Energy Bands for Electrons in Crystals (Kittel Ch. 7)

- Recall nature of free electron gas

Free electrons in box of size $L \times L \times L$ (artificial but useful)
Solved Schrodinger Equation
States classified by k with $E(k)=\left(h^{2} / 2 m\right) k^{2}$ Periodic boundary conditions convenient:

Leads to $k_{x}=2 n \pi / L$, etc.
Pauli Exclusion Principle, Fermi Statistics Simplest model for metals

- Why are some materials insulators, some metals?
- Recall nature of free electron gas

Free electrons in box of size $L \times L \times L$ (artificial but useful)
Solved Schrodinger Equation
States classified by k with $E(k)=\left(h^{2} / 2 m\right) k^{2}$
Periodic boundary conditions convenient:
Leads to $k_{x}=2 n \pi / L$, etc.
Pauli Exclusion Principle, Fermi Statistics
Simplest model for metals

- Why are some materials insulators, some metals?

First step - NEARLY free electrons in a crystal
Simple picture of how Bragg diffraction leads to
standing waves at the Brillouin Zone Boundary and to
energy gaps

Understanding Electrons in Crystals

- Electron Gas

Simplest possible model for a metal - electrons are completely "free of the nuclei" - nuclei are replaced by a smooth background -"Electrons in a box"

- Real Crystal -

Potential variation with the periodicity of the crystal

Attractive (negative) potential around each nucleus

Schrodinger Equation

- Basic equation of Quantum Mechanics

$$
\left[-\left(\hbar^{2} / 2 m\right) \Delta^{2}+V(\underline{r})\right] \Psi(\underline{r})=E \Psi(\underline{\mathbf{r}})
$$

where

$$
\begin{aligned}
& m=\text { mass of particle } \\
& V(\underline{r})=\text { potential energy at point } \underline{r} \\
& \Delta^{2}=\left(d^{2} / d x^{2}+d^{2} / d y^{2}+d^{2} / d z^{2}\right) \\
& E=\text { eigenvalue }=\text { energy of quantum state } \\
& \Psi(\underline{r})=\text { wavefunction } \\
& \mathrm{n}(\underline{r})=|\Psi(\underline{r})|^{2}=\text { probability density }
\end{aligned}
$$

- Key Point for electrons in a crystal: The potential $V(\underline{r})$ has the periodicity of the crystal

Schrodinger Equation

- How can we solve the Schrodinger Eq.

$$
\left[-\left(\hbar^{2} / 2 m\right) \Delta^{2}+V(\underline{\mathbf{r}})\right] \Psi(\underline{\mathbf{r}})=E \Psi(\underline{\mathbf{r}})
$$

where $V(\underline{r})$ has the periodicity of the crystal?

- Difficult problem - This is the basis of current research in the theory of electrons in crystals
- We will consider simple cases as an introduction Nearly Free Electrons Kronig-Penney Model

Next Step for Understanding Electrons in Crystals

- Simplest extension of the Electron Gas model

- Nearly Free electron Gas Very small potential variation with the periodicity of the crystal

> Very weak potentials with crystal periodicity

- We will first consider electrons in one dimension

Consider 1 dimensional example

- If the electrons can move freely on a line from 0 to L 0 (with no potential),
we have seen before that:
- Schrodinger Eq. In 1D with $\mathrm{V}=0$

$$
-\left(\hbar^{2} / 2 m\right) d^{2} / d x^{2} \Psi(x)=E \Psi(x)
$$

- Solution with $\Psi(x)=0$ at $x=0, L$

$$
\Psi(x)=2^{1 / 2} \mathrm{~L}^{-1 / 2} \sin (\mathrm{kx}), \mathrm{k}=\mathrm{n} \pi / \mathrm{L}, \mathrm{n}=1,2, \ldots
$$

