
Energy Bands for Electrons
in Crystals (Kittel Ch. 7)
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• Recall nature of free electron gas
Free electrons in box of size L x L x L

(artificial but useful) 
Solved Schrodinger Equation
States classified by k with E(k) = (h2/2m) k2

Periodic boundary conditions convenient: 
Leads to kx = 2nπ/L, etc.

Pauli Exclusion Principle,  Fermi Statistics
Simplest model for metals

• Why are some materials insulators, some metals?
•



• Recall nature of free electron gas
Free electrons in box of size L x L x L

(artificial but useful) 
Solved Schrodinger Equation
States classified by k with E(k) = (h2/2m) k2

Periodic boundary conditions convenient: 
Leads to kx = 2nπ/L, etc.

Pauli Exclusion Principle,  Fermi Statistics
Simplest model for metals

• Why are some materials insulators, some metals?
• First step - NEARLY free electrons in a crystal 

Simple picture of how Bragg diffraction leads to 
standing waves at the Brillouin Zone Boundary and to
energy gaps



Understanding Electrons in Crystals

• Electron Gas
Simplest possible model
for a metal - electrons are
completely “free of the 
nuclei” - nuclei are replaced
by a smooth background --
“Electrons in a box”

• Real Crystal -
Potential variation with 
the periodicity of the crystal

Attractive (negative) potential 
around each nucleus



Schrodinger Equation 
• Basic equation of Quantum Mechanics

[ - ( h2/2m ) ∆2 + V(r )   ] Ψ (r ) =  E Ψ (r ) 

where
m = mass of particle
V(r ) = potential energy at point  r 
∆2 = (d2/dx2 + d2/dy2 + d2/dz2)
E = eigenvalue = energy of quantum state
Ψ (r ) = wavefunction
n (r )  = | Ψ (r ) |2 = probability density 

• Key Point for electrons in a crystal: The potential
V(r ) has the periodicity of the crystal



Schrodinger Equation 
• How can we solve the Schrodinger Eq.

[ - ( h2/2m ) ∆2 + V( r )   ] Ψ ( r ) =  E Ψ (r ) 

where V( r ) has the periodicity of the crystal?

• Difficult problem - This is the basis of current research   
in the theory of electrons in crystals

• We will consider simple cases as an introduction
Nearly Free Electrons
Kronig-Penney Model



Next Step for Understanding 
Electrons in Crystals

• Simplest extension of the
Electron Gas model

• Nearly Free electron Gas -
Very small potential variation
with the periodicity of the 
crystal

• We will first consider 
electrons in one dimension

Very weak potentials 
with crystal periodicity



Consider 1 dimensional example
• If the electrons can move freely on a line from 0 to L 

(with no potential), 

we have seen before that :
• Schrodinger Eq. In 1D with V = 0

- ( h2/2m ) d2/dx2 Ψ (x) =  E Ψ (x) 
• Solution  with Ψ (x) = 0 at x = 0,L 

Ψ (x) = 21/2 L-1/2 sin(kx) ,  k = n π/L, n = 1,2, ...

or 
Ψ (x) = L-1/2 exp( ikx), k =  ± n (2π/L), n = 0,1,..

• E (k) = ( h2/2m ) k 2

0 L

Periodic Boundary Condition

Fixed Boundary Condition



Electrons on a line
• For electrons in a box, the energy is just the kinetic 

energy 
E (k) = ( h2/2m ) k 2

• Values of k fixed by the box, k =  ± n (2π/L), n = 0,1,..
• Crystal: L = Ncell a

• The maximum (Fermi) wavevector is determined by 
the number of free electrons

• Nelec/2=2nF+1,    thus     nF~ Nelec/4
• k =  ± n (2π/Ncella), n=0,1,.. Nelec/4
• define number of electrons per cell N
• kF=  N/2 (π/a)



