11. Suppose we have an assembly of uniform balls of charge. Then $\rho(\vec{r})=\sum_{i} q_{i} \Delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right)$ where

$$
\Delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right)=\left\{\begin{array}{cl}
\frac{1}{\frac{1}{3} \pi a^{3}}, & \vec{r} \text { in a sphere of radius } a \text { centered at } \overrightarrow{r_{i}} \\
0, & \vec{r} \text { outside the sphere defined above }
\end{array}\right.
$$

Thus (assuming that $\left|\overrightarrow{r_{i}}-\overrightarrow{r_{j}}\right|>2 a$ for $i \neq j$) the electrostatic potential energy of the system is

$$
W=\frac{1}{2} \sum_{i \neq j} q_{i} q_{j} \int d V \int d V^{\prime} \frac{\Delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right) \Delta^{3}\left(\vec{r}^{\prime}-\overrightarrow{r_{j}}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}+\frac{1}{2} \sum_{i} q_{i}^{2} \int d V \int d V^{\prime} \frac{\Delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right) \Delta^{3}\left(\vec{r}^{\prime}-\overrightarrow{r_{i}}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} .
$$

The last contribution is the sum of self-energies of the uniform balls of charge. Calculate the self-energy of the i th ball of charge - i.e. calculate

$$
W_{i}^{\text {self }}=\frac{1}{2} q_{i}^{2} \int d V \int d V^{\prime} \frac{\Delta^{3}\left(\vec{r}-\overrightarrow{r_{i}}\right) \Delta^{3}\left(\vec{r}^{\prime}-\overrightarrow{r_{i}}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|} .
$$

What happens when $a \rightarrow 0$? Hint: Shift the origin of coordinates and then put $W_{i}^{\text {self }}$ in the form

$$
W_{i}^{\text {self }}=\frac{1}{2} \int d V \rho_{i}(\vec{r}) \Phi_{i}^{\text {self }}(\vec{r})
$$

with

$$
\rho_{i}(\vec{r})=q_{i} \Delta^{3}(\vec{r})
$$

and

$$
\Phi_{i}^{\text {self }}(\vec{r})=\int d V^{\prime} \frac{\rho_{i}\left(\vec{r}^{\prime}\right)}{\left|\vec{r}-\vec{r}^{\prime}\right|}
$$

and calculate $\Phi_{i}^{\text {self }}(\vec{r})$ from Gauss' Law.
12. Prove that $C_{i j}=C_{j i}$ where

$$
C_{i j}=-\oint_{S_{i}} \frac{d S}{4 \pi} \oint_{S_{j}} \frac{d S^{\prime}}{4 \pi} \hat{n}_{i} \cdot \vec{\nabla}_{r} \hat{n}_{j}^{\prime} \cdot \vec{\nabla}_{r^{\prime}} G_{D}\left(\vec{r}, \vec{r}^{\prime}\right) .
$$

13. We often refer to the capacitance C of a pair of conductors. In particular, we put $q_{1}=Q$ and $q_{2}=-Q$. (equal and oppositely charges conductors). The capacitance is defined as

$$
C=\frac{Q}{\Phi_{1}-\Phi_{2}} .
$$

(a) Determine C in terms of C_{11}, C_{22}, and C_{12}.
(b) Suppose that conductor \#1 is completely enclosed by conductor \#2. Prove that $C_{12}=-C_{11}$ in this case. Find the capacitance in this case. Hint: We require $\Phi(\vec{r})$ (the potential at a point \vec{r} due to both conductors) to vanish as $r \rightarrow \infty$. With Q on conductor $\# 1$ and $-Q$ on conductor $\# 2$, what is the electric field outside conductor $\# 2$? What does that say about Φ_{2} ?
(c) Consider the case of two concentric spheres of radii R_{1} and R_{2} with $R_{1}<R_{2}$ and on which there are charges q_{1} and q_{2}, respectively. Do NOT assume $q_{1}=-q_{2}$! Find explicit expressions for C_{11}, C_{22}, and C_{12} using elementary physics (e.g. Gauss' Law) together with definitions of the $C_{i j}\left(q_{i}=\sum_{j} C_{i j} \Phi_{j}\right)$. Comment on your results in light of part (b).
(d) What simplification takes place in part (a) if the two conductors are identical in shape and size?

Bonus:(5 points)

Physics Challenge for Teachers and Students
 Boris Korsunsky, Column Editor Weston High School, Weston, MA 02493 challenges@aapt.org

Decond to one
A student throws two rocks from the top of a cliff at the same initial speed. The rocks are thrown exactly one second apart, and land simultaneously at the same spot on the ground, 25 meters away from the launch point, as shown in the diagram. Find the flight time of the second rock.
Use $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Cari E. Mungan (U. S. Naval Academy, Annapolis, MD)
Ammar Qasim (Zewail City of Science and Technology, Giza, Egypt)
Pascal Renault (John Tyler Community College, Midlothian, VA)
Randall J. Scalise (Southern Methodist University, Dallas, TX)
William V. Slaton (University of Central Arkansas, Conway, AR)
Jason L. Smith (Richland Community College, Decatur, IL)
B. H. Suits (Michigan Technological University, Houghton, MI)
Quan Zheng (Indian River State College, Fort Pierce, FL)

