— |sinf— (sin@— )| +1¢ + 1) sin*8 =m2; [4.20]
© [ de deo
1 d*®
——— = -m’. [4.21]
¢ do
. - . w1 (( ,("\4'\ ((
The ¢ equation is easy: /1 ¢ K e
/‘ <€ t . Lecaase
i dzq) ] T -l 'li" (1 ,!-:rf r—f
™ oy = —m = @(g) = " AW A
. - Ave=
A Ny [Actually, there are two solutions: exp(im¢) and exp(—im¢), but we'll cover the latter
’;\2\\ — by allowing m to run negative. There could also be a constant factor in front, but we
N X mi ght as well absorb that into ®. Incidentally, in electrodynamics we would write the
< azimuthal function (®) in terms of sines and cosines, instead of exponentials, because
N Q. o b
« electric potentials must be real. In quantum mechanics there is no such constraint,
'\d <} and the exponentials are a lot easier to work with.] Now, when ¢ advances by 2,
o ;\( we return to the same point in space (see Figure 4.1), so it is natural to require that®
s Y - — - —
N 7
i QI )/ O(p +21) = P(¢). | [4.23]
|~ In other words, exp[im(¢ + 2m)] = exp(im¢), or exp(2xim) = 1. From this it
N ; i
3~ follows that m must be an integer:
3R m=0,+1,£2,.... [4.24]
B
R 4 Again, there is no loss of generality herc since at this stage m could be any complex number;
? in a moment, though, we will discover that m must in fact be an integer. Beware: The letter m is now
<~ doing double duty, as mass and as the so-called magnetic quantum number. There is no graceful way to
,.@ Qk avoid this since both uses are standard. Some authors now switch to M or u for mass, but I hate to change
;t } notation in midstream, and 1 don’t think confusion will arise as long as you are aware of the problem.
S / ~ SThis is a more subtle point than it looks. Afier all, the probability density (19]*) is single valued

/regarzlless of m. In Section 4.3 we’ll obtain the condition on m Dby an entirely different—and more
[ compelling—argument. e

>y H/F((bp
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128 Chap. 4 Quantum Mechanics in Three Dimensions

Table 4.2: The first few spherical harmonics, ¥;" (8, ¢).

] 172 15 1,2 )
0 _ 42 L2, +2ig
YO = (4—”) 1'2 = (35;') sin” e o
3 172 1/2
= (G) cos @ Y= (#) (5¢cos> @ — 3cos )
3\ 172 _ 21 \ /2 .
Yl*' =% (é;) sin geti® Y;' =7 (_6—4;) sin6(Scos> 6 — 1)eti®
5\ 2 +2 105\'2 42§
Yo = (1_6;) (Beos?d—1) Y= (ﬂ) sin? 6 cos e4?
15 172 . 35 172 )
)’2:H = (8—) sin @ cos Ge*? Y3I3 = (-54-;) sin”® fe+>'®
14
20+ 1y d — |m])! .
Y@, ¢) = e\/( W (7 :m:)’ e""? P (cos6), [4.32]

where € = (—=1)" form > 0 and € = 1 for m < 0. As we shall prove later on, they
are automatically orthogonal, so

2 b g
6 [ (Y6, LY (0. ¢)]sin 6 d6 dp = Sy Sy [4.33]
&7 a4 n 0 0

In Table 4.2 T have listed the first few spherical harmonics.

«Problem 4.3 Use Equations 4.27, 4.28, and 4.32 to construct ¥, and ¥,'. Check
that they are normalized and orthogonal.

ST ™ F Problem 4.4 Show that
R, O®) = Aln[tan(8/2)] < (s (os&)

n  satisfies the 6 equation (Equation 4.25) for / = m = 0. This is the unacceptable
"« “second solution”j’ﬁvhal’s wrong wit"h lt” movﬂﬁ@ i it 5 wovmel; 2b o,

1

xProblem 4.5 Using Equation 4.32, find ¥/ (8, ¢) and Y3 (6, ¢). Check that they sat-

isfy the angular equation (Equation 4.18), for the appropriate values of the parameters
[ and m.