Electrons on a line with potential V(x)
• What happens if there is a potential V(x) that has the 

periodicity a of the crystal?
• An electron wave with wavevector k can suffer Bragg 

diffraction to k ± G, with G any reciprocal lattice vector

E

k
π/a−π/a 0

G

Bragg Diffraction
occurs at 

BZ boundary

State with k = π/a
diffracts to k = - π/a

and vice versa



Electrons on a line with potential V(x)
• Result:  

Standing wave at zone boundary
Energy gap where there are no waves that can travel 
in crystal
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Energy Bands -
Allowed energies for 

electrons in the crystal
(more later)



Interpretation of Standing waves at 
Brillouin Zone boundary 

• Bragg scattering at k = π/a leads to two possible 
combinations of the right and left going waves:

Ψ(+)=(2L)-1/2[exp(iπx/a)+exp(-iπx/a)] = 21/2 L-1/2cos(πx/a)
Ψ(-)=(2L)-1/2 [exp(iπx/a)-exp(-iπx/a)] = 21/2 i L-1/2 sin(πx/a)

with density n(+) = 2/L cos2(πx/a); n(-) = 2/L sin2(πx/a)

a
Atoms

n(+) - high density at atoms n(-) - low density at atoms



Energy difference between solutions 
n(+) = 2/L cos2(πx/a); n(-) = 2/L sin2(πx/a)
for n(+) the electrons are piled up on the positive ions,
the magnitude of the negative potential energy is
higher, so the energy is lower 

a
Atoms - attractive

(negative) potential

n(+) - high density at atoms
low energy

n(-) - low density at atoms
high energy



Electrons on a line with potential 
V(x)= Vcos(2πx/a)

Energy gap -- energies at which  no waves can travel
through crystal
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n(+) - high density at atoms
low energy

n(-) - low density at atoms
high energy

( ) V)(n)(n)x(dxVE
L

g =−−+= ∫
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Understanding Electrons in Crystals
• Real Crystal -

Potential variation with 
the periodicity of the crystal

• Potential leads to:
Electron bands - E(k) different from free
electron bands
Band Gaps

Ex. In a 1D crystal kF=  N/2 (π/a), where N= # of electrons per cell. 
How many electron bands are expected for N=1,2,3,…?

Attractive (negative) potential 
around each nucleus



Representing V as a periodic function 
• We have seen (Kittel Ch 2) that any periodic function 

can be written as Fourier series
f(r) = ΣG fG exp( i G . r)  

where the G ‘s are reciprocal lattice vectors
G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3

• Check:  A periodic function satisfies 
f(r) =  f(r + T) where T is any translation
T(n1,n2,…) = n1 a1 + n2 a2 + n3 a3
the n’s are integers 

• Thus V(r) = ΣG VG exp( i G . r)
• And V(r) = real ⇒ VG = V*-G or if the crystal is 

symmetric VG = V-G



Schrodinger Equation - Again 
• In a periodic crystal

[ - ( h2/2m ) ∆2 + ΣG VG exp( i G . r) ] Ψ ( r ) =  E Ψ ( r )

• Now assume Ψ ( r ) = Σk ck exp( i k . r) 

• Note we do NOT assume Ψ has the periodicity of the 
lattice! It is a superposition of waves!

• What is k?  
Just as before for electrons in a box, we assume 
Ψ ( r ) is periodic in a large box (L x L x L) which leads 
to

kx =  ± nx (2π/L), n = 0,1,..    | k |=  n (2π/L)



Schrodinger Equation - Continued 
• Then the Schrodinger Eq. becomes:

Σk ck λ k exp( i k . r) + Σk ck ΣG VG exp( i (k + G). r) ] 
=  E Σk ck exp( i k . r)

where λ k = ( h/2m ) | k |2

• Introduce k’ = k+G then relabel k’ as k
Σk { [λ k - E ] ck + ΣG VG ck-G } exp( i k . r) = 0

• Equating terms with the same r dependence on the 
two sides on the equation, we find the “Central 
Equation”

[λ k - E ] ck + ΣG VG ck-G = 0



“Central Equation” for electron bands 
• What is the interpretation of the equation:

