Phonons II - Thermal Properties (Kittel Ch. 5)

Heat capacity

- Heat capacity is the measure of how much energy it takes to raise the temperature of a unit mass of an object a certain amount.
- Two heat capacities: constant volume, C_{V}, and constant pressure, C_{P}. For a gas $C_{P}>C_{V}$. For a solid $C_{P} \approx C_{V}$.
- The contribution of the phonons (lattice vibrations) to the heat capacity of a crystal is called the lattice heat capacity.
- Classical result: $C \approx 3 \mathrm{NN}_{\text {cell }} \mathrm{k}_{\mathrm{B}}$, where N is the number of atoms in a unit cell and $\mathrm{N}_{\text {cell }}$ is the number of cells in the crystal.

Lattice heat capacity

- The heat that goes into a solid to raise its temperature shows up as internal vibrational energy U (phonons).
- Determine $\mathrm{U}(\mathrm{T})$, then we can calculate $\mathrm{C}_{\mathrm{V}}=(\partial \mathrm{U} / \partial \mathrm{T})_{\mathrm{V}}$.
- In calculating U we need to consider the following:
- (1) what is the average energy of each phonon;
- (2) what is the average number of phonons existing at any T for each type (mode) of vibration;
- (3) how many different types (modes) of vibration are there.

Quantization of vibration waves

- Vibrations in a crystal are independent waves, each labeled by k.
- There are 3 N wave types in a 3D crystal with N atoms per cell
- Each independent harmonic oscillator has quantized energies:

$$
\mathrm{E}_{\mathrm{n}}=(\mathrm{n}+1 / 2) \mathrm{h} v=(\mathrm{n}+1 / 2) \hbar \omega
$$

- Quanta are called phonons, each phonon carries energy $\hbar \omega$
- These can be viewed as particles
- For each independent oscillator (i.e., for each independent wave in a crystal), there can be any integer number of phonons
- Need to find out the average number of phonons and the average energy associated with each independent oscillator (mode).

Thermal Properties - Key Points

- Fundamental law of a system in thermal equilibrium: If two states of the system have total energies E_{1} and E_{2}, then the ratio of probabilities for finding the system in states 1 and 2 is $\mathrm{P}_{1} / \mathrm{P}_{2}=\exp \left(-\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ where k_{B} is the Boltzman constant
- Larger probability of smaller energy
- Applies to all systems - whether classical or quantum and whether the particles are bosons (like phonons) or fermions (like electrons)

Thermal Properties - Phonons

- Phonons are examples of bosons.
- There can be any number n phonons for each oscillator, i.e., the energy of each oscillator can be $E_{n}=(n+1 / 2) \dagger \omega, n=$ 0,1,2,. . .

The probability of finding an oscillator with n phonons (and not another value)

$$
\mathrm{P}_{\mathrm{n}}=\exp \left(-\mathrm{E}_{\mathrm{n}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right) / \sum_{\mathrm{n}^{\prime}=0}^{\infty} \exp \left(-\mathrm{E}_{\mathrm{n}^{\prime}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)
$$ and the average phonon occupation is

$$
\begin{aligned}
& <\mathrm{n}>=\sum_{\mathrm{n}=0}^{\infty} \mathrm{P}_{\mathrm{n}} \mathrm{n} \\
& =\sum_{\mathrm{n}=0} \mathrm{n} \exp \left(-\mathrm{E}_{\mathrm{n}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right) / \sum_{\mathrm{n}^{\prime}=0}^{\infty} \exp \left(-\mathrm{E}_{\mathrm{n}^{\prime}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)
\end{aligned}
$$

Planck Distribution

- Using the formulas: $1 /(1-x)=\sum_{s=0} X^{s}$ and $x /(1-x)^{2}=\sum_{s=0}^{\infty} S X^{s}$

$$
\text { <n> = } 1 /\left[\exp \left(\hbar \omega / k_{B} T\right)-1\right] \text { Planck Distribution }
$$

Average energy of an oscillator at temperature T:

$$
\begin{aligned}
\mathrm{U} & =\langle(\mathrm{n}+1 / 2) \hbar \omega\rangle=\hbar \omega(<\mathrm{n}\rangle+1 / 2) \\
& =\hbar \omega\left(1 /\left[\exp \left(\hbar \omega / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)-1\right]+1 / 2\right)
\end{aligned}
$$