Fixed Boundary Condition
or

$$
\Psi(x)=L^{-1 / 2} \exp (i k x), k= \pm n(2 \pi / L), n=0,1, . .
$$

- $E(k)=\left(h^{2} / 2 m\right) k^{2}$

Electrons on a line

- For electrons in a box, the energy is just the kinetic energy

$$
E(k)=\left(K^{2} / 2 m\right) k^{2}
$$

- Values of k fixed by the box, $k= \pm n(2 \pi / L), n=0,1, .$.
- Crystal: $L=N_{\text {cell }} a$
- The maximum (Fermi) wavevector is determined by the number of free electrons
- $N_{\text {elec }} / 2=2 n_{F}+1$, thus $n_{F} \sim N_{\text {elec }} / 4$
- $k= \pm n\left(2 \pi / N_{\text {cell }} a\right), n=0,1, . . N_{\text {elec }} / 4$
- define number of electrons per cell N
- $\mathrm{k}_{\mathrm{F}}=\mathrm{N} / 2(\pi / \mathrm{a})$

Electrons on a line with potential $\mathrm{V}(\mathrm{x})$

- What happens if there is a potential $\mathrm{V}(\mathrm{x})$ that has the periodicity a of the crystal?
- An electron wave with wavevector k can suffer Bragg diffraction to $\mathrm{k} \pm \mathrm{G}$, with G any reciprocal lattice vector

Electrons on a line with potential $\mathrm{V}(\mathrm{x})$

- Result:

Standing wave at zone boundary
Energy gap where there are no waves that can travel in crystal \uparrow

Interpretation of Standing waves at Brillouin Zone boundary

- Bragg scattering at $k=\pi /$ a leads to two possible combinations of the right and left going waves:

```
\Psi(+)=(2L)-1/2[exp(i\pix/a)+exp(-i\pix/a)] = 2 1/2 L-1/2}\operatorname{cos}(\pix/a
\Psi(-)=(2L)-1/2 [exp(i\pix/a)-\operatorname{exp}(-i\pix/a)]= 2 1/2 i L-1/2 sin(\pix/a)
``` with density \(n(+)=2 / L \cos ^{2}(\pi x / a) ; n(-)=2 / L \sin ^{2}(\pi x / a)\)


\section*{Energy difference between solutions}
\(n(+)=2 / L \cos ^{2}(\pi x / a) ; n(-)=2 / L \sin ^{2}(\pi x / a)\) for \(\mathrm{n}(+)\) the electrons are piled up on the positive ions, the magnitude of the negative potential energy is higher, so the energy is lower n(+) - high density at atoms \(\mathrm{n}(-)\) - low density at atoms

\section*{Electrons on a line with potential}
\[
V(x)=V \cos (2 \pi x / a)
\]

Energy gap -- energies at which no waves can travel through crystal \(\boldsymbol{E}_{g}=\int_{0}^{L} \boldsymbol{d} \boldsymbol{V} \boldsymbol{V}(\boldsymbol{x})(\boldsymbol{n}(+)-\boldsymbol{n}(-))=\boldsymbol{V}\)

\section*{Understanding Electrons in Crystals}

\section*{- Real Crystal -}

Potential variation with the periodicity of the crystal

\section*{Attractive (negative) potential} around each nucleus
- Potential leads to:

Electron bands - E(k) different from free electron bands Band Gaps

Ex. In a 1D crystal \(k_{F}=N / 2(\pi / a)\), where \(N=\#\) of electrons per cell. How many electron bands are expected for \(N=1,2,3, \ldots\) ?

