This assignment is not at the Jackson level; it is meant to bring everyone up to speed before we start graduate problems.

1. Consider a uniform sphere of charge Q and radius R centered at the origin.
(a) What is the scalar volume charge density field $\rho(\vec{r})$ everywhere?
(b) What is the electric field $\vec{E}(\vec{r})$ everywhere?
(c) What is the scalar potential (voltage) field $V(\vec{r})$ everywhere with the convention that $V=0$ infinitely far from the sphere?
(d) What is the scalar potential (voltage) field $V(\vec{r})$ everywhere with the convention that $V=0$ on the surface of the sphere?
(e) Show how to recover the electric field given either voltage field above.
(f) How much energy is required to assemble the sphere from empty space? Perform this calculation in two different ways: one using the electric field and one using the voltage and the charge density. (Of course, the answers should agree.)
2. (a) Find the scalar volume charge density field $\rho(\vec{r})$ that results in this electic field inside a sphere of radius $R: \vec{E}(\vec{r})=E_{0} \hat{r}$, where E_{0} is a constant.
(b) What is the total charge in the sphere?
(c) What is the electric field outside the sphere?