- At high T, U $\rightarrow \hbar \omega /\left[\hbar \omega / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right] \rightarrow \mathrm{k}_{\mathrm{B}} \mathrm{T}$ which is the classical result

Total thermal energy of a crystal

- The crystal is a sum of independent oscillators (in the harmonic approximation). The independent oscillators are waves labeled by $\underline{\mathrm{k}}$ and an index $\mathrm{m}=1, \ldots, 3 \mathrm{~N}$. Therefore, the total energy of the crystal is:

$$
\begin{array}{cc}
\mathrm{U}=\mathrm{U}_{0}{ }^{\leftarrow} \text { Fixed atoms } & \text { 3 dimensions } \backslash \\
\sum_{\underline{\mathrm{k}, \mathrm{~m}}} \hbar \omega_{\mathrm{k}, \mathrm{~m}}\left(1 /\left[\exp \left(\hbar \omega_{\mathrm{k}, \mathrm{~m}} / \mathrm{k}_{\mathrm{B}} \mathrm{~T}\right)\right.\right. & -1]+1 / 2) \\
\text { Added thermal energy } & \text { Zero point energy }
\end{array}
$$

Question: How to do the sum over $\underline{\mathbf{k}}$??

Sum over vibration modes of a crystal

- The sum over $\underline{\mathrm{k}}$ and the index $\mathrm{m}=1, \ldots, 3 \mathrm{~N}$ can be thought of as follows:
One \underline{k} point for each unit cell
The index m counts the atoms per unit cell N multiplied by the number of independent ways each atoms can move (3 in 3D).
- The entire crystal has $3 \mathrm{~N}_{\mathrm{cell}}$ degrees of freedom(i.e. number of ways the atoms can move). This must not change when we transform to the independent oscillators.

1D, two boundary conditions

- Demonstration that the sum over \underline{k} is equivalent to one \underline{k} point for each unit cell
- N atoms at separation $a, u_{s}=u \exp \left(i k(s a)-i \omega_{k, m} t\right)$
- Fixed boundary conditions: $\mathrm{u}_{0}=\mathrm{u}_{\mathrm{N}}=0$
- Standing waves only
- Possible k values: $\mathrm{k}=\pi / \mathrm{Na}, 2 \pi / \mathrm{Na}, . . \mathrm{n} \pi / \mathrm{Na},(\mathrm{N}-1) \pi / \mathrm{Na}$
- One k value per mobile atom, one k value per cell
- Periodic boundary conditions: $\mathrm{u}_{\mathrm{s}}=\mathrm{u}_{\mathrm{N}+\mathrm{s}}$
- traveling waves, need $\mathrm{kNa}=+-2 \mathrm{n} \pi$
- Possible k values: $\mathrm{k}=0,+-2 \pi / \mathrm{Na},+-4 \pi / \mathrm{Na}, . .2 \mathrm{n} \pi / \mathrm{Na}$
- One k value per mobile atom, one k value per cell

Density of states

- All we need is the number of states per unit energy, and we can integrate over energy to find the thermal quantities
- Total energy $U=\sum_{k=1}^{N_{\text {con }}} \sum_{m=1}^{3 N} \frac{\hbar \omega_{k, m}}{\exp \left(\hbar \omega_{k, m} / k_{B} T\right)-1}$
- We know that there are $\mathrm{N}_{\text {cell }}$ possible k values
- In a large crystal one can replace the sum over k with an integral
- Since ω and k are related by the dispersion relation we can change variables

$$
U=\sum_{m} \int d \omega D_{m}(\omega) \frac{\hbar \omega}{\exp \left(\hbar \omega / k_{B} T\right)-1}
$$

- $\mathrm{D}_{\mathrm{m}}(\omega) \mathrm{d} \omega$ - number of modes (states) in frequency range ω to $\omega+\mathrm{d} \omega$

Relation between k and ω

- Total energy $U=\sum_{m} \int d \omega D_{m}(\omega) \frac{\hbar \omega}{\exp \left(\hbar \omega / k_{B} T\right)-1}$
- $\mathrm{D}_{\mathrm{m}}(\omega) \mathrm{d} \omega$ - number of modes (states) in frequency range ω to $\omega+d \omega$ for branch m dispersion relation: $\omega_{\mathrm{k}}=2(\mathrm{C} / \mathrm{M})^{1 / 2}|\sin (\mathrm{ka} / 2)|$
- Modes in interval (ω, k, E) to $(\omega+\Delta \omega, k+\Delta k, E+\Delta E)$ $\Delta \mathrm{N}=\mathrm{D}(\omega) \Delta \omega=\mathrm{N}(\mathrm{k}) \Delta \mathrm{k}=\mathrm{N}(\mathrm{E}) \Delta \mathrm{E}$

$$
D(\omega) d \omega=N(k) \frac{d k}{d \omega} d \omega=\frac{N(k)}{v_{g}} d \omega
$$