\section*{Representing \(V\) as a periodic function}
- We have seen (Kittel Ch 2) that any periodic function can be written as Fourier series
\[
\mathrm{f}(\underline{\mathbf{r}})=\Sigma_{\underline{\mathbf{G}}} \mathrm{f}_{\underline{\mathbf{G}}} \exp (\mathrm{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}})
\]
where the \(\underline{\mathbf{G}}\) 's are reciprocal lattice vectors
\[
\underline{\mathbf{G}}\left(\mathrm{m}_{1}, \overline{\mathrm{~m}}_{2}, \ldots\right)=\mathrm{m}_{1} \underline{\mathbf{b}}_{1}+\mathrm{m}_{2} \underline{\mathbf{b}}_{2}+\mathrm{m}_{3} \underline{\mathbf{b}}_{3}
\]
- Check: A periodic function satisfies
\[
\begin{aligned}
& \mathrm{f}(\underline{\mathbf{r}})=\mathrm{f}(\mathbf{r}+\underline{\mathbf{T}}) \text { where } \underline{\mathbf{T}} \text { is any translation } \\
& \mathbf{T}\left(\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots\right)=\mathrm{n}_{1} \underline{\mathbf{a}}_{1}+\mathrm{n}_{2} \underline{\mathbf{a}}_{2}+\mathrm{n}_{3} \underline{\mathbf{a}}_{3} \\
& \text { the n's are integers }
\end{aligned}
\]
- Thus \(\vee(\underline{r})=\Sigma_{\underline{\mathbf{G}}} \vee_{\underline{\underline{G}}} \exp (\mathrm{i} \underline{\mathbf{G}} \cdot \underline{r})\)
- And \(V(\underline{r})=\) real \(\Rightarrow V_{\underline{G}}=V^{*}{ }_{-\underline{G}}\) or if the crystal is symmetric \(\mathrm{V}_{\underline{G}}=\mathrm{V}_{-\underline{G}}\)

\section*{Schrodinger Equation - Again}
- In a periodic crystal
\[
\left[-\left(\hbar^{2} / 2 m\right) \Delta^{2}+\Sigma_{\underline{\mathbf{G}}} \mathrm{V}_{\underline{\mathbf{G}}} \exp (\mathrm{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}})\right] \Psi(\underline{\mathbf{r}})=\mathrm{E} \Psi(\underline{\mathbf{r}})
\]
- Now assume \(\Psi(\underline{\mathbf{r}})=\Sigma_{\underline{k}} C_{\underline{k}} \exp (i \underline{\mathbf{k}} \cdot \underline{\mathbf{r}})\)
- Note we do NOT assume \(\Psi\) has the periodicity of the lattice! It is a superposition of waves!
- What is \(\mathbf{k}\) ?

Just as before for electrons in a box, we assume \(\Psi(\underline{r})\) is periodic in a large box \((\mathrm{L} \times \mathrm{L} \times \mathrm{L})\) which leads to
\[
k_{x}= \pm n_{x}(2 \pi / L), n=0,1, . . \quad|\underline{k}|=n(2 \pi / L)
\]

\section*{Schrodinger Equation - Continued}
- Then the Schrodinger Eq. becomes:
\[
\begin{aligned}
& \left.\Sigma_{\underline{k}} C_{\underline{k}} \lambda_{\underline{\underline{k}}} \exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}})+\Sigma_{\underline{\mathbf{k}}} \mathrm{C}_{\underline{\mathbf{k}}} \Sigma_{\underline{\mathbf{G}}} \mathrm{V}_{\underline{\mathbf{G}}} \exp (\mathrm{i}(\underline{\mathbf{k}}+\underline{\mathbf{G}}) \cdot \underline{\mathbf{r}})\right] \\
& =E \Sigma_{\underline{k}} C_{\underline{k}} \exp (i \underline{\mathbf{k}} \cdot \underline{\underline{r}}) \\
& \text { where } \lambda_{\underline{k}}=(h / 2 m)|\underline{k}|^{2}
\end{aligned}
\]
- Introduce \(\underline{\mathbf{k}}^{\prime}=\underline{\mathbf{k}}+\underline{\mathbf{G}}\) then relabel \(\underline{\mathbf{k}}^{\prime}\) as \(\underline{\mathbf{k}}\)
\[
\Sigma_{\underline{k}}\left\{\left[\lambda_{\underline{\mathbf{k}}}-E\right] \mathrm{C}_{\underline{k}}+\Sigma_{\underline{\mathbf{G}}} V_{\underline{\mathbf{G}}} \mathrm{C}_{\underline{\mathbf{k}-\mathrm{G}}}\right\} \exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}})=0
\]
- Equating terms with the same \(\underline{r}\) dependence on the two sides on the equation, we find the "Central Equation"
\[
\left[\lambda_{\underline{k}}-E\right] C_{\underline{k}}+\Sigma_{\underline{\mathbf{G}}} V_{\underline{\underline{G}}} C_{\underline{k}-\mathbf{G}}=0
\]

