Soap Films and the Laplace Equation

Consider a soap film like on the above picture. Because of the surface tension, the geometry of the soap film is the minimal-area surface spanning the given loop. In Cartesian coordinates, the surface is specified by $z=f(x, y)$, and it obeys the Euler-Lagrange equation

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{\frac{\partial z}{\partial x}}{\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{\frac{\partial z}{\partial y}}{\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}}\right)=0 \tag{1}
\end{equation*}
$$

This is a messy, non-linear partial differential equation! Fortunately, for the low-profile films with $\Delta z \ll \Delta x, \Delta y$ and hence small derivatives $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} \ll 1$, the equation (1) simplifies and becomes the 2D Laplace equation:

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0 \tag{2}
\end{equation*}
$$

By shaping the wire loop spanned by the soap film, we specify the $z(s)$ along the boundary. For any such $s(s)$ at the boundary, the Laplace equation (2) has a unique solution.

