Energy Bandsfor Electrons
In Crystals (Kittel Ch. 7)
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* Recall nature of free electron gas

Free electrons in box of size L x L x L
(artificial but useful)

Solved Schrodinger Equation

States classified by k with E(k) = (h%/2m) k2

Periodic boundary conditions convenient:
Leads to k, = 2nn/L, etc.

Pauli Exclusion Principle, Fermi Statistics

Simplest model for metals

 Why are some materials insulators, some metals?
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First step - NEARLY free electrons in a crystal

Simple picture of how leads to
at the Brillouin Zone Boundary and to



Understanding Electronsin Crystals

Electron Gas

Simplest possible model

for a metal - electrons are
completely “free of the —
nuclei” - nuclel are replaced
by a smooth background --

“Electrons in a box”

Potential variation with
the periodicity of the crystal

Attractive (negative) potential
around each nucleus



Schrodinger Equation

e Basic equation of Quantum Mechanics
[-(h?2m) A= +V() ¥ (@)= EY ()

where
m = mass of particle
V(r ) = potential energy at point r
A? = (d?/dx? + d?/dy? + d?/dz?)
E = eigenvalue = energy of quantum state
Y (r ) = wavefunction
nr) =|¥()|* = probability density

The potential
V(r ) has the periodicity of the crystal



Schrodinger Equation

 How can we solve the Schrodinger Eq.
[-(h?2m) A> +V(r) ¥ (r)= EY(r)

where V( r ) has the periodicity of the crystal?

 Difficult problem - This is the basis of current research
In the theory of electrons in crystals

* We will consider simple cases as an introduction
Nearly Free Electrons
Kronig-Penney Model



Next Step for Under standing
Electronsin Crystals

o Simplest extension of the
Electron Gas model

/

Very small potential variation
with the periodicity of the

Very weak potentials
with crystal periodicity

crystal

e We will first consider
electrons in one dimension



Consider 1 dimensional example

 If the electrons can move freely on a line from 0 to L
0 (with no potential), L

we have seen before that :

e Schrodinger Eq. In 1D withV =0
- (h2/2m ) d2/dx2 ¥ (x) = E ¥ (X)
o Solution withW (x) =0atx=0,L
¥ (x) = 212 12 5in(kx) , k=n ﬂ/!_\,n =1,2, ...

Fixed Boundary Condition

¥ (x) = L'Y2 exp(ikx), k= +n (2n/L), n=0,1,..
™~
Periodic Boundary Condition

or

e E(K)=(h¥2m)k?2



Electronson aline

For electrons in a box, the energy is just the kinetic

energy
E (k) = (h2/2m ) k 2

Values of k fixed by the box, k= £n (2rn/L), n=0,1,..
Crystal: L = N, a

The maximum (Fermi) wavevector is determined by
the number of free electrons

eleclz 2nc+1, thus ng~ N, /4

= £ n (2n/Na), n=0,1,.. N,../4
define number of electrons per cell N
Ke= N/2 (n/a)



Electronson alinewith potential V(x)

« What happens if there is a potential V(x) that has the
periodicity a of the crystal?

* An electron wave with wavevector k can suffer Bragg
diffraction to k = G, with G any reciprocal lattice vector

. Bragg Diffraction
’ occurs at
BZ boundary

State with k = it/a
diffracts to k = - /a
and vice versa

K

—nt/a 0 n/a



Electronson alinewith potential V(x)

Result:
Standing wave at zone boundary

Energy gap where there are no waves that can travel
In crystal 4

________ _ lEnergy

_________________ + Gap

Energy

Energy Bands -
. Allowed energies for
electrons in the crystal
| (more later)




|nter pretation of Standing waves at

Brillouin Zone boundary

e Bragg scattering at k = nt/a leads to two possible
combinations of the right and left going waves:

Y (-)=(2L) 12 [exp(inx/a)-exp(-inx/a)] = 212 i L-12 sin(nx/a)
with density n(-) = 2/L sin?(ntx/a)

\//\/A\//\

N\ N\ N\

a \ -

Atoms




Ener gy difference between solutions

n(-) = 2/L sin?(ntx/a)
for n(+) the electrons are piled up on the positive ions,
the magnitude of the negative potential energy Is

higher, so the energy is lower
n(-) - low density at atoms

high energy

N X
NPANA A A

AR ==Y

(negatlve) potential




Electronson alinewith potential
V(X)= Vcos(2rx/a)

E, =

O Sy —

dxV (x)(n(+)-n(-))=V

n(i—) - low density at atoms
high energy

AEnergy
N S toap

Energy




Understanding Electronsin Crystals

Potential variation with
the periodicity of the crystal

Attractive (negative) potential
around each nucleus

Electron bands - E(k) different from free
electron bands

Ex. In a 1D crystal ke= N/2 (n/a), where N= # of electrons per cell.
How many electron bands are expected for N=1,2,3,...?



