Phonons |l - Thermal Properties

(Kittel Ch. 5)
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Heat capacity
Heat capacity 1sthe measure of how much energy it takesto

raise the temperature of a unit mass of an object a certain
amount.

Two heat capacities: constant volume, C,, , and constant
pressure, C,. ForagasC,>C,,. Forasolid C.=C,, .

The contribution of the phonons (lattice vibrations) to the
heat capacity of acrystal iscalled the |attice heat capacity.

Classical result: C~ 3NNy, kg , where N is the number of
atomsin aunit cell and N, IS the number of cellsin the
crystal.



L attice heat capacity

e The heat that goes into a solid to raise its temperature shows
up as internal vibrational energy U (phonons).

e Determine U(T), then we can calculate C,, = (0U/dT),, .

* |Incaculating U we need to consider the following:
— (1) what isthe average energy of each phonon;

— (2) what is the average number of phonons existing at any T for
each type (mode) of vibration;

— (3) how many different types (modes) of vibration are there.



Quantization of vibration waves

Vibrationsin acrystal are independent waves, each labeled by k.
There are 3N wave typesin a 3D crystal with N atoms per cell

Each independent harmonic oscillator has quantized energies:
E.=(n+12) hv=(n+12) o

Quanta are called phonons, each phonon carries energy fio

These can be viewed as particles

For each independent oscillator (i.e., for each independent wavein a
crystal), there can be any integer number of phonons

Need to find out the average number of phonons and the average energy
associated with each independent oscillator (mode).



hermal Properties - Key Points

e Fundamental law of a system in thermal equilibrium:
If two states of the system have total energies E, and E,,
then the ratio of probabilities for finding the system in
satesland 2is P,/ P, =exp(-(E;-E) / kg T)
where Kg is the Boltzman constant

o Larger probability of smaller energy

e Appliesto all systems - whether classical or quantum and
whether the particles are bosons (like phonons) or fermions
(like electrons)



hermal Properties - Phonons
* Phonons are examples of bosons.

e There can be any number n phonons for each oscillator, i.e.,

the energy of each oscillator canbe E, = (n+ % )h o, n=
0,1,2,. ..

The probability of finding an oscillator with n phonons
(and not another value)

P=exp(-E,/kgT) / 2,0exp(-E,/kgT)

and the average phonon occupation is

<n>= Z::OPnn
=Y onexp(-E,/kgT) | X oexp(-E,/kg T)



Planck Distribution

 Using the formuylas: .
Y(A-X)=2eo x® and  X/(1-X)2=2,, SX®

<n>= 1/[exp(hw/kg T) -1] Planck Distribution
Average energy of an oscillator at temperature T
U=<h+YL)ho> =ho(<n>+%)

—ho (L/[exp(ho/ksT) -1] + %)

e AthighT, U—-oho/[ho/kgT]o>kg T
which isthe classical result



Total thermal energy of acrystal

e The crystal isasum of independent oscillators (in the
harmonic approximation). The independent oscillators are
waves labeled by Kk andanindex m=1, . N Therefore,
the total energy of the crystal is:

3 dlmenS|on

. Fixed atoms

U=U,+ N atoms per cell
Yemhon @/ [exp(hog,/kgT) -1] + %)

s /

Added thermal energy Zero point energy

Question: How to do the sum over k ??




Sum over vibration modes of a crystal

« Thesumover k andtheindex m=1, ..., 3N can be thought
of asfollows:
One Kk point for each unit cell
The index m counts the atoms per unit cell N multiplied by
the number of independent ways each atoms can move (3 in
3D).

* Theentirecrystal has3 N N, degrees of freedom(i.e.
number of ways the atoms can move) . This must not
change when we transform to the independent oscillators.



