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Electromagnetic fields carry energy, momentum, and angular momentum. The momentum density,
�0�E�B�, accounts �among other things� for the pressure of light. But even static fields can carry
momentum, and this would appear to contradict a general theorem that the total momentum of a
closed system is zero if its center of energy is at rest. In such cases, there must be some other
�nonelectromagnetic� momenta that cancel the field momentum. What is the nature of this “hidden
momentum” and what happens to it when the electromagnetic fields are turned off? © 2009 American
Association of Physics Teachers.
�DOI: 10.1119/1.3152712�
I. INTRODUCTION

The linear momentum density carried by electromagnetic
fields is related to the Poynting vector1

℘em =
1

c2S = �0�E � B� . �1�

The classic example is an electromagnetic wave �see Fig. 1�.
When the wave strikes an absorber, its momentum is passed
along in the form of the pressure of light. But there are other
examples in which the fields are perfectly static, and yet the
electromagnetic momentum is not zero. Consider, for in-
stance, the following configurations.

Capacitor in a magnetic field. A charged parallel-plate ca-
pacitor �with uniform electric field E=−Eŷ� is placed in a
uniform magnetic field B=Bẑ, as shown in Fig. 2.2,3 Naively,
the electromagnetic momentum is4

pem = − �0EBAdx̂ = − BQdx̂ , �2�

where A is the area of the plates, d is their separation, and Q
is the charge on the upper plate.

Magnetic dipole and electric charge. A magnetic dipole
m=mŷ is situated a distance a from a point charge q, as
shown in Fig. 3.5 The electromagnetic momentum is

pem =
�0

4�

qm

a2 x̂ =
1

c2 �E � m� , �3�

where E is the electric field at the location of the dipole.
Polarized magnetized sphere. A sphere of radius R carries

a uniform polarization P and a uniform magnetization M
�see Fig. 4�.6 The momentum carried by the fields is

pem = 4
9��0R3�M � P� . �4�

Coaxial cable. A long coaxial cable �length l� is connected
to a battery of voltage V at one end and a resistor R at the
other �see Fig. 5�. The momentum carried by the fields is

pem =
lV2

c2R
x̂ . �5�

It seems strange �to say the least!� for purely static fields
to carry momentum. Can this possibly be the whole story?
And what happens to the momentum when we turn off the

fields? In Sec. II we explore the latter question in what
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would appear to be the simplest context: the parallel-plate
capacitor in a uniform magnetic field. We are led to a sur-
prising paradox. In Sec. III we return to the first question �“Is
this the whole story?”�, to which the answer is no. Here we
develop the theory of “hidden momentum.” In Sec. IV we
work out the details for an electric dipole at the center of a
spinning, uniformly charged spherical shell, and resolve the
apparent paradox from Sec. II. In Sec. V we do the same for
an electric dipole inside a long solenoid. In Sec. VI we dem-
onstrate that hidden momentum always cancels electromag-
netic momentum, in the static case,7 and draw some general
conclusions about the nature of the hidden momentum.

II. CAPACITOR IN A UNIFORM MAGNETIC FIELD

If the electric or magnetic field is turned off, the momen-
tum originally stored in the fields must �one would think� be
converted into ordinary mechanical momentum. For ex-
ample, in the case of the capacitor in a magnetic field, we
might connect a wire between the plates, allowing the ca-
pacitor to discharge slowly8 �see Fig. 6�. According to the
Lorentz law, this wire will experience a force F= IBd to the
left, where I is the current in the wire. The net impulse de-
livered to the capacitor—which is to say, the mechanical
momentum it acquires—is

I =� Fdt = − Bd� �−
dq

dt
�dtx̂ = Bd�

Q

0

dqx̂ = − BQdx̂ ,

�6�

which is precisely the momentum originally stored in the
fields �see Eq. �2��.