Representing V as a periodic function

We have seen (Kittel Ch 2) that any periodic function
can be written as Fourier series

f(r) =2gfgexp(1G - r)
where the G ‘s are reciprocal lattice vectors
G(my,my,...) =my by + m, b, + M; by

Check: A periodic function satisfies
f(r) = f(r + T) where T Is any translation
T(NNy..) =Ny a3 + Ny 8, + N385
the n’s are integers

Thus V(r) =25 Vg exp(1G - 1)

And V(r) = real = V= V* s or if the crystal is
symmetric Vo=V B



Schrodinger Equation - Again
In a periodic crystal
[- (h22m) A2 + 55 Vgexp(iG-1) W ()= EV (1)

Now assume W (1) =%, c exp(ik-r)

Note we do NOT assume ¥ has the periodicity of the
lattice! It is a superposition of waves!

What is K?
Just as before for electrons in a box, we assume
Y (r)is periodic in a large box (L x L x L) which leads

to
k.= +n, (2n/L),n=0,1,.. |k|= n(2r/L)



Schrodinger Equation - Continued

e Then the Schrodinger Eg. becomes:
Z G hexp(ik-r)+Z g X Veexp(i(k+G)-1)]

= EX ceexp(ik-T)
where L, =(h/2m) |k |?

 Introduce k’ = k+G then relabel k' as k
ZK{[xK-E](:K +Z§Vgck__G}exp(iK-_r):O
« Equating terms with the same r dependence on the

two sides on the equation, we find the “Central
Equation”




“Central Equation” for eectron bands
 What is the interpretation of the equation:

* If V=0 (no potential - free electrons) then each k is
independent and each wavefunction is

Wi (1) =ceexp(ik 1) ;E=n,=(h2m) |k |2

e If Vo0, then each k is mixed with k - G where G is
any reciprocal lattice vector -- the solution is

W () =2Z;c cexp(i(k-G)-r)

AN

Yet to be determined



Bloch Theorem
* One of the most important equations of the course!

* In a general crystal, the wave function for an electron
has the form:

P (L) =2 Ccexp(i(k-G)-T)

which can be written

V() =exp(ik-r)u,(r)

where u, (1) Is the function
with the periodicity of the crystal lattice

U (r)==2zc cexp(-1G-1)



Kronig-Penney model V(x)

n:n'c::

square well potential
U(x)= O forn(a+b)<x<(n+1l)a+nb b 0
U, for(n+1)a+nb<x<(n+1)(a+Db)

a atb

- (h2/2m) d2/dx2 ¥ (X)+ UX)¥ (X) = E ¥ (X)
Combination of traveling waves where U=0, exponential penetration

into the U=U, region
Aexp(iKx )+ Bexp(—iKx) for O< x<a
w(x)=

Cexp(Qx)+ Dexp(—-Qx) fora<x<a+b

The solution must satisfy the Bloch theorem
¥ (x) =exp (ik(a+b)) ¥, ( x-a-b)

Periodicity ; the lattice, k is like a reciprocal vector



Vix)

Kronig-Penney model s

Aexp(iKx )+ Bexp(—iKx) for O0< x<a |_|
V/(X)={ -

Cexp(Qx)+ Dexp(—0Qx) fora<x<a+b b 0 a atb

¥ (@) = exp (ik(a+h)) ¥ (-b)

boundary conditions; ¥ (x), d¥ (x)/dx continuous
x=0: A+B = C+D, iIK(A-B) = Q(C-D)
x=a: A exp(iKa) +B exp(-iKa) = [C exp(-Qb) +D exp(Qb)]exp (ik(atb))
IK[A exp(iKa) -B exp(-iKa)] = Q [C exp(-Qb) -D exp(Qb)]exp (ik(a+b))

Solution if determinant vanishes — relationship between a, b,
Q1 K1 k



Kronig-Penney model - [imiting case

Assume b=0, U,~, Q%ba/2=P ] 25
(P/Ka) sin Ka + cos Ka = cos ka 115

‘/\‘ '/-\ _ 0.5
Solution only when L.h.s.<1 / \Z o5

energy gaps at k=0, +- «t /a, .. I A R
E (k) = (h2/2m ) K 2

Since K depends on P
E is plotted vs. ka
E is not ~k?

ka




Bloch Theorem - 11

 The generalform is
Y"(r)=exp(ik-r)un(r)

where u," (1) Is a periodic function. Here n labels
different bands

« Key Points:
1) Each state is labeled by a wave vector k
2) k can be restricted to the first Brillouin Zone
This may be seen since

