Robertson-Schrödinger Uncertainty Relation

$$\frac{\partial_{A}^{2}\partial_{B}^{2}}{\partial_{A}^{2}\partial_{B}^{2}} = \left\langle f|f\right\rangle \langle g|g\right\rangle = \left|\left\langle f|g\right\rangle\right|^{2} = \left|\left\langle f|g\right\rangle\right|^{2} + \left|\left\langle LA,B\right\rangle\right\rangle_{A}^{2}$$

$$\frac{\partial_{A}\partial_{B}^{2}}{\partial_{A}\partial_{B}^{2}} = \left|\frac{1}{2}\left\langle gA,gg\right\rangle_{A}^{2} - \left\langle A\right\rangle_{A}\left\langle g\right\rangle_{A}\right|^{2} + \left|\left\langle LA,B\right\rangle\right\rangle_{A}^{2}$$
Covariance

three dimensions

TDSE:
$$-\frac{\hbar^2}{2m} \nabla^2 \overline{\mathcal{I}}(\vec{r}, t) + V(\vec{r}, t) \overline{\mathcal{I}}(\vec{r}, t) = i\hbar \frac{\partial}{\partial t} \overline{\mathcal{I}}(\vec{r}, t)$$

and-order, kinear in $\overline{\mathcal{I}}$, homogeneous, Partial P. E

Laplacian $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in (an taxion coords

 $[\vec{r}_i, \hat{f}_i] = i\hbar \delta_{ij}$ e.g., $[\vec{y}_i, \hat{f}_k] = 0 | [\vec{r}_i, \hat{f}_i] = 0 = [\vec{f}_i, \hat{f}_i]$
 $\Rightarrow \sigma_x \vec{f}_x \geq \frac{\hbar}{2}$, $\sigma_y \vec{f}_y \geq \frac{\hbar}{2}$, but $\sigma_x \sigma_y \vec{r}_i$ univertiated

We saw previously the 3-dim intrufe square well,

3-dim quantum harmonic oscillatory both in Cartesian

3-dim quantum harmonic oscillatory both in Cartesian

Now spherical holar Coordinater $[n, \sigma, \theta]$
 $p = |\vec{r}| = d$ is fance from origin, θ is polar and θ
 $\theta = 0$ = North pile, $\theta = 90$ = equator, $\theta = 180^\circ = 71$ = Southfold

 θ is azimuthal angle $[0, 2\pi]$ (physics convolution)

 θ is azimuthal angle $[0, 2\pi]$ (physics convolution)

 $[aplacian]_{\vec{r}} = \frac{1}{p^2} \frac{2}{2\pi} (n^2 \frac{\partial}{\partial r}) + \frac{1}{p^2 \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta) + \frac{1}{p^2 \sin \theta}$

Assume V(r) = V(r) central potential

TISE!

$$\frac{tr}{am} \left[\frac{y}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) + \frac{R}{r^2 sin6} \frac{\partial}{\partial \theta} \left(sin 6 \frac{\partial y}{\partial \theta} \right) + \frac{R}{r^2 sin20} \frac{\partial^2 y}{\partial q^2} \right] + VRY = ERY$$

$$\frac{VRY}{tr} = ERY$$

$$\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \frac{amr^2}{h^2} \left[V(r) - E \right] + \frac{1}{2} \left[\frac{\partial}{\partial \theta} \left(sin6 \frac{\partial y}{\partial \theta} \right) + \frac{\partial^2 y}{\partial \theta^2} \right] + \frac{\partial^2 y}{\partial \theta^2}$$

$$O = \left\{ r \right\} + g(6,0) \quad \forall rib \theta \Rightarrow f(r) = constant$$

$$We could cell this first reparation constant G, het in the time will call it: $l(R+1)$ l sould be completed in the time will call it: $l(R+1)$ l sould be completed for point.

Angular Equation: $sinf \frac{\partial}{\partial \theta} \left(rinf \frac{\partial y}{\partial \theta} \right) + \frac{\partial^2 y}{\partial \theta^2} = -l(R+1)si^2 \theta Y$

Separation of V originally again: $Y(6,0) = Y(\theta)F(\theta)$

$$\left\{ \frac{1}{T} \left[sinf \frac{d}{d\theta} \left(sinf \frac{dT}{d\theta} \right) \right] + l(l+1)si^2 \theta Y + \frac{1}{T} \frac{d^2F}{d\theta^2} = 0$$$$

Function of O

12-

function of Y

Need a second separation can start: M2 compler of this point.

Azimathal Equation: $\frac{1}{F(\phi)} = -m^2 \Rightarrow F'(\phi) + m^2 F(\phi) = 0$

F(Q) = Ae imq Be imq or sine and cosine

solve the S.E. in a pie nedge solve solve the Solve the Solve of M.