Alternatively, we might turn off the magnetic field. Ac-
cording to Faraday’s law, the changing magnetic field will
induce an electric field,

� E · d� = −
d�

dt
�7�

�which, by Lenz’s law, runs counterclockwise in Fig. 7�. The
x component of the force on the strip shown is dFx
=Ex�wdx, where � is the surface charge density, and the net
force on the capacitor is Fx=�w	E ·d�, where the integral is
taken clockwise around the dotted loop, and we have ignored

the two short ends. The magnetic flux through this loop
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�counting inward as positive, for consistency� is �=−Bld, so
Fx=�wld�dB /dt�, and the impulse delivered to the capacitor
is

I =� Fdt = �wld� �dB

dt
�dtx̂

= �wld�
B

0

dBx̂ = − BQdx̂ , �8�

the same as Eq. �6�. Everything seems to be in order: when
either the electric field is turned off �by discharging the ca-
pacitor� or the magnetic field is removed, the momentum
originally stored in the fields is converted into ordinary me-
chanical momentum, and the capacitor moves off to the left
�see Table I�. Sounds good, but it is almost entirely wrong.9

In the first place, 	E ·d� includes the two vertical seg-
ments, which do not contribute the force. Of course, we as-
sume that the plates are very close together; doesn’t that
mean the “extra” piece is negligible? Unfortunately, it does
not. Suppose we use a solenoid to establish the magnetic
field �see Fig. 8�. Because of the azimuthal symmetry, we
can calculate the induced electric field explicitly, E�2�r�=
−�r2dB /dt, which implies that

E = −
r

2

dB

dt
�̂ �9�

and

E · d� = −
r

2

dB

dt
�− sin �x̂ + cos �ŷ� · �dxx̂ + dyŷ + dzẑ�

�10a�

=
1

2

dB

dt
�r sin �dx − r cos �dy�

=
1

2

dB

dt
�ydx − xdy� . �10b�

So the force on the capacitor is

p
E

B

em

Fig. 1. An electromagnetic wave carries momentum in the direction of
propagation; when it hits an absorber, this momentum is transferred in the
form of the pressure of light.
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Fig. 2. A charged capacitor in the presence of an external magnetic field

carries electromagnetic momentum even though nothing is moving.
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Fx = �w��
top

E · d� − �
bottom

E · d�� �11a�

=�w
1

2

dB

dt

d

2
l −

1

2

dB

dt
�−

d

2
�l� =

1

2
�wld

dB

dt
, �11b�

which is half of what we obtained before. The two ends are
shorter ��dy=d�, but they are farther out �x= l /2�, and their
contribution to 	E ·d� is the same as the top and bottom; but
they do not contribute to the force because there is no charge
there. Apparently, the impulse delivered to the capacitor
when B is turned off is not the same as the momentum origi-
nally stored in the fields.

But that is not all. Our naive expression for the momentum
in the fields in Eq. �2� ignored the fringing field of the ca-
pacitor, and when this field is correctly included,3 the answer
is half as great �see Table II�. Now lines 1 and 3 are consis-
tent, but 2 is off! There is evidently a problem here, but it
runs much deeper than that factor of 1/2, as we shall see in
Sec. III.

III. HIDDEN MOMENTUM

There is a very general principle in special relativity,10

which we shall call the center of energy theorem: if the cen-
ter of energy12 of a closed13 system is at rest, then its total
momentum is zero. The center of energy of a capacitor in a
static magnetic field is certainly at rest, so if there is momen-
tum in the fields, there must be some compensating nonelec-
tromagnetic momentum elsewhere. Where is this “hidden
momentum” located, and what is its nature? When we turn
off E or B, and the capacitor gets a kick, something else �in
this case the solenoid� must get an equal and opposite kick so
that the total momentum remains zero. But there is no a
priori reason that the impulse to the capacitor should equal
the momentum originally stored in the fields, or that it should
be the same when we turn off the electric field as when we
turn off the magnetic field.

The cleanest example of hidden momentum is the follow-
ing: Imagine a rectangular loop of wire carrying a steady
current.14 Picture the current as a stream of noninteracting
positive charges that move freely within the wire. When a
uniform electric field E is applied �see Fig. 9�, the charges
will accelerate up the left segment and decelerate down the
right one. Notice that there are fewer charges in the upper
segment but they are moving faster. Question: What is the
total momentum of all the charges in the loop?

The momenta of the left and right segments cancel, so we
need only consider the top and bottom segments. Say there
are Nt charges in the top segment, going to the right at speed
vt, and Nb charges in the lower segment, going at speed vb to
the left. The current �I=�v� is the same in all four segments
�otherwise charge would be piling up somewhere, and it
would not be a steady current�. Thus

Table I. Capacitor in a magnetic field—naive solution.