Group velocity

Density of states in 1D

- $\mathrm{D}_{\mathrm{m}}(\omega) \mathrm{d} \omega$ - number of modes (states) in frequency range ω to $\omega+\mathrm{d} \omega$

$$
D(\omega) d \omega=\frac{N(k)}{v_{g}} d \omega
$$

- $\mathrm{N}(\mathrm{k})$ - number of modes per unit range of k
- number of modes between $-\pi / \mathrm{a}<\mathrm{k}<\pi / \mathrm{a}=\mathrm{N}=\mathrm{L} / \mathrm{a}$ (the number of atoms)
- $\mathrm{N}(\mathrm{k})=\mathrm{N} /(2 \pi / \mathrm{a})$

$$
D(\omega) d \omega=\frac{N a}{2 \pi} \frac{1}{v_{g}} d \omega=\frac{L}{2 \pi} \frac{1}{v_{g}} d \omega
$$

Possible wavevectors in 3D

- Assume $\mathrm{N}_{\text {cell }}=\mathrm{n}^{3}$ primitive cells, each a cube of side a
- volume of the crystal $\mathrm{V}=(\mathrm{na})^{3}=\mathrm{L}^{3}$
- vibrations: $\overrightarrow{u_{s}}=\vec{u} \exp \left(\vec{k} \cdot \vec{r}-i \omega_{\vec{k} m} t\right)$

$$
\vec{r}=x \dot{i}+y \vec{j}+z \vec{k} \quad \vec{k}=k_{x} \dot{i}+k_{y} \vec{j}+k_{z} \vec{k}
$$

- periodic boundary conditions:

$$
\begin{aligned}
& \exp \left[i\left(k_{x} x+k_{y} y+k_{z} z\right)\right]=\exp \left\{i\left[k_{x}(x+L)+k_{y}(y+L)+k_{z}(z+L)\right]\right\} \\
& \mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}, \mathrm{k}_{\mathrm{z}}=0,+-2 \pi / \mathrm{L},+-4 \pi / \mathrm{L}, . .2 \mathrm{~m} \pi / \mathrm{L} \quad \text { na }=\mathrm{L}
\end{aligned}
$$

- There is one allowed value of $\underline{\mathbf{k}}$ in each volume $(2 \pi / L)^{3}=8 \pi^{3} / \mathrm{V}$
V - volume of the crystal

Density of states in 3D

- one allowed value of $\underline{\mathbf{k}}$ per volume $8 \pi^{3} / \mathrm{V}$
- $\mathrm{D}(\omega) \mathrm{d} \omega$ - number of modes (states) in frequency range ω to $\omega+\mathrm{d} \omega$

$$
\Delta \mathrm{N}=\mathrm{D}(\omega) \Delta \omega=\mathrm{N}(\underline{\mathbf{k}}) \Delta \underline{\mathbf{k}}
$$

In a cubic lattice the 1D dispersion relation holds - ω only depends on k - spherical symmetry

$$
\begin{aligned}
& D(\omega) d \omega=N(\vec{k}) 4 \pi \mathbf{k}^{2} \frac{d \boldsymbol{k}}{d \omega} d \omega \\
& \mathrm{~N}(\underline{\mathbf{k}})=\mathrm{V} / 8 \pi^{3}
\end{aligned}
$$

- $\mathrm{D}(\omega)=\mathrm{k}^{2} \mathrm{~V} / 2 \pi^{2} \mathrm{dk} / \mathrm{d} \omega$

Heat Capacity

- The internal energy is found by summing over all modes

$$
U=\sum_{m} \int d \omega D_{m}(\omega) \frac{\hbar \omega}{\exp \left(\hbar \omega / k_{B} T\right)-1}
$$

- The heat capacity is found by differentiating U with respect to temperature, $\mathrm{C}=\mathrm{dU} / \mathrm{dT}$

$$
C=k_{B} \sum_{m} \int d \omega D_{m}(\omega) \frac{x^{2} \exp (x)}{[\exp (x)-1]^{2}} \quad x=\frac{\hbar \omega}{k_{B} T}
$$

