Physics 6351 Professor Scalise
Homework Assignment #10 Spring 2025

1. Read Kardar chapter 7. Did you read all the pages?

2. Write the formula for the partition function Z of an electron in a hydrogen atom. If
the sum is finite, to what value does it converge? If the sum is infinite, prove it.

3. (a) Estimate the moment of inertia I for a CO molecule rotating about an axis
through its center of mass and perpendicular to the line joining the atoms. Are
the electrons or the nuclei more important?

(b) At what temperature 7" would you expect this rotational degree of freedom to
freeze out?

(c) Estimate the moment of inertia I for a CO molecule rotating about an axis
through its center of mass and parallel to the line joining the atoms. Are the
electrons or the nuclei more important?

(d) At what temperature 7" would you expect this rotational degree of freedom to
freeze out?

(e) Explain why we ignore the latter degree of freedom.

4. Consider a diatomic molecule with non-identical atoms like CO. Define the energy

€= Z—j Use a computer to sum the rotational quantum mechanical partition function
numerically, keeping terms through ¢ = 10. Calculate the average energy, and then
get the heat capacity per diatomic molecule in units of kg. Plot (not sketch) the heat
capacity versus x, where z = kgT/¢, for x = 0 to 7. Do you see the bump that I drew

in lecture?

5. The pressure of an ideal gas can be expanded as a power series in n/ng, where n = N/V
is the number density or concentration and ng = (mkpT/27h*)%? is the quantum
concentration (inverse thermal de Broglie wavelength cubed). The first two terms in
this expansion have the form

P:nkBT<1+ozi+--->.
nQ

In this problem, you will compute the number « for both fermions and bosons.
(a) The Fermi-Dirac or Bose-Einstein distribution function < n > can be expanded
as a power series in & = exp[—/(e—p)]. Find the first two terms in this expansion

for both fermions and bosons. (Hint: do the two cases at the same time using the
+ sign.)

—1of3-



(b)

Bonus

Using the approximation above, evaluate the particle number

N:/mdeg(e) <n >,
0

3/2
where g(e) = Z;f (%—’Q) / is the density of states. The Gaussian integrals that
arise can be looked up to save time. What is n/ng to this order for both fermions

and bosons?

Calculate the chemical potential p for both fermions and bosons. Expand in the
small quantity n/ng.

Recalling that p = (0F/ON)rv, integrate to find the Helmholtz free energy
F(T,V,N) for both fermions and bosons.

Now calculate the pressure by taking the appropriate partial derivative of F' and
find « for both fermions and bosons. In one case the first quantum correction
makes the pressure smaller than for a classical ideal gas with the same concentra-
tion and temperature, and in the other case the first quantum correction makes
the pressure larger. Which is which?

1. Solve the attached problem on white dwarfs.
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Problem 7.23. A white dwarf star (see Figure 7.12) is essentially a degenerate
electron gas, with a bunch of nuclei mixed in to balance the charge and to provide
the gravitational attraction that holds the star together. In this problem you will
derive a relation between the mass and the radius of a white dwarf star, modeling
the star as a uniform-density sphere. White dwarf stars tend to be extremely hot
by our standards; nevertheless, it is an excellent approximation in this problem to
set T'=0.

(a) Use dimensional analysis to argue that the gravitational potential energy

of a uniform-density sphere (mass M, radius R) must equal

2
R 1

Ugrav = —(COIlStant)

where (constant) is some numerical constant. Be sure to explain the minus
sign. The constant turns out to equal 3/5; you can derive it by calculating
the (negative) work needed to assemble the sphere, shell by shell, from the

inside out.

(b) Assuming that the star contains one proton and one neutron for each elec-
tron, and that the electrons are nonrelativistic, show that the total (kinetic)

energy of the degenerate electrons equals

e M3

Ukinetic = (0'0088) T B3
ey~ I

Figure 7.12. The double star system Sir-
ius A and B. Sirius A (greatly overexposed
in the photo) is the brightest star in our
night sky. Its companion, Sirius B, is hot-
ter but very faint, indicating that it must
be extremely small—a white dwarf. From
the orbital motion of the pair we know that
Sirius B has about the same mass as our
sun. (UCO/Lick Observatory photo.)

The numerical factor can be expressed exactly in terms of 7 and cube roots
and such, but it’s not worth it.

(¢) The equilibrium radius of the white dwarf is that which minimizes the total
energy Ugrav + Ukinetic- Sketch the total energy as a function of R, and
find a formula for the equilibrium radius in terms of the mass. As the mass
increases, does the radius increase or decrease? Does this make sense?

(d) Evaluate the equilibrium radius for M = 2 x 1030 kg, the mass of the sun.
Also evaluate the density. How does the density compare to that of water?

(e) Calculate the Fermi energy and the Fermi temperature, for the case con-
sidered in part (d). Discuss whether the approximation T' = 0 is valid.

(f) Suppose instead that the electrons in the white dwarf star are highly rel-
ativistic. Using the result of the previous problem, show that the total
kinetic energy of the electrons is now proportional to 1/R instead of 1/ R2.
Argue that there is no stable equilibrium radius for such a star.

(g) The transition from the nonrelativistic regime to the ultrarelativistic regime
occurs approximately where the average kinetic energy of an electron is
equal to its rest energy, me?. Is the nonrelativistic approximation valid for
a one-solar-mass white dwarf? Above what mass would you expect a white
dwarf to become relativistic and hence unstable?

Problem 7.24. A star that is too heavy to stabilize as a white dwarf can collapse
further to form a neutron star: a star made entirely of neutrons, supported
against gravitational collapse by degenerate neutron pressure. Repeat the steps
of the previous problem for a neutron star, to determine the following: the mass-
radius relation; the radius, density, Fermi energy, and Fermi temperature of a
one-solar-mass neutron star; and the critical mass above which a neutron star
becomes relativistic and hence unstable to further collapse.




