
Phonons II - Thermal Properties
(Kittel Ch. 5)
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Heat capacity
• Heat capacity is the measure of how much energy it takes to 

raise the temperature of a unit mass of an object a certain 
amount.

• Two heat capacities:   constant volume, CV , and constant 
pressure, CP .  For a gas CP > CV .  For a solid CP ≈ CV .

• The contribution of the phonons (lattice vibrations) to the 
heat capacity of a crystal is called the lattice heat capacity.

• Classical result: C ≈ 3NNcell kB , where N is the number of 
atoms in a unit cell and Ncell is the number of cells in the 
crystal.



Lattice heat capacity

• The heat that goes into a solid to raise its temperature shows 
up as  internal vibrational energy U (phonons).

• Determine U(T),  then we can calculate CV = (∂U/∂T)V .

• In calculating U we need to consider the following: 
– (1) what is the average energy of each phonon; 
– (2) what is the average number of phonons existing at any T for 

each type (mode) of vibration; 
– (3) how many different types (modes) of vibration are there.



Quantization of vibration waves
• Vibrations in a crystal are independent waves, each labeled by k.
• There are 3N wave types in a 3D crystal with N atoms per cell

• Each independent harmonic oscillator has quantized energies:
En = (n + 1/2) hν = (n + 1/2) hω

• Quanta are called phonons, each phonon carries energy  hω
• These can be viewed as particles
• For each independent oscillator (i.e., for each independent wave in a 

crystal), there can be any integer number of phonons 
• Need to find out the average number of phonons and the average energy 

associated with each independent oscillator (mode).



Thermal Properties - Key Points

• Fundamental law of a system in thermal equilibrium: 
If two states of the system have total energies E1 and E2, 
then the ratio of probabilities for finding the system in 
states 1 and 2 is  P1 /  P2 = exp ( - (E1 - E2) / kB T) 
where kB is the Boltzman constant

• Larger probability of smaller energy

• Applies to all systems - whether classical or quantum and 
whether the particles are bosons (like phonons) or fermions 
(like electrons)



Thermal Properties - Phonons
• Phonons are examples of bosons. 
• There can be any number n phonons for each oscillator, i.e., 

the energy of each oscillator can be En = (n + ½ ) h ω, n = 
0,1,2,. . . 

The probability of finding an oscillator with n phonons 
(and not another value)  
Pn = exp ( - En / kB T)  /  ∑n’=0 exp ( - En’ / kB T) 
and the average phonon occupation is 

<n> =  ∑n =0 Pn n 
= ∑n =0 n exp ( - En / kB T)  /  ∑n’ =0 exp ( - En’ / kB T) 
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• Using the formulas: 
1/(1 - x) = ∑s=0 xs and      x/(1 - x) 2 = ∑s=0 s xs

<n> =  1 / [ exp ( h ω / kB T)   - 1 ]  Planck Distribution

Average energy of an oscillator at temperature T:
U = < (n + ½ ) h ω >   = h ω (<n> + ½ ) 

= h ω (1 / [ exp ( h ω / kB T)   - 1 ]  +  ½ ) 

• At high T,  U → h ω / [ h ω / kB T ] → kB T
which is the classical result

Planck Distribution
∞ ∞



Total thermal energy of a crystal 
• The crystal is a sum of independent oscillators (in the 

harmonic approximation).  The independent oscillators are 
waves labeled by k and an index m = 1, ..., 3N. Therefore, 
the total energy of the crystal is:

U = U0 + 
∑k,m h ωk,m (1 / [ exp ( h ωk,m / kB T)   - 1 ]  +  ½ ) 

Fixed atoms

Added thermal energy Zero point energy

Question:  How to do the sum over k ??

3 dimensions
N atoms per cell



Sum over vibration modes of a crystal 
• The sum over  k and the index m = 1, ..., 3N can be thought 

of as follows:
One k point for each unit cell
The index m counts the atoms per unit cell N multiplied by 
the number of independent ways each atoms can move (3 in 
3D).