*Problem 4.6 Starting from the Rodrigues formula, derive the orthonormality con-
dition for Legendre polynomials:

‘ 2
§% ]_' Pi(x) Pr(x}ydx = (ZT!—}-_I) S [4.34]

Hint: Use integration by parts.

g (Sood GETES
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130 Chap. 4 Quantum Mechanics in Three Dimensions

where
2m

& yilffiths W k== [4.42]

as usual. Our problem is to solve this equation, subject to the boundary condition
u(a) = 0. The case [ = 0 is easy:

!

I

d*u

T = —k>u = u(r) = Asin(kr) + B cos(kr).

But remember, _the actual radial wave function is R(r) = u(r)/r, and [cos(kr)]/r
@ws up as r — O 'S0'" we must choose B = 0. The boundary condition then
requires sin(ka) = 0 and hence ka = nm, for some integer n. The allowed energies
are evidently
n2mh?
2ma?’
the same as for the one-dimensional infinite square well (Equation 2.23). Normalizing
u(r) yields A = 4/2/a; inclusion of the angular part (constant, in this instance, since
Y6, ¢0) =1/ V4m), we conclude that

Eyo = (n=1273,..), [4.43]

i = 1 sin(nnr/a). (4.44]

2ma r

[Notice that the stationary states are labeled by three quantum numbers, n, /, and
m: Yum (r, 6, @). The energy, however, depends only onn and I: E,;.]
The general solution to Equation 4.41 (for an arbitrary integer /) is not so

familiar;
u(r) = Arji(kr) + Brni(kr), [4.45]

where jj(x) is the spherical Bessel function of order /, and #n;(x) is the spherical
Neumann function of order /. They are defined as follows:

! -
J,(x>—(—x>’(1—d—) S’;"; n(x) = —(=x)! (1 d) COSX  14.46)

xdx xdx X

For example,

sin x COS X

Jo(x) = ——; nolx) = - ;
X X

Il d (sinx sinx  CoSx
Jilx) = (- x)-—x( ) :

1

X x2 X

. 10 A ctually, all we require is that the wave function be normalizable, not that it be finite: R(ry ~ 1/r
# at the origin would be normalizable (because of the r” in Equation 4.31). For a more compelling proof
that B = 0, scc R. Shankar, Principles of Quantum Mechanics (New York: Plenum, 1980), p. 381. 392
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CHAPTER 12

§Z74V"/(W G/ R~ES

If ¢ 1s nonzero, then

U ¢

diverges at the origin. This in itself is not a disqualification, for R is still
integrable. The problem with ¢#0 is that the corresponding total wave func

C
w~- Y0
.

does not satisfy Schrédinger’s equation at the origin. This is because of the
V(1 /r)=—~4n8(r) (

_—

the proof of which is taken up in Exercise 12.6.4. Thus unless V(r) contains
function at the origin (which we assume it does not) the choice ¢#0 is unt
Thus we deduce that

UE/_—’O (l

r—0

Exercise 12.6.4.* (1) Show that

Sr—-1)y=86(x—x)5(y—y)6(z-z2)=

8(r—r)6(8-0)6(¢—¢")

rsin @

(consider a test function).
(2) Show that

Vi(1/r)=—~4n8%(r)

(Hint: First show that V*(1/r)=0 if r#0. To see what happens at r=0, consider &
sphere centered at the origin and use Gauss’s law and the identity V’¢=V-V¢)§

General Properties of Ug,

We have already discussed some of the properties of Ug; as r—0 or 0. We
try to extract further information on Ug by analyzing the equation governing{
these limits, without making detailed assumptions about V(r). Consider first the §
r—0. Assuming V(r) is less singular than 72, the equation is dominated by;

1 As we will see in a2 moment, /#0 is incompatible with the requirement that y(r)—r' as r—0."
the angular part of y has to be Y{=(4r)"'/,

§ Or compare this equation to Poisson’s equation in electrostatics V2¢=—4zp. Here p=5(r), §
represents a unit point charge at the origin. In this case we know from Coulomb’s law that ¢=1