- Need to express $\mathrm{D}(\omega)$ and $\mathrm{d} \omega$ as a function of x to do the integral

Debye Approximation

- Approximate crystal with an elastic continuum,
- $\omega=\mathrm{vk}$ ($\mathrm{v}=$ sound velocity)
- In 3D cubic crystal $\mathrm{D}(\omega)=\mathrm{k}^{2} \mathrm{~V} / 2 \pi^{2} \mathrm{dk} / \mathrm{d} \omega$
- $\mathrm{D}(\omega)=\mathrm{V} \omega^{2} / 2 \pi^{2} \mathrm{v}^{3}$
- In this approximation the maximum ω is not known, we need to determine it from the fact that there are $\mathrm{N}_{\text {cell }}$ modes in each branch

$$
\int_{\omega=0}^{\omega_{D}} d \omega D(\omega)=N_{\text {cell }}
$$

- $\omega_{\mathrm{D}}{ }^{3}=6 \pi^{2} \mathrm{v}^{3} \mathrm{~N}_{\text {cell }} / \mathrm{V}$

$$
\mathrm{N}_{\text {cell }} / \mathrm{V}=1 / \mathrm{V}_{\text {cell }}
$$

- maximum wavevector $\mathrm{k}_{\mathrm{D}}=\omega_{\mathrm{D}} / \mathrm{v}=\left(6 \pi^{2} \mathrm{~N}_{\text {cell }} / \mathrm{V}\right)^{1 / 3}$

Debye temperature

- Thermal energy (3 polarizations)

$$
\begin{gathered}
U=3 \int_{0}^{\omega_{D}} d \omega D(\omega) \frac{\hbar \omega}{\exp \left(\hbar \omega / k_{B} T\right)-1}=\frac{3 V k_{B}^{4} T^{4}}{2 \pi^{2} \mathrm{v}^{3} \hbar^{3}} \int_{0}^{x_{D}} d x \frac{x^{3}}{\exp (x)-1} \\
x_{D}=\frac{\hbar \omega_{D}}{k_{B} T}=\frac{\theta}{T}
\end{gathered}
$$

- Characteristic Debye temperature $\theta=\hbar \mathrm{V} / \mathrm{k}_{\mathrm{B}}\left(6 \pi^{2} \mathrm{~N}_{\text {cell }} / \mathrm{V}\right)^{1 / 3}$

$$
\begin{aligned}
U & =9 N_{\text {cell }} k_{B} T\left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} d x \frac{x^{3}}{\exp (x)-1} \\
C_{V} & =9 N_{\text {cell }} k_{B}\left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} d x \frac{x^{4} \exp (x)}{(\exp (x)-1)^{2}}
\end{aligned}
$$

Ex. Debye temperature $\theta=\hbar \mathrm{V} / \mathrm{k}_{\mathrm{B}}\left(6 \pi^{2} \mathrm{~N}_{\text {cell }} / \mathrm{V}\right)^{1 / 3}$
What material characteristics does the Debye temperature depend on?

Limits of heat capacity in the Debye appr.

$$
C_{V}=9 N_{\text {cell }} k_{B}\left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} d x \frac{x^{4} \exp (x)}{(\exp (x)-1)^{2}}
$$

- For $T \gg \theta, x_{D} \rightarrow 0, \exp (x) \sim 1+x$
$\mathrm{C}_{\mathrm{V}} \sim 3 \mathrm{~N}_{\text {cell }} \mathrm{k}_{\mathrm{B}}$ - equal to classical limit
- For $\mathrm{T} \ll \theta, \mathrm{x}_{\mathrm{D}} \rightarrow \infty$,
$C_{V}=9 N_{\text {cell }} k_{B}\left(\frac{T}{\theta}\right)^{3} \int_{0}^{\infty} d x \frac{x^{4} \exp (x)}{(\exp (x)-1)^{2}}=9 N_{\text {cell }} k_{B}\left(\frac{T}{\theta}\right)^{3} \frac{4 \pi^{4}}{15}$
$\mathrm{C}_{\mathrm{V}} \sim \mathrm{T}^{3}$

Debye Approximation

$$
C_{V}=9 N_{\text {cell }} k_{B}\left(\frac{T}{\theta}\right)^{3} \int_{0}^{x_{D}} d x \frac{x^{4} \exp (x)}{(\exp (x)-1)^{2}}
$$