• The entire crystal has 3 N Ncell degrees of freedom(i.e. 
number of ways the atoms can move) .  This must not 
change when we transform to the independent oscillators.



1D, two boundary conditions 
• Demonstration that the sum over  k is equivalent to one k

point for each unit cell
• N atoms at separation a, us =  u exp(ik (s a) - iωk,m t)
• Fixed boundary conditions: u0= uN=0

– Standing waves only
– Possible k values: k= π/Na , 2π/Na, .. nπ/Na, (N-1)π/Na
– One k value per mobile atom, one k value per cell

• Periodic boundary conditions: us= uN+s
– traveling waves, need kNa=+-2nπ
– Possible k values: k= 0, +-2π/Na , +-4π/Na, .. 2nπ/Na
– One k value per mobile atom, one k value per cell



Density of states 
• All we need is the number of states per unit energy, and we 

can integrate over energy to find the thermal quantities

• Total energy
• We know that there are Ncell possible k values
• In a large crystal one can replace the sum over k with an 

integral
• Since ω and k are related by the dispersion relation we can 

change variables

• Dm(ω)dω − number of modes (states) in frequency range ω
tο ω+dω
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Relation between k and ω

• Total energy

• Dm(ω)dω − number of modes (states) in frequency range ω
tο ω+dω for branch m
dispersion relation: ωk =  2 ( C / M ) 1/2 | sin (ka/2) |

• Modes in interval (ω, k, E) to (ω+∆ω, k+ ∆k, E+ ∆E) 
∆N= D(ω) ∆ω=Ν(k) ∆k=N(E) ∆E 
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Density of states in 1D 
• Dm(ω)dω − number of modes (states) in frequency range ω

tο ω+dω

• N(k) - number of modes per unit range of k
• number of modes  between -π/a <k< π/a = N = L/a (the 

number of atoms)  

• N(k)=N/(2π /a)
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Possible wavevectors in 3D 
• Assume Ncell= n3 primitive cells, each a cube of side a
• volume of the crystal V=(na)3 =L3

• vibrations:

• periodic boundary conditions: 

na= L
• There is one allowed value of k in each volume 

(2π/L)3=8π3/V
V - volume of the crystal
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Density of states in 3D 

• one allowed value of k per volume 8π3/V
• D(ω)dω − number of modes (states) in frequency range ω tο 

ω+dω
∆N= D(ω) ∆ω=Ν(k) ∆k

In a cubic lattice the 1D dispersion relation holds - ω only
depends on k - spherical symmetry

Ν(k) = V/8π3

• D(ω)=k2V/2π2 dk/dω
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Heat Capacity
• The internal energy is found by summing over all modes

• The heat capacity is found by differentiating U with respect 
to temperature, C = dU/dT

• Need to express D(ω) and dω as a function of x to do the integral
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Debye Approximation
• Approximate crystal with an elastic continuum,
• ω=vk (v= sound velocity)
• In 3D cubic crystal D(ω)= k2V/2π2 dk/dω
• D(ω)=Vω2/2π2v3

• In this approximation the maximum ω is not known, we 
need to determine it from the fact that there are Ncell modes 
in each branch

• ωD
3 =6π2 v3 Ncell /V Ncell /V =1/Vcell

• maximum wavevector kD =ωD/v =(6π2 Ncell /V)1/3
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Debye temperature
• Thermal energy ( 3 polarizations)

• Characteristic Debye temperature θ= hv/kB(6π2 Ncell /V)1/3
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Ex. Debye temperature θ= hv/kB(6π2 Ncell /V)1/3

What material characteristics does the Debye temperature
depend on?