\section*{"Central Equation" for electron bands}
- What is the interpretation of the equation:
\[
\left[\lambda_{\underline{\underline{k}}}-E\right] \mathrm{C}_{\underline{k}}+\Sigma_{\underline{\mathbf{G}}} V_{\underline{\underline{G}}} \mathrm{C}_{\underline{k}-\mathbf{G}}=0
\]
- If \(\mathrm{V}_{\mathrm{G}}=0\) (no potential - free electrons) then each \(\underline{\mathbf{k}}\) is independent and each wavefunction is
\[
\Psi_{\underline{\mathbf{k}}}(\underline{\mathbf{r}})=\mathrm{c}_{\underline{\mathbf{k}}} \exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}}) ; E=\lambda_{\underline{\mathbf{k}}}=(反 \bar{h} / 2 \mathrm{~m})|\underline{\mathbf{k}}|^{2}
\]
- If \(\mathrm{V}_{\underline{\mathbf{G}}} \neq 0\), then each \(\underline{\mathbf{k}}\) is mixed with \(\underline{\mathbf{k}}\) - \(\underline{\mathbf{G}}\) where \(\underline{\mathbf{G}}\) is any reciprocal lattice vector -- the solution is
\[
\begin{aligned}
& \Psi_{\underline{k}}(\underline{r})=\Sigma_{\underline{G}} C_{\frac{k-G}{G}} \exp (i(\underline{k}-\underline{G}) \cdot \underline{r}) \\
& \text { Yet to be determined }
\end{aligned}
\]

\section*{Bloch Theorem}
- One of the most important equations of the course!
- In a general crystal, the wave function for an electron has the form:
\[
\Psi_{\underline{\mathbf{k}}}(\underline{\mathbf{r}})=\Sigma_{\underline{\mathbf{G}}} \mathrm{c}_{\underline{\mathbf{k}-\mathrm{G}}} \exp (\mathrm{i}(\underline{\mathbf{k}}-\underline{\mathbf{G}}) \cdot \underline{r})
\]
which can be written
\[
\Psi_{\underline{\mathbf{k}}}(\underline{\boldsymbol{r}})=\exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\underline{r}}) \mathrm{u}_{\underline{\mathbf{k}}}(\underline{\mathbf{r}})
\]
where \(u_{k}(\underline{r})\) is the periodic function with the periodicity of the crystal lattice
\[
\mathbf{u}_{\underline{k} \underline{r}}(\underline{\mathbf{r}})=\Sigma_{\underline{\mathbf{G}}} \mathrm{c}_{\underline{\mathbf{k}-\mathbf{G}}} \exp (-\mathrm{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}})
\]

\section*{Kronig-Penney model}
square well potential
- \(\left(h^{2} / 2 m\right) d^{2} / d x^{2} \Psi(x)+U(x) \Psi(x)=E \Psi(x)\)

Combination of traveling waves where \(\mathrm{U}=0\), exponential penetration into the \(\mathrm{U}=\mathrm{U}_{0}\) region
\[
\psi(x)=\left\{\begin{array}{c}
A \exp (i K x)+B \exp (-i K x) \text { for } 0<x<a \\
C \exp (Q x)+D \exp (-Q x) \text { for } a<x<a+b
\end{array}\right.
\]

The solution must satisfy the Bloch theorem
\[
\Psi_{\underline{k}}(x)=\exp (i k(a+b)) \Psi_{\underline{k}}(x-a-b)
\]

Periodicity of the lattice, \(k\) is like a reciprocal vector

\section*{Kronig-Penney model}
\[
\psi(x)=\left\{\begin{array}{c}
A \exp (i K x)+B \exp (-i K x) \text { for } 0<x<a \\
C \exp (Q x)+D \exp (-Q x) \text { for } a<x<a+b
\end{array}\right.
\]