C_{v} has correct general behavior that must be found in all crystals. For 3 dimensions

Einstein Approximation

- The Debye approximation is valid for acoustic modes
- For optic modes one can assume a constant frequencyEinstein approximation

Einstein Approximation

- Assume each oscillator has $\omega=\omega_{0}$
- $\mathrm{D}(\omega)=\mathrm{N}_{\text {cell }} \delta\left(\omega-\omega_{0}\right)$

$$
\begin{aligned}
U & =3 N_{\text {cell }} \frac{\hbar \omega_{0}}{\exp \left(\hbar \omega_{0} / k_{B} T\right)-1} \\
C_{V} & =3 N_{\text {cell }} k_{B}\left(\frac{\hbar \omega_{0}}{k_{B} T}\right)^{2} \frac{\exp \left(\hbar \omega_{0} / k_{B} T\right)}{\left(\exp \left(\hbar \omega_{0} / k_{B} T\right)-1\right)^{2}}
\end{aligned}
$$

- For $T \rightarrow 0, \mathrm{C}_{\mathrm{V}} \sim \exp \left(-\mathrm{h} \omega / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
- For $\mathrm{T} \gg 0, \mathrm{C}_{\mathrm{V}} \sim 3 \mathrm{~N}_{\text {cell }} \mathrm{k}_{\mathrm{B}}$ - equal to classical limit

General expression for $\mathrm{D}(\omega)$

- In 1D $\boldsymbol{D}(\omega)=\frac{N(k)}{v_{g}}, \mathrm{v}_{\mathrm{g}}=$ group velocity
- In 3D $\Delta \mathrm{N}=\mathrm{D}(\omega) \Delta \omega=\mathrm{N}(\underline{\mathbf{k}}) \Delta \underline{\mathbf{k}}$

$$
D(\omega) d \omega=N(\vec{k}) \int_{\text {shell }} d^{3} k
$$

- integral over the volume of the shell in $\underline{\mathrm{k}}$ space bounded by the surfaces with ω and $\omega+\mathrm{d} \omega$

$$
\begin{aligned}
& \int_{\text {shell }} d^{3} k=\int d S_{\omega} d k_{\perp}=\int d S_{\omega} \frac{d \omega}{v_{g}} \quad v_{g}=\left|\Delta_{\vec{k}} \omega\right| \\
& D(\omega)=\frac{V}{(2 \pi)^{3}} \int_{\text {shell }} \frac{d S_{\omega}}{v_{g}} \quad \text { integral over } \omega=\text { const surface }
\end{aligned}
$$

- $\mathrm{v}_{\mathrm{g}}=0$ - Van Hove singularities

$$
D(\omega)=\frac{V}{(2 \pi)^{3}} \int_{\text {shell }} \frac{d S_{\omega}}{v_{g}}
$$

- Plot the density of states as a function of ω for a Debye solid, $\mathrm{D}(\omega)=\mathrm{V} \omega^{2} / 2 \pi^{2} \mathrm{v}^{3}$
- How does this plot change for an actual crystal structure?

Energy \& Force due to Displacements

- The energy of the crystal changes if the atoms are displaced.
- The change in energy can be written as a function of the positions of all the atoms:

$$
\mathrm{E}\left(\underline{\mathrm{R}}_{1}, \underline{\mathrm{R}}_{2}, \underline{\mathrm{R}}_{3}, \ldots\right)=\mathrm{E}\left(\underline{\mathrm{R}}_{1}^{0}+\Delta \underline{\mathrm{R}}_{1}, \underline{\mathrm{R}}_{2}^{0}+\Delta \underline{\mathrm{R}}_{2}, \ldots\right)
$$

- To lowest order in the displacements the energy is quadratic - Hooke's law - harmonic limit
$\mathrm{E}=\mathrm{E}_{0}+(1 / 2) \Sigma_{\mathrm{ij}} \Delta \underline{\mathrm{R}}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i} j} \cdot \Delta \underline{\mathrm{R}}_{\mathrm{j}}+\ldots$.
(There are no linear terms if we expand about the equilibrium positions)

Consequences of anharmonicity

- If we expand the energy beyond the harmonic order:

$$
\begin{aligned}
& E=E_{0}+(1 / 2) \Sigma_{i j} \Delta \underline{R}_{i} \cdot D_{i j} \cdot \Delta \underline{R}_{j}+ \\
& (1 / 6) \Sigma_{i j k} D_{i j k} \cdot \Delta \underline{R}_{i} \Delta \underline{R}_{j} \Delta \underline{R}_{k}+\ldots
\end{aligned}
$$