Limits of heat capacity in the Debye appr.
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• For T>>θ, xD 0,  exp(x)~1+x
CV~3Ncell kB - equal to classical limit

• For T<<θ, xD ∞,  

CV~T3
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Debye Approximation

Cv has correct general behavior that must be found in all
crystals.  For 3 dimensions
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Einstein Approximation
• The Debye approximation is valid for acoustic modes
• For optic modes one can assume a constant frequency-

Einstein approximation

0 2π/aπ/a

ωk

3 Acoustic modes
Each has ω ~ k at small k

3 (N -1) Optic Modes



Einstein Approximation
• Assume each oscillator has ω=ω0

• D(ω)=Ncellδ(ω−ω0)

• For T 0, CV~exp(-hω/kBT)
• For T>>0, CV~3Ncell kB - equal to classical limit
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General expression for D(ω)
• In 1D                             , vg=group velocity

• In 3D     ∆N= D(ω) ∆ω=Ν(k) ∆k

• integral over the volume of the shell in k space bounded by 
the surfaces with ω and ω+dω

integral over ω=const surface

• vg=0 - Van Hove singularities
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• Plot the density of states as a function of ω for a Debye
solid, D(ω)=Vω2/2π2v3

• How does this plot change for an actual crystal structure?
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Energy & Force due to Displacements

• The energy of the crystal changes if the atoms are displaced.  
• The change in energy can be written as a function of the positions of 

all the atoms:
E(R1, R2, R3, …)=E(R1

0 +∆R1, R2
0 +∆R2, ..)

• To lowest order in the displacements the energy is quadratic - Hooke’s
law - harmonic limit   

E = E0 + (1/2) Σi j ∆Ri . Di j . ∆Rj + ….

(There are no linear terms if we expand about the equilibrium 
positions)



Consequences of anharmonicity
• If we expand the energy beyond the harmonic order:

E = E0 + (1/2) Σi j ∆Ri . Di j . ∆Rj + 
(1/6) Σi jk Di jk . ∆Ri ∆Rj ∆Rk + . . . 

• The problem is fundamentally changed:
No longer exactly solvable

• Consequences:
There is thermal expansion and other changes with temperature
The heat capacity is not constant at high T
Phonons decay in time
Two phonons can interact to create a third
Phonons can establish thermal equilibrium and
conduct heat like a “gas” of particles

Difficult 
and Messy



Inelastic Scattering and Fourier Analysis

Inelastic diffraction occurs  for 
kin - kout = G ± kphonon
ωin - ωout = ± ωphonon or   Εn - Εout = ± hωphonon

kin, ωin
kout, ωout

kphonon ,, ωphonon

From Before



Scattering of Phonons - I

• The same idea applies to phonons.  One 
phonon can scatter to create two.

• Scattering can occur for 
kin phonon =  kout phonon 1 + kout phonon 2 ± G

ωin phonon =  ωout phonon 1 + ωout phonon 2

kin phonon , ωin phonon
kout phonon 1, ωout phonon 1

kout phonon 2  , ωout phonon 2
Anharmonic
Interaction



Scattering of Phonons - II
• Two phonons can interact to create one.
• This is called “up conversion (umklapp)”, which 

can be done with intense phonon beams and 
occurs  for 
kout phonon =  kin phonon 1 + kin phonon 2 ± G
ωout phonon =  ωin phonon 1 + ωin phonon 2

kout phonon  , ωout phononkin phonon 1 , ωin phonon 1

kin phonon 2 , ωin phonon 2

Anharmonic
Interaction



Thermal expansion
• The energy of a pair of atoms depends on the displacement 

x from their equilibrium separations, U(x)=cx2-gx3-fx4

• The average displacement <x> is determined by the 
condition that the average force vanishes. 

•
• In the harmonic approximation F = cx.  Therefore <x> = 0, 

<F> = 0, and there is no thermal expansion

• Anharmonicity adds additional terms:  
F = cx - 1/2 g x2 - …, <F> = 0  ⇒ <x> = 1/2 (g/c) <x2>

• In general, this means thermal expansion.   