Usually have the full [0,211] vange of P.

Later, when we introduce vaising and lowering aperators for angular insmentum, we will see that $l=0,\frac{1}{2},1,\frac{2}{2},2,\frac{5}{2},\ldots$ and $m=\{-l,-l+l,-...+l\}$

Right now, I want to argue that for orbital (not spin) angular momentum, in must be integer, not half integer,

If e.g. m= ½, then 4 as a function of angle 4

lanks like D twice around before repeating, but

then 4 is not single-valued, so which 4 do I use to

compute probabilities?

Also ψ can not have a jump discontinuity \mathcal{L}_{2} because $\mathcal{L}_{2} = \frac{\hbar}{\hbar} \frac{\partial}{\partial \psi}$ under be so at the jump but $\mathcal{L}_{2} = \frac{\hbar}{\hbar} \frac{\partial}{\partial \psi}$ units $m = \frac{1}{\hbar} e.g. \neq \Delta$.

Sec. 4.1: Schrödinger Equation in Spherical Coordinates

You may have encountered this equation already—it occurs in the solution to Laplace's equation in classical electrodynamics. As always, we try separation of variables:

$$Y(\theta, \phi) = \Theta(\theta)\Phi(\phi). \tag{4.19}$$

125

Plugging this in, and dividing by $\Theta\Phi$, we find

$$\left\{ \frac{1}{\Theta} \left[\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) \right] + l(l+1) \sin^2 \theta \right\} + \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = 0.$$

The first term is a function only of θ , and the second is a function only of ϕ , so each must be a constant. This time I'll call the separation constant m^2 :

$$\frac{1}{\Theta} \left[\sin \theta \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) \right] + l(l+1) \sin^2 \theta = m^2; \tag{4.20}$$

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = -m^2. \tag{4.21}$$

The ϕ equation is easy:

easy:
$$\frac{d^2\Phi}{d\phi^2} = -m^2\Phi \Rightarrow \Phi(\phi) = e^{im\phi}. \frac{twn}{and order} \frac{because}{di[4.22]}$$
olutions: $\exp(im\phi)$ and $\exp(-im\phi)$, but we'll cover the latter

[Actually, there are two solutions: $\exp(im\phi)$ and $\exp(-im\phi)$, but we'll cover the latter by allowing m to run negative. There could also be a constant factor in front, but we might as well absorb that into Θ . Incidentally, in electrodynamics we would write the azimuthal function (Φ) in terms of sines and cosines, instead of exponentials, because electric potentials must be real. In quantum mechanics there is no such constraint, and the exponentials are a lot easier to work with.] Now, when ϕ advances by 2π , we return to the same point in space (see Figure 4.1), so it is natural to require that

$$\Phi(\phi + 2\pi) = \Phi(\phi). \tag{4.23}$$

In other words, $\exp[im(\phi + 2\pi)] = \exp(im\phi)$, or $\exp(2\pi im) = 1$. From this it follows that m must be an *integer*:

$$m = 0, \pm 1, \pm 2, \dots$$
 [4.24]

In EFM: DEV(r)=0 Laplace's Equation
for electric potential = voltage V(etat)=Va
because V(r) is measurable with a voltmeter
but werefunction V is not measurable,

⁴Again, there is no loss of generality here since at this stage m could be any complex number; in a moment, though, we will discover that m must in fact be an *integer*. Beware: The letter m is now doing double duty, as mass and as the so-called **magnetic quantum number**. There is no graceful way to avoid this since both uses are standard. Some authors now switch to M or μ for mass, but I hate to change notation in midstream, and I don't think confusion will arise as long as you are aware of the problem.

⁵This is a more subtle point than it looks. After all, the *probability* density $(|\Phi|^2)$ is single valued regardless of m. In Section 4.3 we'll obtain the condition on m by an entirely different—and more compelling—argument.

Polar Equation SIND & [sint dTO)] + [ll+1)sin 20 -m2]T(6) = 0 Associated Legendre Difterential Equation and_order: T(6)= C Pe (cos6) + D Qe (cos6)

first second

associated legendre functions of the ____ type The Pe are complete and orthogonal by themselves span the Hilbert space; Que not necessary, Qe functions -> as at North & South Bles. Radial Equation 1 dr (r2 dR) - 2mr2 [V(r)-E] = ll+1) Define: u(r) = r R(r) $-\frac{t^2}{am} \frac{d^2 u(r)}{dr^2} + \int V(r) + \frac{t^2}{am} \frac{\ell(\ell+1)}{r^2} u(r) = E u(r)$ Looks like 1-dim Schvödinger Eq. nith u(r)=4(r) and $V_{eff}(r) = V(r) + \frac{\hbar^2}{am} \frac{l(R+1)}{r^2}$ contribugal term (repulsive)

