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106 Classical Electromagnetic Theory

oo

V(r<a) = —2 cos¢
€0
o2’

and V(ir>a)= cosQ

2eyr

5.2.3 Conformal i\llappings’

The idea behind conformal mappings is to take the solution to a very
simple boundary condition problem and then to fold, stretch, or otherwise
deform the boundary by a conformal mapping to match the boundary for
a more complicated problem of interest. The same mapping that changes
the boundary will also deform the field lines and constant potential lines
of the simple problem to those of the more complicated problem. As the
use of complex functions is central to the technique, we begin with a
consideration of complex functions of a complex variable z = x + iy.

Generally, a complex function f(z) may be written as the sum of a
real part and an imaginary part, f(z)=u(x,y)+iv(x,y). This means that for
a point x + iy in the (complex) z plane we can find a corresponding point
u + iv in the image plane (or, more briefly, the f plane) defined by f. The
function f may be said to map the point (x,y) to (u,iv). A series of points
in the z plane will be mapped by f to a series of points in the f plane. If
the function f is well behaved, adjacent points in the z plane are mapped
to adjacent points in the f plane (i.e., a line in the z plane is mapped to
a line in the f plane). It is such well-behaved complex functions or
mappings that we will consider.

A function f(z) is said to be analytic (the terms regular or holomor-
phic are also used) at a point z, if its derivative, defined by

i__f_ = lim f(Z+A2) - f(Z) (5_11)
dz Az—0 Az

exists (and has a unique value) in some neighborhood of z,. A moment’s
reflection will show this to be a considerably stronger condition than the
equivalent for functions of real variables because Az can point in any
direction in the z plane. The direction of taking this limit is immaterial
for an analytic function. To investigate the consequence of this property,
let us take the derivative first in the real direction and then in the
imaginary direction.
Taking Az along the real axis results in

Af _ i LatAnY) - u@y) +ilvetarny) - vEy)]
dz A0 Ax
ou i ov (5-12)
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while taking the derivative in the imaginary direction results in

gi _ lim u(x,y+Ay) — u(x,y) + i[v(x,y+Ay) — v(x,y)]

dz  ay—0 LAy (5-13)
_ .0u [ ov
=12+
oy oy

Comparing the two expressions (5-12) and (5-13), we find that the
real and imaginary parts of an analytic function f are not arbitrary but
must be must be related by

ou _ v a9 HM__ (5-14)

x oy y o
These two equalities (5-14) are known as the Cauchy-Riemann equations.
The validity of.the Cauchy-Riemann equations is both a necessary and

sufficient condition for f to be analytic.

To illustrate these ideas, we consider the function f(z) = 22 =(x + iy)
= (2 - y?) + 2ixy. Then u = £% — y? and v = 2xy. The derivatives are easily
obtained

_ai:2x,2=2x; @.:—2y,i‘i=2y
ox oy oy ox

in accordance with the Cauchy-Riemann equations.
The Cauchy-Riemann equations can be differentiated to get

Pu _ P Fu oK

and = -

w?  oxdy o°  oyox
Since the order of differentiation should be immaterial, these can be added
to give

= 4+ =
ax2 ay2
In similar fashion
i‘i: Pu and 6202_62u = V% =0
oy? oyox o2 ox 0y

The functions 1 and v each solve Laplace’s equation. Any analytic function
therefore supplies two solutions to Laplace’s equation, suggesting that we
might look for the solutions of static potential problems among analytic
functions. The functions z and v are known as conjugate harmonic

functions. It is easily verified that the curves u = constant and v =

constant are perpendicular to one another, suggesting that if one were to
represent curves of constant potential, then the other would represent

electric field lines.
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Figure 5.7 The image of the rectangular grid in the f plane under the
mapping z = \/f is shown on the right in the z plane.

To return now to the notion of conformal mappings,Jf let us consider
the mapping produced by the analytic function f(z) = z? (Figure 5.7). The
inverse mapping, z = ‘/f , is analytic everywhere except at z = 0. The
image of the line v = 0 in the z plane is easily found: for v > 0, z =Vu
produces an image line along the positive x axis, while for u <0, z =
Vi =iv—u produces an image line along the positive y axis of the z plane.
The image of v = 1 is easily found from (z + ) = %% — y% + 2ixy, implying
that 2xy = 1. Similarly, the line u = ¢ has image 2 -y?=c.

Let us now consider the potential above an infinite flat conducting
plate with potential V = V|, lying along the u axis. Above the plate, the
potential will be of the form V = V,, — av. (A second plate at a different
potential, parallel to the first would be required to determine the constant
a.) In a more general problem, V would be a function of both u andv. V
may generally be considered to be the imaginary (or alternatively, real)

part of an analytic function

O(u,v) = Ulw,v) +iVu,v) = O(f) (5-15)
For this example, taking V to be the imaginary part of an analytic
function ®, ®(u,v) = iV, — af = —au + i(Vy — av). The corresponding

electric field has components E, = a and E, = 0.