\(\Psi(\mathrm{a})=\exp (\mathrm{ik}(\mathrm{a}+\mathrm{b})) \Psi(-\mathrm{b})\)
boundary conditions: \(\Psi(x), \mathrm{d} \Psi(x) / \mathrm{dx}\) continuous
\(\mathrm{x}=0\) : A \(+\mathrm{B}=\mathrm{C}+\mathrm{D}, \mathrm{iK}(\mathrm{A}-\mathrm{B})=\mathrm{Q}(\mathrm{C}-\mathrm{D})\)
\(\mathrm{x}=\mathrm{a}: \mathrm{A} \exp (\mathrm{i} \mathrm{Ka})+\mathrm{B} \exp (-\mathrm{iKa})=[\mathrm{C} \exp (-\mathrm{Qb})+\mathrm{D} \exp (\mathrm{Qb})] \exp (\mathrm{ik}(\mathrm{a}+\mathrm{b}))\)
\(\mathrm{iK}[\mathrm{A} \exp (\mathrm{iKa})-\mathrm{B} \exp (-\mathrm{iKa})]=\mathrm{Q}[\mathrm{C} \exp (-\mathrm{Qb})-\mathrm{D} \exp (\mathrm{Qb})] \exp (\mathrm{ik}(\mathrm{a}+\mathrm{b}))\)

Solution if determinant vanishes - relationship between \(\mathrm{a}, \mathrm{b}\), Q, K, k

\section*{Kronig-Penney model - limiting case}

Assume \(\mathrm{b}=0, \mathrm{U}_{0} \sim \infty, \mathrm{Q}^{2} \mathrm{ba} / 2=\mathrm{P}\) \((P / K a) \sin K a+\cos K a=\cos k a\)

Solution only when I.h.s. \(<1\) energy gaps at \(k=0,+-\pi / a, .\).

\(E(k)=\left(h^{2} / 2 m\right) K^{2}\)

Since \(K\) depends on \(P\)
\(E\) is plotted vs. ka
\(E\) is not \(\sim k^{2}\)

\section*{Bloch Theorem - II}
- The generalform is
\[
\Psi_{\underline{k}^{n}}(\underline{\boldsymbol{r}})=\exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}}) \mathrm{u}_{\underline{\underline{k}}}{ }^{n}(\underline{\boldsymbol{r}})
\]
where \(u_{k}{ }^{n}(\underline{r})\) is a periodic function. Here \(n\) labels different bands
- Key Points:
1) Each state is labeled by a wave vector \(\underline{k}\) 2) \(k\) can be restricted to the first Brillouin Zone This may be seen since
\[
\begin{aligned}
& \Psi_{\underline{\underline{k}+\mathbf{G}^{\prime}}}(\underline{\boldsymbol{r}})=\exp \left(i\left(\underline{\mathbf{k}}+\underline{\mathbf{G}^{\prime}}\right) \cdot \underline{\mathbf{r}}\right) u_{\underline{\underline{k}+\mathbf{G}^{\prime}}}(\underline{\boldsymbol{r}}) \\
& =\exp (i \underline{\mathbf{k}} \cdot \underline{\boldsymbol{r}}) u^{\prime}(\underline{\underline{k}}(\underline{\boldsymbol{r}}) \\
& \text { where } u_{\underline{\underline{\mathbf{k}}}}(\underline{\boldsymbol{r}})=\exp (\mathrm{i} \underline{\mathbf{G}} \cdot \underline{\mathbf{r}}) u_{\underline{\underline{k}+\mathbf{G}^{\prime}}}(\underline{\boldsymbol{r}}) \text { is just another } \\
& \text { periodic function }
\end{aligned}
\]

\section*{Bloch Theorem - III}
- Thus a wavefunction in a crystal can always be written
\[
\Psi_{\underline{\underline{k}}}{ }^{\mathrm{n}}(\underline{\boldsymbol{r}})=\exp (i \underline{\mathbf{k}} \cdot \underline{\underline{r}}) \mathrm{u}_{\underline{\underline{k}}}{ }^{\mathrm{n}}(\underline{\boldsymbol{r}})
\]
where:
\(u_{k}{ }^{n}(\underline{r})\) is a periodic function \(n\) labels different bands \(\underline{k}\) is restricted to the first Brillouin Zone
- In the limit of a large system
k becomes continuous
n is discrete index: \(\mathrm{n}=1,2,3, \ldots\)