LIJk+G’ (I’_) - exp( | (K + g)_r) u k+G’ (I’_)
=exp(ik-r)u(r)

where u’, (1) =exp(1G-r)u,,s () IS]just another
periodic function -




Bloch Theorem - 111

 Thus a wavefunction in a crystal can always be written

Y () =exp(ik-r)un(r)

where: u" (r)is a periodic function
n labels different bands
K Is restricted to the first Brillouin Zone

 In the limit of a large system
k becomes continuous



Thetotal number of k values

« We can use the idea of periodic boundary conditions
on a box of size L x L x L - same as for phonons,
electrons in a box,...

e Volume per Kk point = (2r/L)3
* Total number of k points in Brillouin zone

I\lk-point - VBZ /(27T “—)3 - (Zﬁ/a)B(L/2ﬂ)3 = (L/a)3 - |\lcell
Each primitive cell contributes exactly one independent
value of k to each energy band.
Taking the two spin orientations into account, there are
2N Independent orbitals in each energy band.



Solving the* Central Equation”

Simple cases where we can solve

If V5 is weak, then we can solve the nearly free
electron problem (and find the solution we saw earlier
In the chapter).

For Kk near BZ boundary, the wave exp( 1K -r)is

mixed strongly with exp(i (k - G)-r), where G is the
single vector that leadsto |k | ~ | k- G|

LetV =Vs=Vforthat G



Solving the Central Equation

* Leads to two coupled equations

AMc-ElcstVe =0

K -0

e Solution
E= 12) (A +A,g) +[(1/4) (A -L )2 +V2L12
and - T - T
Ck-G — [( '7\4 K + E)/V] CK



Solutionsin 1D
E= (U2) (L + A o) + [(14) (b - Ay g )? +V 212

Chg = [(-A+E)V]c,

BZ boundary: k=n/ai, k-G=-mn/ai (unitvector)
A=A =n

E=A-V, E=2+V

Cr.c = *- C

¥ (+) = ¢, [exp( 1 nx/a) + exp(-I nx/a)]
¥ (-) = ¢ [exp( i mx/a) - exp(-I nx/a)]



Nearly Free Electronson aline

 Bands changed greatly only at zone boundary
Energy gap -- energies at which no waves can travel

through crystal Energies corresponding
to next BZs are translated

* ! /to first BZ
> _LEnergy
o Gap
@ T
c
LL
Far from BZ boundéry
wavefunctions and energies
approach free electron yalues
< > k

—nt/a 0 n/a



How to apply thisideain general

First find free electron bands plotted in BZ

The energy is ALWAYS E (K) = (h?/2m) K ?

but now we “reduce” K to first BZ, i.e., we find G such
that K =k + G, and Kk is in the first BZ

G(m;,my,,...) =my b, + m, b, + m; b,

b;-a= 2ny;

h* - = h?
E(k)_%(k+G =
Then add effects of potential — energy gaps

(k. +G, P +(k, +G, ) +(k, +G, })



Free E]
(k + 4r/a)?

_37;/3 —2n/a —nla 0 wn/a 2mn/a 3n/a



Free Electrons, 3D, smple cubic, K=(K,,0,0)

A

2= 2
/K=K,

Ky )? 4 (2m/a)?

—z;t/a —ﬁ/a 0 w/a 2rn/a



Nearly Free Electrons, 3D, schematic

] \ /w 2 + (2n/a)?

(k, # 2n/a)?




Potential variation with
the periodicity of the crystal

The nearly free electron cases show the general
form of bands:

Continuous bands of allowed states

Gaps where the are no states for the particular
K points



Qualitative Picture of Electron Energy
Bands and Gapsin Solids

Forbidden Gap
In Energiesfor
Valence Electrons

g Atomic-like Core States

Distance Between Atoms

Allowed Energiesfor Electrons




Metalsvs|nsulators
* A band holds two electrons per each cell

odd
MUST* metal
Partially filled bands lead to Fermi energy and
“Fermi surface” in k space
Conductivity because states can change and
scatter when electric field is applied

even
MAY iInsulator
Electrons “frozen”
Gap in energy for any excitations of electrons



Metalsvslnsulators

leads to an insulator!

In higher d, it depends on size of gaps

In 1d an even number of electrons per cell always

| Different direction of k

E ! E
Semi-metal
/ \ Fermi{Energy
—n/a 0 Kx mla 0o Kl



Summary
Solving the “Central Equation” in Fourier space

Bloch Theorem
Bloch states for electrons in crystals

Nearly Free Electrons
General Rules
First Free electron bands
Then add effects of small potential

Energy Bands and Band Gaps -- basis for
understanding metals vs. insulators

Read Kittel Ch 7