Table 4.2: The first few spherical harmonics, $Y_I^m(\theta, \phi)$.

$$Y_0^0 = \left(\frac{1}{4\pi}\right)^{1/2} \qquad Y_2^{\pm 2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta e^{\pm 2i\phi}$$

$$Y_1^0 = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta \qquad Y_3^0 = \left(\frac{7}{16\pi}\right)^{1/2} (5\cos^3\theta - 3\cos\theta)$$

$$Y_1^{\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin\theta e^{\pm i\phi} \qquad Y_3^{\pm 1} = \mp \left(\frac{21}{64\pi}\right)^{1/2} \sin\theta (5\cos^2\theta - 1) e^{\pm i\phi}$$

$$Y_2^0 = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1) \qquad Y_3^{\pm 2} = \left(\frac{105}{32\pi}\right)^{1/2} \sin^2\theta \cos\theta e^{\pm 2i\phi}$$

$$Y_2^{\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta e^{\pm i\phi} \qquad Y_3^{\pm 3} = \mp \left(\frac{35}{64\pi}\right)^{1/2} \sin^3\theta e^{\pm 3i\phi}$$

$$Y_{l}^{m}(\theta,\phi) = \epsilon \sqrt{\frac{(2l+1)(l-|m|)!}{4\pi(l+|m|)!}} e^{im\phi} P_{l}^{m}(\cos\theta),$$
 [4.32]

where $\epsilon = (-1)^m$ for $m \ge 0$ and $\epsilon = 1$ for $m \le 0$. As we shall prove later on, they are automatically orthogonal, so

Griffifus
$$\int_0^{2\pi} \int_0^{\pi} [Y_l^m(\theta,\phi)]^* [Y_{l'}^{m'}(\theta,\phi)] \sin\theta \, d\theta \, d\phi = \delta_{ll'} \delta_{mm'}.$$
 [4.33]

In Table 4.2 I have listed the first few spherical harmonics.

*Problem 4.3 Use Equations 4.27, 4.28, and 4.32 to construct Y_0^0 and Y_2^1 . Check that they are normalized and orthogonal.

Problem 4.4 Show that

$$\Theta(\theta) = A \ln[\tan(\theta/2)] \quad \ll \quad \mathcal{O}_{\circ} \quad (\text{cos} \, \theta)$$

Problem 4.4 Show that $\Theta(\theta) = A \ln[\tan(\theta/2)] \quad \text{(ass.)}$ satisfies the θ equation (Equation 4.25) for l = m = 0. This is the unacceptable "second solution"—what's wrong with it? Instring; it is nor malic rachle, *Problem 4.5 Using Equation 4.32, find $Y_l^2(\theta, \phi)$ and $Y_3^2(\theta, \phi)$. Check that they satisfy the angular equation (Equation 4.18), for the appropriate values of the parameters l and m.

**Problem 4.6 Starting from the Rodrigues formula, derive the orthonormality condition for Legendre polynomials: $\int_{-1}^{1} P_l(x) P_{l'}(x) dx = \left(\frac{2}{2l+1}\right) \delta_{ll'}.$ [4.34]

*Hint: Use integration by parts.

$$\int_{-1}^{1} P_l(x) P_{l'}(x) dx = \left(\frac{2}{2l+1}\right) \delta_{ll'}.$$
 [4.34]

Hint: Use integration by parts.

Finite Spherical Square Well step furction $V(r) = \begin{cases} -V_0, & r \leq a \end{cases} = -V_0 \theta(a-r)$ $V(r) = \begin{cases} 0, & r > a \end{cases}$ Remember for 1-dim finite square well -Vo always has at least one bound colution, no matter now shallow or navrou the well. Future himonoph: Show that in 3 dimensions, those is not always a bound state. For l=0 u(r)= A sin (kr) + B cos(kr) $R(r) = \frac{u(r)}{r} \qquad \lim_{n \to \infty} \frac{\sin(kr)}{r} \to k \qquad \lim_{n \to \infty} \frac{\cos(kr)}{r} \to \frac{1}{r}$

I is integrable when multiplied by the measure:

1 15 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 13 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when multiplied by the measure:

1 12 5 integrable when the multiplied by the measure:

1 12 5 integrable when the multiplied by the measure:

1 12 5 integrable when the multiplied by the measure:

1 12 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integrable when the multiplied by the multiplied by the measure:

1 13 5 integrable when the multiplied by the measure:

1 13 5 integ

what? the 12 southern.

