Physics 6351 Professor Scalise
Homework Assignment #11 Spring 2025

1. Read the Feynman Lectures on “Superconductivity”.

https://www.feynmanlectures.caltech.edu/III_21.html

2. Solve the attached problem 6.30 on the spin isomers of hydrogen. Your plot should look
exactly like that for molar heat capacities on the Wikipedia page for Spin_isomers_of_hydrogen.
You can skip part (e) on deuterium if you wish.

3. Solve the attached problem 7.70 on the BEC heat capacity. Use a computer to plot
the heat capacity and verify that it looks like the lecture notes.

4. In the van der Waals equation of state,
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the critical point is the unique point where both the first and second derivatives of pres-
sure with respect to volume at fixed temperature are zero. Find the critical pressure,
volume, and temperature in terms of a and b.

5. Rewrite the van der Waals equation of state in terms of the dimensionless variables

=L p=2L and v = L. Plot some isotherms above and below the critical point.
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Bonus

1. Solve the attached problem 7.41 on the Einstein A and B coefficients for spontaneous
and stimulated emission.
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Problem 6.28. Use a computer to sum the rotational partition function (eq;lrz:;;;?r
(o) . . ¢ e
6.20) algebraically, keeping terms through j= 6. Then ca;lzgiate :Irlle ifrxlvge; ffm ey
and the heat capacity. Plot the heat capacity for values o / ; r ti o —
Have you kept enough terms in Z to give accurate results within thi

a

range?

Problem 6.30. In this problem you will investigate' the behavior of ordix(lial.ry
hydrogen, Hg, at low temperatures. The .constant €is 0.007§ eV. As ‘noteﬁ 3:)n
the text, only half of the terms in the rotational partition function, equa'ntlorl1 . ;
contribute for any given molecule. More precisely, the .set of a.llowed 7 va ue%s i

determined by the spin configuration of the two .atoml‘i: .nuclel. There a;ethou;
independent spin configurations, classified as a single “singlet” state z}iln ' rth
“triplet” states. The time required for a molecule to convert t?etween the 51tng ¢

and triplet configurations is ordinarily quite long, so the properties of the two types
of molecules can be studied independently. The singlet molecules are known as
parahydrogen while the triplet molecules are known as orthohydrogen.

i tes with even values of j are
a) For parahydrogen, only the rotational sta /
® allowed.” Use a co’mputer (as in Problem 6.28) to calculate the rotational

*For those who have studied quantum mechanics, here’f wby: Ezen-j‘ Wayefun?tlolnsta;e
symmetric (unchanged) under the operation of replacing T with -, whx:i:h 1ts;h§qu1v:r:11iono
interchanging the two nuclei; odd-j wavefunctions are antl'symmetrlc un fer tfs op o b(;
The two hydrogen nuclei (protons) are fermions, so their ove.zrall wave, untc. ion rr:ztric e
antisymmetric under interchange. The singlet state (T} — |T) is already antisymm

partition function, average energy, and heal, capacity of a parahydrogen
molecule. Plot the heat capacity as a function of kT/e.*

(b) For orthohydrogen, only the rotational states with odd values of J are
allowed. Repeat part (a) for orthohydrogen.

(c) At high temperature, where the number of accessible even-j states is es-
sentially the same as the number of accessible odd-j states, a sample of
hydrogen gas will ordinarily consist of a mixture of 1 /4 parahydrogen and
3/4 orthohydrogen. A mixture with these proportions is called normal
hydrogen. Suppose that normal hydrogen is cooled to low temperature
without allowing the spin configurations of the molecules to change. Plot
the rofational heat capacity of fhis mixture as a function of temperature.
At what temperature does the rotational heat capacity fall to half its high-
temperature value (i.e., to k/2 per molecule)?

(d) Suppose now that some hydrogen is cooled in the presence of a catalyst
that allows the nuclear spins to frequently change alignment. In this case
all terms in the original partition function are al lowed, but the odd-j terms
should be counted three times each because of the nuclear spin degener-
acy. Calculate the rotational partition function, average energy, and heat
capacity of this system, and plot the heat capacity as a function of AT'/e.