[λ k - E ] ck + ΣG VG ck-G = 0

• If VG = 0 (no potential - free electrons) then each k is 
independent and each wavefunction is 

Ψk ( r ) = ck exp( i k . r) ; E = λ k = ( h/2m ) | k |2

• If VG ≠ 0, then each k is mixed with k - G where G is 
any reciprocal lattice vector  -- the solution is 

Ψk ( r ) = ΣG ck-G exp( i (k - G). r)

Yet to be determined 



Bloch Theorem  
• One of the most important equations of the course!
• In a general crystal, the wave function for an electron 

has the form:
Ψk ( r ) = ΣG ck-G exp( i (k - G). r)

which can be written

Ψk ( r ) = exp( i k . r) uk ( r ) 

where uk ( r ) is the periodic function
with the periodicity of the crystal lattice

uk ( r ) = ΣG ck-G exp( - i G . r)



Kronig-Penney model 

square well potential

- ( h2/2m ) d2/dx2 Ψ (x)+ U(x)Ψ (x) =  E Ψ (x)
Combination of traveling waves where U=0, exponential penetration 
into the U=U0 region

The solution must satisfy the Bloch theorem

Ψk ( x)  = exp (ik(a+b)) Ψk ( x-a-b) 
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Periodicity of the lattice, k is like a reciprocal vector



Kronig-Penney model 

Ψ ( a) = exp (ik(a+b)) Ψ (-b) 

boundary conditions: Ψ (x), dΨ (x)/dx continuous
x=0: A+B = C+D,  iK(A-B) = Q(C-D)
x=a: A exp(iKa) +B exp(-iKa) = [C exp(-Qb) +D exp(Qb)]exp (ik(a+b))
iK[A exp(iKa) -B exp(-iKa)] = Q [C exp(-Qb) -D exp(Qb)]exp (ik(a+b))

Solution if determinant vanishes – relationship between a, b, 
Q, K, k 
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Kronig-Penney model - limiting case 

Assume b=0, U0~∞, Q2ba/2=P
(P/Ka) sin Ka + cos Ka = cos ka

Solution only when l.h.s.<1
energy gaps at k=0, +- π /a, ..

E (k) = ( h2/2m ) K 2

Since K depends on P 
E is plotted vs. ka
E is not ~k2

E

kaπ 3π2π

bands



Bloch Theorem - II 
• The general form is 

Ψk
n ( r ) = exp( i k . r) uk

n ( r ) 

where uk
n ( r ) is a periodic function. Here n labels 

different bands 

• Key Points:
1) Each state is labeled by a wave vector k
2) k can be restricted to the first Brillouin Zone
This may be seen since 
Ψk+G’ ( r ) = exp( i (k + G’). r) u k+G’ ( r ) 
= exp( i k . r) u’k( r )
where u’k ( r ) = exp( i G. r) u k+G’ ( r ) is just another 
periodic function



Bloch Theorem - III 
• Thus a wavefunction in a crystal can always be written

Ψk
n ( r ) = exp( i k . r) uk

n ( r ) 

where:     uk
n ( r ) is a periodic function

n labels different bands 
k is restricted to the first Brillouin Zone

• In the limit of a large system 
k becomes continuous
n is discrete index:  n = 1,2,3, ….



The total number of k values 
• We can use the idea of periodic boundary conditions 

on a box of size L x L x L - same as for phonons, 
electrons in a box,...

• Volume per k point = (2π/L)3

• Total number of k points in Brillouin zone 
Nk-point = VBZ /(2π /L)3 = (2π/a)3(L/2π)3 = (L/a)3 = Ncell

Each primitive cell contributes exactly one independent
value of k to each energy band.
Taking the two spin orientations into account, there are
2Ncell independent orbitals in each energy band.



Solving  the “Central Equation”
• Simple cases where we can solve

[λ k - E ] ck + ΣG VG ck-G = 0

• If VG is weak, then we can solve the nearly free 
electron problem (and find the solution we saw earlier 
in the chapter).