where

Griffiths QM

$$k \equiv \frac{\sqrt{2mE}}{\hbar},\tag{4.42}$$

as usual. Our problem is to solve this equation, subject to the boundary condition u(a) = 0. The case l = 0 is easy:

$$\frac{d^2u}{dr^2} = -k^2u \quad \Rightarrow \ u(r) = A\sin(kr) + B\cos(kr).$$

But remember, the actual radial wave function is R(r) = u(r)/r, and $[\cos(kr)]/r$ blows up as $r \to 0$. So we must choose B = 0. The boundary condition then requires $\sin(ka) = 0$, and hence $ka = n\pi$, for some integer n. The allowed energies are evidently

$$E_{n0} = \frac{n^2 \pi^2 \hbar^2}{2ma^2}, \quad (n = 1, 2, 3, ...),$$
 [4.43]

the same as for the one-dimensional infinite square well (Equation 2.23). Normalizing u(r) yields $A = \sqrt{2/a}$; inclusion of the angular part (constant, in this instance, since $Y_0^0(\theta, \phi) = 1/\sqrt{4\pi}$), we conclude that

$$\psi_{n00} = \frac{1}{\sqrt{2\pi a}} \frac{\sin(n\pi r/a)}{r}.$$
 [4.44]

[Notice that the stationary states are labeled by three quantum numbers, n, l, and m: $\psi_{nlm}(r, \theta, \phi)$. The energy, however, depends only on n and l: E_{nl} .]

The general solution to Equation 4.41 (for an arbitrary integer l) is not so familiar:

$$u(r) = Arj_l(kr) + Brn_l(kr), [4.45]$$

where $j_l(x)$ is the spherical Bessel function of order l, and $n_l(x)$ is the spherical Neumann function of order l. They are defined as follows:

$$j_l(x) \equiv (-x)^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{\sin x}{x}; \quad n_l(x) \equiv -(-x)^l \left(\frac{1}{x} \frac{d}{dx}\right)^l \frac{\cos x}{x}. \quad [4.46]$$

For example,

$$j_0(x) = \frac{\sin x}{x}; \quad n_0(x) = -\frac{\cos x}{x};$$

$$j_1(x) = (-x)\frac{1}{x}\frac{d}{dx}\left(\frac{\sin x}{x}\right) = \frac{\sin x}{x^2} - \frac{\cos x}{x};$$

¹⁰Actually, all we require is that the wave function be *normalizable*, not that it be *finite*: $R(r) \sim 1/r$ at the origin *would* be normalizable (because of the r^2 in Equation 4.31). For a more compelling proof that B = 0, see R. Shankar, *Principles of Quantum Mechanics* (New York: Plenum, 1980), p. 351. 342

CHAPTER 12

Shankar QM

$$R \sim \frac{U}{r} \sim \frac{c}{r}$$

diverges at the origin. This in itself is not a disqualification, for R is still sintegrable. The problem with $c \neq 0$ is that the corresponding total wave function

$$\psi \sim \frac{c}{r} Y_0^0$$

does not satisfy Schrödinger's equation at the origin. This is because of the re

$$\nabla^2(1/r) = -4\pi \delta^3(\mathbf{r}) \tag{1}$$

the proof of which is taken up in Exercise 12.6.4. Thus unless V(r) contains a function at the origin (which we assume it does not) the choice $c \neq 0$ is unter Thus we deduce that

$$U_{EI} \xrightarrow{r \to 0} 0$$
 (12.

Exercise 12.6.4.* (1) Show that

$$\delta^{3}(\mathbf{r}-\mathbf{r}') \equiv \delta(x-x')\delta(y-y')\delta(z-z') = \frac{1}{r^{2}\sin\theta}\delta(r-r')\delta(\theta-\theta')\delta(\phi-\phi')$$

(consider a test function).

(2) Show that

$$\nabla^2(1/r) = -4\pi \delta^3(\mathbf{r})$$

(Hint: First show that $\nabla^2(1/r) = 0$ if $r \neq 0$. To see what happens at r = 0, consider a sphere centered at the origin and use Gauss's law and the identity $\nabla^2 \phi = \nabla \cdot \nabla \phi$).

General Properties of U_{El}

We have already discussed some of the properties of U_{El} as $r \to 0$ or ∞ . We try to extract further information on U_{El} by analyzing the equation governing these limits, without making detailed assumptions about V(r). Consider first the $r \to 0$. Assuming V(r) is less singular than r^{-2} , the equation is dominated by

[‡] As we will see in a moment, $l \neq 0$ is incompatible with the requirement that $\psi(r) \rightarrow r^{-1}$ as $r \rightarrow 0$. the angular part of ψ has to be $Y_0^0 = (4\pi)^{-1/2}$.

[§] Or compare this equation to Poisson's equation in electrostatics $\nabla^2 \phi = -4\pi \rho$. Here $\rho = \delta^3(\mathbf{r})$, represents a unit point charge at the origin. In this case we know from Coulomb's law that $\phi = 1$