1D, two boundary conditions

Demonstration that the sum over K isequivalent to one k
point for each unit cell

N atoms at separation a, U;= u exp(ik (sa) - io, , 1)
Fixed boundary conditions: u,= uy=0

— Standing waves only

— Possible k values. k= n/Na, 2n/Na, .. nt/Na, (N-1)n/Na

— One k value per mobile atom, one k value per cell

Periodic boundary conditions: U= Uy,

— traveling waves, need kNa=+-2nr
— Possible k values: k=0, +-2n/Na, +-4n/Na, .. 2nt/Na
— One k value per mobile atom, one k value per cell



Density of states

All we need isthe number of states per unit energy, and we
can integrate over energy to find the thermal quantities

Ncell 3N h a)k
\m

Total energy U=2.2, exp(ho,,, [k,T)-1

k=1 m=1

We know that there are N, possible k values

In alarge crystal one can replace the sum over k with an
Integral

Since ® and k are related by the dispersion relation we can
change variables o

U= ;de Dute) e Jk,T)—1

D, (®)dow — number of modes (states) in frequency range o
to o+dw




Relation between k and o

hao
exp(ha/k,T )-1

» Total energy v=3[dwD,(w)

e D, (w)do — number of modes (states) in frequency range o
to w+dw for branch m

dispersionrelation: o, = 2(C/ M) Y2 | sin(ka/2) |

 Modesininterval (o, k, E) to (o+Aw, k+ Ak, E+ AE)
AN= D(®) Aow=N(k) Ak=N(E) AE
N(k)

Ve

dw

D(a))da):N(k)ﬁda):
dw

™~ Group velocity



Density of statesin 1D

D, (®)dw — number of modes (states) in frequency range o
to o+dw
N(k)

Ve

D(w)dw = dw

N(K) - number of modes per unit range of k

number of modes between -n/a<k<n/a = N = L/a(the
number of atoms)

NP e, D(a))da):&ida)ziida)
27 v, 27 v,



Possible wavevectorsin 3D

Assume N_,,= n® primitive cells, each acube of side a
volume of the Crystal V= (na)3 L3

vibrations: u u exp(ik-r - i, 1)

r=xi+yj+zk k:kxi+kyj+kz%
 periodic boundary conditions:

exp[i(k.x+k y+k.z)] =exp{i[k (x+L)+k,(y+L)+k (z+L)]}

K,, ky , k, =0, +-2n/L , +-4n/L, .. 2mn/L
na= L

 Thereisone alowed value of k in each volume
(2n/L)3=8r3/V
V - volume of the crystal



Density of statesin 3D

« one alowed value of k per volume 8r3/V

 D(m)dw — number of modes (states) in frequency range o to
o+dw

AN= D(w) Aw=N(k) AK
In acubic lattice the 1D dispersion relation holds - o only

depends on k - spherical symmetry

D(w)dw = N(E)4ﬂk2$dm
dw

N(k) =V/8r3
e D(w)=k?V/2r?dk/dw



Heat Capacity
e Theinterna energy isfound by summing over al modes

ho
exp(haw/k,T )-1

U=Zjda)Dm(a))

* The heat capacity isfound by differentiating U with respect
to temperature, C = dU/dT

] exp(x) _
C_kB%:"‘da)Dm(a))[exp(x)—l]2 > kgT

* Need to express D(w) and dw as afunction of x to do the integral



Debye Approximation
Approximate crystal with an elastic continuum,
®=VK (v= sound velocity)
In 3D cubic crystal D(w)= k?V/2r? dk/dw
D(®)=V®?/21?Vv3
In this approximation the maximum o is not known, we

need to determine it from the fact that there are N, modes
in each branch

Ida) D(a)) = Ncell

=0
0p° =61% V2 Negy /V Neai IV =1V
maximum wavevector Ky =op/V =(6rm> Ny, /V)V3



Debye temperature
 Thermal energy ( 3 polarizations)
hao _ kT, X
exp(ilea)/l\‘f]_,gT)—1_27[‘2V3h3 exp(x)-1

U:BIda)D(a))
0

how, 0

k,T T

Xp =

 Characteristic Debye temperature 6=hv/kg (61> Ny, /V)Y3

U=9N, ,lkT( ) jdx
S exp(x) 1

3 xp 4
C, :9Nce”k3(zj [ — ()
0) v (exp(x)-1)



Ex. Debye temperature 6=hv/kg (61> N, /V)Y3

What material characteristics does the Debye temperature
depend on?



Limits of heat capacity in the Debye appr.