\section*{The total number of \(\underline{\mathbf{k}}\) values}
- We can use the idea of periodic boundary conditions on a box of size \(L \times L \times L\) - same as for phonons, electrons in a box,...
- Volume per \(\underline{\mathbf{k}}\) point \(=(2 \pi / \mathrm{L})^{3}\)
- Total number of \(\underline{\mathbf{k}}\) points in Brillouin zone \(\mathrm{N}_{\text {k-point }}=\mathrm{V}_{\mathrm{BZ}} /(2 \pi / \mathrm{L})^{3}=(2 \pi / \mathrm{a})^{3}(\mathrm{~L} / 2 \pi)^{3}=(\mathrm{L} / \mathrm{a})^{3}=\mathrm{N}_{\text {cell }}\)

Each primitive cell contributes exactly one independent value of \(\underline{k}\) to each energy band.
Taking the two spin orientations into account, there are
\(2 \mathrm{~N}_{\text {cell }}\) independent orbitals in each energy band.

\section*{Solving the "Central Equation"}
- Simple cases where we can solve
\[
\left[\lambda_{\underline{\underline{k}}}-E\right] c_{\underline{\underline{k}}}+\Sigma_{\underline{\underline{G}}} v_{\underline{\underline{G}}} c_{\underline{k-G}}=0
\]
- If \(\mathrm{V}_{\underline{G}}\) is weak, then we can solve the nearly free electron problem (and find the solution we saw earlier in the chapter).
- For \(\underline{\mathbf{k}}\) near BZ boundary, the wave \(\exp (\mathrm{i} \underline{\mathbf{k}} \cdot \underline{\mathbf{r}})\) is mixed strongly with \(\exp (\mathrm{i}(\underline{\mathbf{k}}-\underline{\mathbf{G}}) \cdot \underline{\mathbf{r}})\), where \(\underline{\mathbf{G}}\) is the single vector that leads to \(|\underline{\mathbf{k}}| \sim|\underline{\mathbf{k}}-\underline{\mathbf{G}}|\)
- Let \(V=V_{\underline{G}}=V_{\underline{G}}\) for that \(\underline{\mathbf{G}}\)

\section*{Solving the Central Equation}
- Leads to two coupled equations
\[
\begin{aligned}
& {\left[\lambda_{\underline{k}}-E\right] c_{\underline{k}}+V c_{\underline{k}-G}=0} \\
& {\left[\lambda_{\underline{k}-\underline{\underline{G}}}-E\right] c_{\underline{k}-\underline{\underline{G}}}+V c_{\underline{k}}=0}
\end{aligned}
\]
- or
\[
\left|\begin{array}{cc}
{\left[\lambda_{\underline{k}}-E\right]} & V \\
V & {\left[\lambda_{\underline{k}-\underline{G}}-E\right]}
\end{array}\right|=0
\]
- Solution
\[
\begin{aligned}
& E=(1 / 2)\left(\lambda_{\underline{k}}+\lambda_{\underline{k}-\underline{G}}\right)+\left[(1 / 4)\left(\lambda_{\underline{k}}-\lambda_{\underline{k}-\underline{G}}\right)^{2}+V^{2}\right]^{1 / 2} \\
& \text { and }
\end{aligned}
\]
\[
c_{\underline{k}-G}=\left[\left(-\lambda \underline{k_{2}}+E\right) / V\right] C_{\underline{k}}
\]
\[
\begin{gathered}
\text { Solutions in 1D } \\
E=(1 / 2)\left(\lambda_{\underline{\underline{k}}}+\lambda_{\underline{k}-\underline{G}}\right)+-\left[(1 / 4)\left(\lambda_{\underline{k}}-\lambda_{\underline{k}-\underline{G}}\right)^{2}+V^{2}\right]^{1 / 2} \\
C_{\underline{k}-\mathbf{G}}=\left[\left(-\lambda_{\underline{k}}+E\right) / V\right] c_{\underline{k}}
\end{gathered}
\]
\(B Z\) boundary: \(\underline{\mathbf{k}}=\pi / \mathrm{a} \underline{\mathbf{1}}, \quad \underline{\mathbf{k}} \mathbf{-}=-\pi / a \underline{\underline{\underline{I}}}\) (unit vector)
\(\lambda_{\underline{k}}=\lambda_{\underline{k}-\underline{G}}=\lambda\),
\(\mathrm{E}_{-}=\lambda-\mathrm{V}, \mathrm{E}_{+}=\lambda+\mathrm{V}\)
\(c_{\underline{k}-\mathbf{G}}=+\mathrm{C}_{\underline{k}}\)
\(\Psi(+)=\mathrm{c}_{\underline{\underline{k}}}[\exp (\mathrm{i} \pi x / \mathrm{a})+\exp (-\mathrm{i} \pi x / \mathrm{a})]\)
\(\Psi(-)=c_{\underline{\underline{k}}}[\exp (i \pi x / a)-\exp (-i \pi x / a)]\)