ఒ Difficult and Messy

- The problem is fundamentally changed:

No longer exactly solvable

- Consequences:

There is thermal expansion and other changes with temperature
The heat capacity is not constant at high T
Phonons decay in time
Two phonons can interact to create a third
Phonons can establish thermal equilibrium and conduct heat like a "gas" of particles

From Before

Inelastic Scattering and Fourier Analysis

Inelastic diffraction occurs for

$$
\begin{aligned}
& \underline{k}_{\text {in }}-\underline{k}_{\text {out }}=\underline{G} \pm \underline{k}_{\text {phonon }} \\
& \omega_{\text {in }}-\omega_{\text {out }}= \pm \omega_{\text {phonon }} \text { or } \quad \mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\text {out }}= \pm \boldsymbol{\mathrm { h }} \omega_{\text {phonon }}
\end{aligned}
$$

Scattering of Phonons - I

- The same idea applies to phonons. One phonon can scatter to create two.
- Scattering can occur for

$$
\begin{aligned}
\underline{\mathbf{k}}_{\text {in phonon }} & =\mathbf{k}_{\text {out phonon } 1}+\underline{\mathbf{k}}_{\text {out phonon } 2} \pm \underline{\mathbf{G}} \\
\omega_{\text {in phonon }} & =\omega_{\text {out phonon } 1}+\omega_{\text {out phonon } 2}
\end{aligned}
$$

Scattering of Phonons - II

- Two phonons can interact to create one.
- This is called "up conversion (umklapp)", which can be done with intense phonon beams and occurs for

$$
\begin{aligned}
& \underline{\mathbf{k}}_{\text {out phonon }}=\underline{\mathbf{k}}_{\text {in phonon } 1}+\underline{\mathbf{k}}_{\text {in phonon } 2} \pm \underline{\mathbf{G}} \\
& \omega_{\text {out phonon }}=\omega_{\text {in phonon } 1}+\omega_{\text {in phonon } 2}
\end{aligned}
$$

Thermal expansion

- The energy of a pair of atoms depends on the displacement x from their equilibrium separations, $U(x)=c x^{2}-g x^{3}-f x^{4}$
- The average displacement $\langle\mathrm{x}\rangle$ is determined by the condition that the average force vanishes.
- In the harmonic approximation $\mathrm{F}=\mathrm{cx}$. Therefore $<\mathrm{x}>=0$, $<\mathrm{F}>=0$, and there is no thermal expansion
- Anharmonicity adds additional terms: $\mathrm{F}=\mathrm{cx}-1 / 2 \mathrm{~g} \mathrm{x}{ }^{2}-\ldots,<\mathrm{F}>=0 \Rightarrow<\mathrm{x}>=1 / 2(\mathrm{~g} / \mathrm{c})<\mathrm{x}^{2}>$
- In general, this means thermal expansion.

Thermal expansion

Distance Between Atoms

Characterizing thermal dilation

- Average displacement of atoms, $<x>$

$$
\langle x\rangle=\frac{\int_{-\infty}^{\infty} d x \operatorname{xexp}\left[-U(x) / k_{B} T\right]}{\int_{-\infty}^{\infty} d x \exp \left[-U(x) / k_{B} T\right]} \cong \frac{3 g}{4 c^{2}} k_{B} T
$$

- $\mathrm{U}(\mathrm{x})$ - potential energy of a pair of atoms.
- Thermal expansion of a crystal or cell: $\delta=\mathrm{dV} / \mathrm{V}$
- For cubic crystals $\mathrm{dV} / \mathrm{V}=3 \mathrm{dx} / \mathrm{x}$

From the theory of elastic media:

- Potential energy of a unit cell due to dilation: $\mathrm{U}_{\text {cell }}(\mathrm{T})=\mathrm{V}_{\text {cell }} \mathrm{B} \delta^{2} / 2$, where B is the bulk modulus

Transport of heat in an ordinary gas

- Molecules move in all directions and scatter so that they come to local thermal equilibrium in each region.
- How can random motion cause heat flow in one direction?
- On average, in hotter regions molecules have more kinetic energy. A molecule that moves from a hotter region to a colder one brings energy above the local average. The opposite for a molecule moving from a colder to a hotter region. Either way, there is transport of energy from hotter to colder regions.