3 xp 4
CV — 9NcellkB (Tj de - exp(X) 2
&) ¢ (exp(x)-1)

o For T>>0, x50, exp(x)~1+x
C,~3Ny Kg - equal to classical limit

e For T<<0, xp— oo,

3 @ 4 3 4
C, =9N ik, (Z) J.dx x_exp(x) > =N,k (Zj i
0 (exp(x)—1) ¢) 15

0
C,~T?




Debye Approximation

3 Xp 4
c, :9NceIIkB(I\ f ax X exIO(X)2
0) v (exp(x)-1)

C, has correct general behavior that must be found in all
crystals. For 3 dimensions

Approaches
classical limit
3 |\Icell kB

/T3

Heat Capacity C




Einstein Approximation
* The Debye approximation isvalid for acoustic modes

 For optic modes one can assume a constant frequency-
Einstein approximation

| 3W-DOpticModes

\/3ACoustic modes
Each has o ~ k at small k
0y ; E

0 n/a 2n/a




Einstein Approximation

e Assume each oscillator has m=w,
* D(0)=Ngg3(0—0p)

hao,
"exp(hawy kT )—1

2
hao exp(haw,/k,T )
CV :3NcellkB k ]C—), O/ - 2
B (exp(ha)o/kBT)—l)

U=3N_,

e For T—0, C,~exp(-hw/kgT)
e For T>>0, C,,~3N_, kg -equal toclassical limit



General expression for D(w)

IN1ID  D(w)=K)

, Vg=group velocity
g

IN3D AN=D(w) Aw=N(K) Ak
D(w)dw=N(K) [d

shell

Integral over the volume of the shell in k space bounded by
the surfaces with ®» and o+dw

Ja%k=[ds,dk, =[ds, 5 v, =[ae

shell g
D(w)=—" [ as, integral over m=const surface
(27Z-)3 shell Vg

v,=0 - Van Hove singularities




V dS
J‘ o

A2 (2”)3 shell Vg

» Plot the density of states as afunction of o for a Debye
solid, D(w)=V w?/21?v3

« How doesthis plot change for an actual crystal structure?



Energy & Force due to Displacements

* Theenergy of the crystal changesif the atoms are displaced.

» The changein energy can be written as a function of the positions of
al the atoms:

E(R;, Ry Ry, ...)=E(R,°+AR;, R°+AR,, ..)

e Tolowest order in the displacements the energy is quadratic - Hooke's
law - harmonic limit

(There are no linear terms if we expand about the equilibrium
positions)



Conseqguences of anharmonicity

» If we expand the energy beyond the harmonic order:
(16) =i Dy ARy ARj AR+ ... < Difficult
and Messy

* The problem isfundamentally changed:
No longer exactly solvable

e Consequences.
There isthermal expansion and other changes with temperature
The heat capacity isnot constant at high T

Phonons decay intime
Two phonons can interact to create athird
Phonons can establish thermal equilibrium and
conduct heat likea“gas’ of particles



From Before

Inelastic Scattering and Fourier Analysis

| nelastic diffraction occurs for
k -k .=G+Kk

2in - 2out T —= — Xphonon
Wi = Ogyp = s Mphonon or En B Eout =5: h(*)phonon

K

—0ut? @

out

K

—phonon ,? (Dphonon



Scattering of Phonons - |

* The same idea applies to phonons. One
phonon can scatter to create two.

» Scattering can occur for
k. = + k + G

—inphonon — =outphononl = =out phonon2 — ==

Win phonon

Woyt phonon 1 T Ogyt phonon 2

K

—in phonon 1 ®

In phonon

K

—out phonon 1 W

out phonon 1

Anharmonic /

Interaction

K

—out phonon 2 1 &

out phonon 2



Scattering of Phonons - ||
« Two phonons can interact to create one.

e Thisiscalled “up conversion (umklapp)”, which
can be done with intense phonon beams and
occurs for
Ko_ut phonon = Kin phonon 1 t Kin phonon 2 T g

Wi phonon 1 T Ojp phonon 2

(Do_ut phonon —

K

—out phonon Woyt

n
—in phonon 1 Win phonon 1

Anharmonic _—

Interaction

K

—in phonon 2 QI phonon 2



Thermal expansion

The energy of a pair of atoms depends on the displacement
x from their equilibrium separations, U(x)=cx>-gx3-fx*

The average displacement <x> is determined by the
condition that

In the harmonic approximation F = cx. Therefore <x> =0,
<F> =0, and there is no thermal expansion

adds additional terms:
F=cx-120gx?-...,<F>=0 = <x>=1/2(0/c) <x*>

In general, this means



Energies of Crystal

Thermal expansion

Thermal Expans
Average distance in
as vibration amplitude

Absolute Minimum

Distance Between Atoms

on -
creases
INncreases



Characterizing thermal dilation
Average displacement of atoms, <x>

jdxxexp[—U(x)/kBT] .
— = gszT

()=

deexp[—U(x)/kBT]