(e) A deuterium molecule, Dy, has nine independent nuclear spin configura-
tions, of which six are “symmetric” and three are “antisymmetric.” The
rule for nomenclature is that the variety with more independent, states gets
called “ortho-," while the other gets called “para-” For orthodeuterium
only even-j rotational states are allowed, while for paradenterium onl y odd-
J states are allowed. ! Suppose, then, that a sample of Dy gas, consisting of
a normal equilibrium mixture of 2 /3 ortho and 1/3 para, is cooled without
allowing the nuclear spin configurations to change. Calculate and plot the
rotational heat capacity of this system as a function of temperature.t

spin, so its spatial wavefunction must be symumetric, while the triplet states (11, 11, and
TL -+ 1T) are symmetric in spin, so their spatial wavefunctions must be antisymmetric.
*For a molecule such as 04 with spin-0 nuclei, this graph is the whole story; the only
nuclear spin configuration is a singlet and only the even-j states are allowed.
tDeuterium nuclei are bosons, so the overall wavefunction must be symmetric under
interchange.
tFor a good discussion of hydrogen at low temperature, with references to experiments,
see Gopal (1966).




e 1

: Problem 7.69. If you have a computer system that can do numerical integrals,

it’s not particularly difficult to evaluate p for T' > Te.
(a) As usual when solving a problem on a computer, it’s hest to start by
putting everything in terms of dimensionless variables. 30 define t = T/Te,

- ——

¢ = p/kTe, and = €¢/kTc. Express the integral that defines yu, equation
7.122, in terms of these variables. You should obtain the equation
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(b) According to Figure 7.33, the correct value of ¢ when T = 277 is approx-
imately —0.8. Plug in these values and check that the equation above is
approximately satisfied.

(¢) Now vary p, holding T fixed, to find the precise value of p for T = 2T¢.
Repeat for values of 7'/T, ranging from 1.2 up to 3.0, in increments of 0.2.
Plot a graph of p as a function of temperature.

Problem 7.70. Figure 7.37 shows the heat capacity of a Bose gas as a function of
temperature. In this problem you will caleulate the shape of this unusual graph.

(a) Write down an expression for the total energy of a gas of N bosons confined
to a volume V, in terms of an integral (analogous to equation 7.122).

(b) For T < T. you can set pp = 0. Evaluate the integral numerically in this
case, then differentiate the result with respect to T to obtain the heat
capacity. Compare to Figure 7.37.

(c) Explain why the heat capacity must approach %N k in the high-T limit.

(d) ForT"> T. you can evaluate the integral using the values of ;1 calculated in
Problem 7.69. Do this to obtain the energy as a function of femperature,
then numerically differentiate the result to obtain the heat capacity. Plot
the heat capacity, and check that your graph agrees with Figure 7.37.
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Figure 7.37. Heat capacity of an ideal Bose gas in a three-dimensional
box.




Problem 7.41. Consider any two internal states, s1 and sg, of an atom. Let s2
be the higher-energy state, s0 that E(sp)— E(s1) = e for some positive constant €.
If the atom is currently in state sz, then there is a certain probability per unit time
for it to spontaneously decay dawn to state si, emitting a photon with energy €.

This probability per unit time ig called the Einstein A coefficient:
A = probability of spontaneous decay per unit time.

On the other hand, if the atom is currently in state s1 and we shine light on it with
frequency f =€ /h, then there is a chance that it will absorb a photon, jumping into
state sg. The probability for this to occur is proportional not only to the amount
of time elapsed but also to the intensity of the light, or more precisely, the energy
density of the light per unit frequency, u(f). (This is the function which, when
integrated over any frequency interval, gives the energy per unit volume within
that frequency interval. For our atomic transition, all that matters is the value of
w(f) at f = ¢/h.) The probability of absorbing a photon, per unit time per unit
intensity, is called the Einstein B coefficient:

B E}h:}hility of absorption per unit time
a u(f) '

Finally, it is also possible for the atom to make a stimulated transition from s2
down to s1, again with a probability that is proportional to the intensity of light
at frequency f- (Stimulated emission is the fundamental mechanism of the laser:
Light Amplification by Stimulated Emission of Radiation.) Thus we define a third
coofficient, B', that is analogous to B:

B = probability of stimulated emission per unit time

u(f)

As Einstein showed in 1917, knowing any one of these three coefficients is as good
as knowing them all.

(a) Imagine a collection of many of these atoms, such that Ny of them are in
state s and Ny are in state so. Write down a formula for dN7 /dt in terms

of A, B, B', N1, N2, and u(f).

(b) Elinstein’s trick is to imagine that these atoms are bathed in thermal va-
diation, so that u(f) is the Planck spectral function. At equilibrium, Ny
and Ny should be constant in time, with their ratio given by a si:‘nple
Boltzmann factor. Show, then, that the coefficients must be related by

3
B'=B and a_ 8mhf
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