1. Show how to recover the field for the discrete case from the expression for the field in the continuous case using $\rho(\vec{r})=\sum_{i} q_{i} \delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right)$.
2. Prove that

$$
\frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}=-\vec{\nabla}\left(\frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|}\right) .
$$

This is most easily done by writing $\vec{r}=\sum_{i} x_{i} \vec{e}_{i}, \vec{r}^{\prime}=\sum_{i} x_{i}^{\prime} \vec{e}_{i}$ (with $\overrightarrow{e_{i}} \cdot \overrightarrow{e_{j}}=\delta_{i j}$), and noting that in Cartesian coordinates $\vec{\nabla}=\sum_{i} \overrightarrow{e_{i}} \frac{\partial}{\partial x_{i}}$.
3. Consider the distribution of point charges shown in the diagram.

(a) What is the charge density $\rho(\vec{r})$ for the system?
(b) What is the potential $\Phi(\vec{r})$?
(c) Find the leading non-zero term for $\mathrm{r} \gg \mathrm{d}$.
(d) What is the power of $\left(\frac{d}{r}\right)$ in the next term after the one above?
(e) Take the limits $q \rightarrow \infty$ and $d \rightarrow 0$ so that the first term is finite but all other terms vanish ("point quadrupole"). What must be the relationship between q and d for this result to occur?
4. Calculate the first three multipole tensors (monopole, dipole, and quadrupole) of a uniformly charged spheroid whose symmetry semi-axis is a and whose transverse semiaxis is b. The charge density ρ is constant within the spheroid and zero without. The equation for the surface of the spheroid is

$$
\begin{aligned}
& x=b \sin \theta \cos \phi \\
& y=b \sin \theta \sin \phi \\
& z=a \cos \theta
\end{aligned} \quad \text { or } \quad \frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{a^{2}}=1 .
$$