Thermal expansion 

Distance Between Atoms
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Characterizing thermal dilation
• Average displacement of atoms, <x>  

• U(x) – potential energy of a pair of atoms.
• Thermal expansion of a crystal or cell: δ =dV/V 
• For cubic crystals dV/V = 3 dx/x

From the theory of elastic media:
• Potential energy of a unit cell due to dilation: 

Ucell(T)=Vcell B δ2/2, where B is the bulk modulus
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Transport of heat in an ordinary gas
• Molecules move in all directions and scatter so that they 

come to local thermal equilibrium in each region.
• How can random motion cause heat flow in one direction? 
• On average, in hotter regions molecules have more kinetic 

energy.  A molecule that moves from a hotter region to a 
colder one brings energy above the local average.  The 
opposite for a molecule moving from a colder to a hotter 
region.  Either way, there is transport of energy from hotter 
to colder regions.

Heat Flow

coldhot



Phonons also act like a gas
• A phonon is a particle - a quantum of vibration
• It carries energy just like a molecule.
• Phonons can come to equilibrium by scattering just like 

molecules (phonon scattering is due to defects and to 
anharmonicity).

• What is different?
Phonons can be created and destroyed.  But we will see that 
we can treat them exactly like gas. 

Heat Flow

coldhot



Thermal conductivity of phonons
• Definition: j = heat flow (energy per unit area per unit 

time ) = - K dT/dx;    K – thermal conductivity
• If a phonon moves from a region with local temperature T 

to one with local temperature T - ∆T, it supplies excess 
energy c ∆T, where c = heat capacity per phonon.   (Note 
∆T can be positive or negative). 

• Temperature difference between the ends of a free path :
∆T = (dT/dx) vx τ, where τ = mean time between collisions

•
• Then  j = - n  vx c vx τ dT/dx = - n  c vx

2 τ dT/dx

Density Flux



Phonon Heat Transport - continued
• This can be simplified in an isotropic case, since  averaging 

over directions gives ( vx
2 ) average =  (1/3) v2

• This leads to j = - (1/3) n c v2 τ dT/dx

• Finally we can define the mean free path:
L = v τ and 
C = nc = total heat capacity

• Then  j = - (1/3) C v L dT/dx
and

K = (1/3) C v L   =  thermal conductivity
(just like an ordinary gas!)



Phonon Heat Transport - continued
• What determines mean free path L = v τ ? 
• At low temperature, the thermal phonons are sound waves 

that have long mean free paths -
L ~ sample size 

• At high temperature, phonons scatter from other phonons. 
• ONLY Umklapp scattering limits the energy flow.

The density of other phonons is ~ T, so 
L ~ 1/T

• At intermediate temperature, phonon scatter from defects 
and other phonons.  



Phonon Heat Transport - continued
• Low T - K increases with T because density of phonons 

increases with roughly constant v and L
• High T - K decreases with T as Umklapp scattering 

increases 

Heat Flow

Low
T

High
T

coldhot



Phonon Heat Transport - continued
• Behavior in an excellent quality crystal: 
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Umklapp Scattering
• Scattering that changes total crystal momentum by a 

reciprocal lattice vector.
• kin phonon =  kout phonon 1 + kout phonon 2 ± G

ωin phonon =  ωout phonon 1 + ωout phonon 2

kin phonon  , ωin phonon kout phonon 1 , ωout phonon 1

kout phonon 2  , ωout phonon 2
Anharmonic
Interaction

Unless G ≠ 0, the scattering does not change the total phonon 
momentum or energy.  Therefore only Umklapp scattering limits 
the heat flow. It also leads to thermal equilibrium.



• Vibrations of atoms  
Harmonic approximation
Exact solution for waves in a crystal

Labeled by k and index m = 1, …, 3N
• Quantization of vibrations

Phonons act like particles
Can be created or destroyed by inelastic 
scattering experiments 

• Thermal properties
Fundamental law of probabilities
Planck distribution for phonons
Heat Capacity C

Low T: C ~ T3 -- High T:  C ~ constant 
Thermal conductivity K
Maximum as function of T