• For k near BZ boundary, the wave exp( i k . r) is 
mixed strongly with exp( i (k - G). r), where  G is  the 
single vector that leads to | k | ~ | k - G |

• Let V = VG = V-G for that G



• Leads to two coupled equations

[λ k - E ] ck + V ck-G = 0

[λ k-G - E ] ck-G + V ck = 0

• or [λ k - E ]     V

V [λ k-G - E ]
• Solution

E =  (1/2) (λ k + λ k-G )  +- [(1/4) (λ k - λ k-G )2 + V 2] 1/2

and
ck-G = [( -λ k + E)/V ] ck

Solving the Central Equation

= 0



E =  (1/2) (λ k + λ k-G )  +- [(1/4) (λ k - λ k-G )2 + V 2] 1/2

ck-G = [( -λ k + E)/V ] ck

BZ boundary: k= π/a i, k-G= -π/a i (unit vector)
λ k= λ k-G = λ, 
Ε−= λ−V, Ε+= λ+V
ck-G = +- ck

Ψ (+) = ck [exp( i πx/a) + exp(-i πx/a)] 
Ψ (-) = ck [exp( i πx/a) - exp(-i πx/a)]

Solutions in 1D



Nearly Free Electrons on a line
• Bands changed greatly only at zone boundary  

Energy gap -- energies at which  no waves can travel 
through crystal
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Far from BZ boundary
wavefunctions and energies

approach free electron values 

Energies corresponding
to next BZs are translated
into first BZ



How to apply this idea in  general
• First find free electron bands plotted in BZ

• The energy is ALWAYS E (K) = ( h2/2m ) K 2
but now we “reduce” K to first BZ, i.e., we find G such 
that K = k + G , and k is in the first BZ

• G(m1,m2,…) = m1 b1 + m2 b2 + m3 b3

• bi·aj= 2πδij

• Then add effects of potential – energy gaps
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Free Electrons, 1D, no gaps

E

k
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G= 2π/a

K2

(k + 2π/a)2

2π/a

(k + 2π/a)2

−2π/a−3π/a

(k + 4π/a)2

3π/a



Free Electrons, 3D, simple cubic, K=(Kx,0,0)

E

kxπ/a−π/a 0

Gx

K2=Kx
2

(kx + 2π/a)2

2π/a

(kx+2π/a)2+(2π/a)2

−2π/a

(kx )2 + (2π/a)2

Gy or Gz

(kx )2 + 2(2π/a)2



Nearly Free Electrons, 3D, schematic

E
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(kx + 2π/a)2

(kx )2 + (2π/a)2



Understanding Electrons in Crystals
• Real Crystal -

Potential variation with 
the periodicity of the crystal

The nearly free electron cases show the general 
form of bands:

Continuous bands of allowed states
Gaps where the are no states for the particular 

k points

Attractive (negative) potential 
around each nucleus



Qualitative Picture of Electron Energy
Bands and Gaps in Solids

Distance Between Atoms
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Forbidden Gap
in Energies for
Valence Electrons

Atomic-like Core States



Metals vs Insulators 
• A band holds two electrons per each cell 
• Therefore a crystal with an odd number of electrons 

per cell MUST* be a metal!
Partially filled bands lead to Fermi energy and 

“Fermi surface” in k space
Conductivity because states can change and 

scatter when electric field is applied

• A crystal with an even number of electrons per cell 
MAY be an insulator!

Electrons “frozen”
Gap in energy for any excitations of electrons



Metals vs Insulators 
• In 1d  an even number of electrons per cell always 

leads to an insulator!
• In higher d, it depends on size of gaps

E

kx π/a−π/a 0 0 |k|

Different direction of k

Fermi Energy

Semi-metal
E



Summary
• Solving the “Central Equation” in Fourier space

Bloch Theorem 
Bloch states for electrons in crystals

• Nearly Free Electrons
General Rules 
First Free electron bands
Then add effects of small potential

• Energy Bands and Band Gaps  -- basis for 
understanding metals vs. insulators

• Read Kittel Ch 7