\section*{Nearly Free Electrons on a line}
- Bands changed greatly only at zone boundary Energy gap -- energies at which no waves can travel through crystal

Far from BZ boundary wavefunctions and energies approach free electron values

\section*{How to apply this idea in general}
- First find free electron bands plotted in BZ
- The energy is ALWAYS \(E(K)=\left(h^{2} / 2 m\right) K^{2}\) but now we "reduce" \(K\) to first BZ, i.e., we find \(G\) such that \(\underline{K}=\underline{\mathbf{k}}+\underline{\mathbf{G}}\), and \(\underline{\mathbf{k}}\) is in the first \(B Z\)
- \(\underline{\mathbf{G}}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots\right)=\mathrm{m}_{1} \underline{\mathbf{b}}_{1}+\mathrm{m}_{2} \underline{\mathbf{b}}_{2}+\mathrm{m}_{3} \underline{\mathbf{b}}_{3}\)
- \(\underline{\mathbf{b}}_{\mathrm{i}} \cdot \underline{\mathbf{a}}_{\mathrm{i}}=2 \pi \delta_{\mathrm{ij}}\)
\[
\mathrm{E}(\mathrm{k})=\frac{h^{2}}{2 m}(\vec{k}+\vec{G})^{2}=\frac{h^{2}}{2 m}\left(\left(k_{x}+G_{x}\right)^{2}+\left(k_{y}+G_{y}\right)^{2}+\left(k_{z}+G_{z}\right)^{2}\right)
\]
- Then add effects of potential - energy gaps

Free Electrons, 3D, simple cubic, \(K=\left(K_{x}, \mathbf{0 , 0}\right)\)

\section*{Nearly Free Electrons, 3D, schematic}

\section*{Understanding Electrons in Crystals}
- Real Crystal -

Potential variation with the periodicity of the crystal

Attractive (negative) potential around each nucleus

The nearly free electron cases show the general form of bands:

Continuous bands of allowed states Gaps where the are no states for the particular k points

\section*{Qualitative Picture of Electron Energy Bands and Gaps in Solids}

\section*{Metals vs Insulators}
- A band holds two electrons per each cell
- Therefore a crystal with an odd number of electrons per cell MUST* be a metal!

Partially filled bands lead to Fermi energy and "Fermi surface" in k space

Conductivity because states can change and scatter when electric field is applied
- A crystal with an even number of electrons per cell MAY be an insulator!

Electrons "frozen"
Gap in energy for any excitations of electrons

\section*{Metals vs Insulators}
- In 1d an even number of electrons per cell always leads to an insulator!
- In higher d, it depends on size of gaps

Different direction of \(\mathbf{k}\)

\section*{Summary}
- Solving the "Central Equation" in Fourier space

Bloch Theorem
Bloch states for electrons in crystals
- Nearly Free Electrons

General Rules
First Free electron bands
Then add effects of small potential
- Energy Bands and Band Gaps -- basis for understanding metals vs. insulators
- Read Kittel Ch 7```