$\xrightarrow[\text { Heat Flow }]{ }$

Phonons also act like a gas

- A phonon is a particle - a quantum of vibration
- It carries energy just like a molecule.
- Phonons can come to equilibrium by scattering just like molecules (phonon scattering is due to defects and to anharmonicity).
- What is different?

Phonons can be created and destroyed. But we will see that we can treat them exactly like gas.

$\overrightarrow{\text { Heat Flow }}$

Thermal conductivity of phonons

- Definition: $\mathrm{j}=$ heat flow (energy per unit area per unit time) = - K dT/dx; $\quad \mathrm{K}$ - thermal conductivity
- If a phonon moves from a region with local temperature T to one with local temperature $\mathrm{T}-\Delta \mathrm{T}$, it supplies excess energy c $\Delta \mathrm{T}$, where $\mathrm{c}=$ heat capacity per phonon. (Note $\Delta \mathrm{T}$ can be positive or negative).
- Temperature difference between the ends of a free path : $\Delta T=(d T / d x) v_{x} \tau$, where $\tau=$ mean time between collisions
- Then $\mathrm{j}=-\underbrace{n \underbrace{}_{v_{x}} c v_{x}}_{\text {Density }} \tau \mathrm{dT} / \mathrm{dx}=-\mathrm{n} \mathrm{c} \mathrm{clux}$ var ${ }^{2} \tau \mathrm{dT} / \mathrm{dx}$

Phonon Heat Transport - continued

- This can be simplified in an isotropic case, since averaging over directions gives $\left(\mathrm{v}_{\mathrm{x}}{ }^{2}\right)_{\text {average }}=(1 / 3) \mathrm{v}^{2}$
- This leads to $\mathrm{j}=-(1 / 3) \mathrm{nc} \mathrm{c}^{2} \tau \mathrm{dT} / \mathrm{dx}$
- Finally we can define the mean free path:

$$
\begin{aligned}
& \mathrm{L}=\mathrm{v} \tau \text { and } \\
& \mathrm{C}=\mathrm{nc}=\text { total heat capacity }
\end{aligned}
$$

- Then $\mathrm{j}=-(1 / 3) \mathrm{C}$ v L dT/dx and

$$
\mathrm{K}=(1 / 3) \mathrm{C} v \mathrm{~L}=\text { thermal conductivity }
$$

(just like an ordinary gas!)

Phonon Heat Transport - continued

- What determines mean free path $\mathrm{L}=\mathrm{v} \tau$?
- At low temperature, the thermal phonons are sound waves that have long mean free paths -

L ~ sample size

- At high temperature, phonons scatter from other phonons.
- ONLY Umklapp scattering limits the energy flow. The density of other phonons is $\sim \mathrm{T}$, so
$\mathrm{L} \sim 1 / \mathrm{T}$
- At intermediate temperature, phonon scatter from defects and other phonons.

Phonon Heat Transport - continued

- Low T - K increases with T because density of phonons increases with roughly constant v and L
- High T - K decreases with T as Umklapp scattering

High
T
hot
$\overrightarrow{\text { Heat Flow }}$
cold

Phonon Heat Transport - continued

- Behavior in an excellent quality crystal:

Maximum controlled

Umklapp Scattering

- Scattering that changes total crystal momentum by a reciprocal lattice vector.
- $\underline{\mathbf{k}}_{\text {in phonon }}=\underline{\mathbf{k}}_{\text {out phonon } 1}+\underline{\mathbf{k}}_{\text {out phonon } 2} \pm \underline{\mathbf{G}}$
$\omega_{\text {in phonon }}=\omega_{\text {out phonon } 1}+\omega_{\text {out phonon } 2}$

Unless $\mathrm{G} \neq 0$, the scattering does not change the total phonon momentum or energy. Therefore only Umklapp scattering limits the heat flow. It also leads to thermal equilibrium.

- Vibrations of atoms

Harmonic approximation
Exact solution for waves in a crystal
Labeled by \underline{k} and index $m=1, \ldots, 3 N$

- Quantization of vibrations

Phonons act like particles
Can be created or destroyed by inelastic scattering experiments

- Thermal properties

Fundamental law of probabilities
Planck distribution for phonons
Heat Capacity C
Low T: C ~ T ${ }^{3}$-- High T: C ~ constant
Thermal conductivity K
Maximum as function of T