U(X) — potential energy of apair of atoms.
Thermal expansion of acrystal or cell: 6 =dV/V
For cubic crystals dV/V = 3 dx/x

From the theory of elastic media:
» Potential energy of aunit cell dueto dilation:
U.ai(T)=V oy B 6%/2, where B is the bulk modulus



Trangport of heat in an ordinary gas
 Molecules movein all directions and scatter so that they
cometo local thermal equilibrium in each region.

e How can random motion cause heat flow 1n one direction?

* On average, in hotter regions molecules have more kinetic
energy. A molecule that moves from a hotter region to a
colder one brings energy above the local average. The
opposite for a molecule moving from a colder to a hotter
region. Either way, thereistransport of energy from hotter

to colder regions.
'\

\

Heat Flow



Phonons also act like agas
A phonon is a particle - aquantum of vibration

|t carriesenergy just like amolecule.

* Phonons can come to equilibrium by scattering just like
mol ecul es (phonon scattering is due to defects and to
anharmonicity).

 What isdifferent?

Phonons can be created and destroyed. But we will see that
we can treat them exactly like gas.

[t < TS o

Heat Flow




Thermal conductivity of phonons

Definition: | = heat flow (energy per unit area per unit
time) =- K dT/dx; K —therma conductivity

If a phonon moves from aregion with local temperature T
to one with local temperature T - AT, it supplies excess
energy ¢ AT, where ¢ = heat capacity per phonon. (Note
AT can be positive or negative).

Temperature difference between the ends of afree path :
AT = (dT/dx) v, t, where T = mean time between collisions

Then j=-n v, cv,tdT/dx =-n cv,?2tdT/dx

3
/ "~ Flux

Density



Phonon Heat Transport - continued
This can be simplified in an isotropic case, since averaging
over directions gives (V,?) aerage = (1/3) V2
Thisleadsto ) = - (1/3) ncv? 1t dT/dx

Finally we can define the mean free path:
L =vtand
C = nc = total heat capacity

Then | =-(1/3) Cv L dT/dx
and

K=(1/3) CvL = therma conductivity
(just like an ordinary gas!)



Phonon Heat Transport - continued

What determines mean freepathL =v t ?

At low temperature, the thermal phonons are sound waves
that have long mean free paths -
L ~sample size

At high temperature, phonons scatter from other phonons.

ONLY Umklapp scattering limits the energy flow.
The density of other phononsis~ T, so
L ~1UT

At intermediate temperature, phonon scatter from defects
and other phonons.



Phonon Heat Transport - continued

Low T - K increases with T because density of phonons

Increases with roughly constant v and L

High T - K decreases with T as Umklapp scattering

~_ /}‘
=S~
= —_—=< ~_
S —
hot cold

Heat FIOW

Low



Phonon Heat Transport - continued

e Behavior in an excellent quality crystal:
Maximum controlled

Thermal conductivity K

100

=
o

by detects \‘ K decreases

because Umklapp
scattering
Increases rapidly

\

Low T - K s
Increases as density J UT

of phonons increases
(v and L are ~ constant)

1 10 T



Umklapp Scattering

« Scattering that changes total crystal momentum by a

reciprocal |attice vector.
Kin phonon = Kout phonon 1 i Kout phonon 2 * g

Win phonon L

out phonon 1 T Oyt phonon 2

K

—in phonon Win phonon

Anharmonic /

Interaction

K

—out phonon 1 Woyt phonon 1

K

—out phonon 2 1 Woyt phonon 2

Unless G = 0, the scattering does not change the total phonon
momentum or energy. Therefore only Umklapp scattering limits
the heat flow. It also leads to thermal equilibrium.



* Vibrationsof atoms
Har monic approximation
Exact solution for wavesin a crystal
Labeled by kand indexm =1, ..., 3N

e Quantization of vibrations
Phonons act like particles
Can becreated or destroyed by inelastic
scattering experiments

 Thermal properties
Fundamental law of probabilities
Planck distribution for phonons
Heat Capacity C
LowT: C~T3 -- HighT: C ~constant
Thermal conductivity K
Maximum as function of T