" The mappings are called conformal because they preserve the angles between inter-
secting lines except when singular or having zero derivative. To see this, we consider two
adjacent points z, and z on a line segment that makes angle @ with the x axis at z,. Then
z-z, may be written in polar form as re’*. The image of the segment f(z) — f(zy) can be ex-
pressed to first order as f'(2y)(z — zo). If we write each term in polar form, Af takes the form
Rel® = ae™®re™. Thus the image line segment running from f(z,) to f(z) makes angle 6=a +¢
with the u axis. This means that any line passing through z, is rotated through angle a in
the mapping to the f plane providing that the derivative f'(z,) exists and that a unique polar
angle a can be assigned to it. When f' is zero as for f(z) = 22 at z = 0, conformality fails.
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Now the mapping that takes the grid lines from the f plane to the
z plane also takes @ to the z plane. Expressed in terms of x and y

o[f2)] = iV, - az? = ay® - x?) + i(V, - 2axy)

Thus, in the z plane, Ulx,y) = a(y? — %) and V(x,y) = V; — 2axy. The
latter is the potential produced by two conducting plates at potential V
intersecting at right angles. The field lines produced by v = constant in
the u-v plane are now obtained from u = y? — x? = constant, while the
constant potential lines are produced by v = 2xy = constant.

A second example is offered by the mapping z = ¢sinf, which maps
the entire u axis onto a finite line segment of length 22 in the z plane. We

express z in terms of u and v by expanding sin f as

if _ ,-if
. - e
sinf=2"_"°¢"

2t
to obtain

Wu+iv) _ ,—i(u+iv) —vyiu _ U,
sinf = e - et e
2 21
_ e””(cosu+isinu)—e”(cosu - isinu)
2!

= i sinhv-cosu +coshv-sinu

Thus x = fcoshv-sinu and y = sinhv -cosu.
We again take for the potential above the v = 0 "plane” the

imaginary part of ®(u,v) = iV, — af. It is somewhat awkward, however, to
find @ in terms of x and y directly by substituting for f in the expression
for ®. Fortunately this is not really necessary. For a given point («, v) in
the f plane (where V is readily calculated), the corresponding (x, y) value
is readily found. In particular, the equipotentials at v = constant are easily

obtained, for

2 2
x* Ly -1 (5-16)

02cosh?v  02%sinh?v

In other words, the equipotentials around the flat strip are ellipses
of major axis £ coshv and minor axis #sinhv. At large distances coshv and
sinhv both tend to +¢”, meaning the equipotentials tend to circles. The
potential and field lines are shown in Figure 5.8. (This problem can also
be solved using separation of variables in elliptical coordinates.)

For a last example of somewhat more interest, let us consider the

transformation

= &, f .
2ﬂ(1+f+e) (5-17)

If f is real, then z is also real, and, as u varies from —oo to +o, x
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w

z plane

fplane

Figure 5.8 The figure on the left is the mapping of the regular grid on the
right produced by the function z = £ sinf.

will take on values from —o to +o. The real axis maps (albeit non-
linearly) onto itself. Next consider the horizontal line f = u + in. Substi-
tuting this into the expression for z gives

z=2(1+u+im+e ) = 2 (1+u+in-e)
2r 2r
We conclude that
xz_fz_(l-!—u—e”) and y=%

For u large and negative, x = au/2r increases to 0 as u goes to zero.
As u passes zero, e” exceeds 1 + u and x retraces the negative x axis from
0 to —. The line in the f plane folds back on itself at z = 0 on being
mapped to the z plane. Similarly, the line at v = —7 maps to the half-
infinite line at y = —a/2 with negative x. If we let the lines at £ir in the
f plane be the constant potential plates of the infinite parallel plate
capacitor of Figure 5.9, the mapping carries this potential to that of the
semi-infinite capacitor on the right. We can with this mapping find the
fringing fields and potentials near the edge of a finite parallel plate

A 2] iy

—00 — 0 Y

al2

—00 = V=-T

Figure 5.9 The infinite "planes” at +ir in the f plane map to the semi-
infinite "planes” in the z plane at y = +a/2 on the right.
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capacitor. As we will see in the next section, we will also be able find the
correction to the capacitance due to the fringing fields.

Letting the plates of the infinite capacitor in the f plane be at
potential +V,/2, with the top plate positive, the potential at any point in
between the plates becomes V = Vyu/2xn. The analytic function of which
V is the imaginary part is easily obtained as ®(f) = V,f/2r. Again it is
somewhat awkward to substitute for f in terms of x and y. Instead, we
separate the equation for z into real and imaginary components to get

x = _a_(l + U + ecosv) (5-18)

2w
and = 2 (v + e*sinv (5-19
y 2n( ) )

which we can evaluate parametrically by varying u to obtain the constant
v (also constant V = Vu/2x) curves. Similarly, the electric field lines are

obtained in the x-y plane by varying v. The field and potential lines are
plotted in Figure 5.10.

v=.6x
v=.87 i V=47
v=.2"1

u=-10

V=T

U=t u=1

| v=—21

- =—4n
v=—8% ; v=—=067m v

Figure 5.10 The equipotential and field lines near the edge of a semi-
infinite plate capacitor are plotted parametrically.

Verifying that a given mapping does indeed map a particular surface
onto another is fairly straightforward. It is not, however, obvious how
mappings for given boundaries are to be obtained, other than perhaps by
trial and error. For polygonal boundaries, a general method of constructing
the mapping is offered by Schwartz-Christoffel transformations. For
nonpolygonal boundaries, one must rely on "dictionaries” of mappings.’

* For both Schwartz-Christoffel transformations and a dictionary of mappings, see for
instance K.J. Binns and P.J. Lawrenson. (1973) Analysis and Computation of Electric and
Magnetic Field Problems, 2nd ed. Pergamon Press, New York.



