21. In lecture, we claimed that the error

$$
E_{N}\left(c_{1}, \ldots, c_{N}\right) \equiv \int_{a}^{b} d \xi\left|f(\xi)-f_{N}(\xi)\right|^{2}=\int_{a}^{b} d \xi\left[f(\xi)-f_{N}(\xi)\right]^{*}\left[f(\xi)-f_{N}(\xi)\right]
$$

made in the approximation

$$
f_{N}(\xi)=\sum_{n=1}^{N} c_{n} u_{n}(\xi)
$$

to the function $f(\xi)$ was minimized if the expansion coefficients were chosen as

$$
c_{n}=\int_{a}^{b} d \xi u_{n}^{*}(\xi) f(\xi)
$$

Prove this assertion. Hint: Write $c_{n}=a_{n}+i b_{n}$ where a_{n} and b_{n} are real constants, and $\int_{a}^{b} d \xi u_{n}^{*}(\xi) f(\xi)=A_{n}+i B_{n}$ where A_{n} and B_{n} are real constants. Then require that

$$
\frac{\partial E_{N}}{\partial a_{k}}=0=\frac{\partial E_{N}}{\partial b_{k}} .
$$

22. Find the potential $\Phi(x, y, z)$ inside a parallelopiped ($0<x<a, 0<y<b, 0<z<c$) for which the x -component of the electric field is specified on the face at $x=0$, and the others faces are grounded.

$$
\begin{aligned}
& E_{x}(0, y, z)=f(y, z) \\
& \Phi(a, y, z)=0=\Phi(x, 0, z)=\Phi(x, b, z)=\Phi(x, y, 0)=\Phi(x, y, c)
\end{aligned}
$$

Bonus:(5 points) Due when the homework is due.

Two perfectly conducting infinite and grounded half-planes intersect at an angle $\pi / 3$ radians. A charge q is located halfway between the planes at a distance d from the intersection. Find the potential energy of the configuration.