Momentum initially stored in fields −BQdx̂
Momentum delivered to capacitor as it discharges −BQdx̂
Momentum delivered to capacitor as B decreases −BQdx̂
827Babson et al.



I =
qNt

l
vt =

qNb

l
vb, �12a�

so

Ntvt = Nbvb =
Il

q
, �12b�

where q is the charge of each particle and l is the length of
the rectangle. Nonrelativistically, the momentum of a single
particle is p=mv, where m is its mass, so the total momen-
tum �to the right� is

pclass = mNtvt − mNbvb = m
Il

q
− m

Il

q
= 0, �13�

as we would expect �after all, the loop as a whole does not
move�. But relativistically the momentum of a particle is p
=	mv, and we get

prel = 	tmNtvt − 	bmNbvb =
mIl

q
�	t − 	b� , �14�

which is not zero because the particles in the upper segment
move faster.

As a particle goes up the left side, it gains energy equal to
the work done by the electric force,

	tmc2 − 	bmc2 = qEw , �15a�

so

prel =
IlEw

c2 , �15b�

and hence

p

z

x

y

m

q

a

em

Fig. 3. There is electromagnetic momentum in the fields of a point charge
near a magnetic dipole even though both are stationary.

M
P

E

B

Fig. 4. A sphere with uniform polarization P and uniform magnetization M

carries electromagnetic momentum proportional to M�P.
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phid =
1

c2 �m � E� , �16�

where m is the magnetic dipole moment of the loop �m
= Ilw�. If we integrate ℘em=�0�E�B� for a magnetic dipole
in an electric field,17 we obtain18

pem = −
1

c2 �m � E� . �17�

The hidden momentum exactly cancels the field momentum,
as the center of energy theorem requires.

It is easy to generalize this result. In terms of the electric
potential V, �	t−	b�mc2=−q�Vt−Vb�, and hence19

phid = −
mIl

q

q

mc2 �Vt − Vb�x̂

= −
I

c2 �Vt − Vb�lx̂ = −
I

c2� Vd� , �18�

where the integral is around the loop in the direction of the
current �the ends cancel�. For surface or volume currents, we
have

phid = −
1

c2� VKda �19a�

and

phid = −
1

c2� VJd
 . �19b�

This model of electric current is artificial, and one might
prefer to treat it as an incompressible fluid.20 In that case,
assuming that the wire has a constant cross section, the speed
and spacing of the charges are the same all the way around
the loop, but those in the top segment are under higher pres-
sure. Now, a moving fluid under high pressure carries greater
momentum than the same fluid under low pressure. The
quickest way to see this is by examining the stress-energy
tensor for a simple fluid,21

T�� = �0v
�v� + P�v�v�

c2 − g��� , �20�

where �0 is the mass density in the rest frame of the fluid, P
is the �scalar� pressure, and v�=	�c ,v� is the local

Table II. Capacitor in a magnetic field—corrected.

Momentum initially stored in fields − 1
2BQdx̂

Momentum delivered to capacitor as it discharges −BQdx̂
Momentum delivered to capacitor as B decreases − 1

2BQdx̂
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em

Fig. 5. A coaxial cable, with current flowing from a battery at one end
through a resistor at the other and returning, carries electromagnetic momen-

tum in the direction of the high-voltage current.
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4-velocity. The 0i components of T�� give the momentum
density,

T0i = 	2��0c +
P

c
�vi = �ic . �21�

Thus, the momentum density of the fluid is

℘fluid = 	2��0 +
P

c2�v . �22�

The first term represents the ordinary flow of mass; the sec-
ond is the “extra” momentum associated with pressure.22 The
latter accounts for the hidden momentum,

phid = ��t − �b�lA =
	2

c2 �Pt − Pb�vlA , �23�

where A is the cross-sectional area of the wire.
The difference in pressure between the top and bottom

segments is due to the �electric� force on the charges in �say�
the left segment of the loop. In relativity, the force per unit
volume acting on a fluid is given by23

f� =
�

�x�T��. �24�

If x1 is the vertical direction, then from Eq. �20�

f1 =
dP

dx1�	2v2

c2 + 1� �25a�

or

f = 	2 � P . �25b�

Equation �25b� is the �relativistic� relation between the force
density and the pressure gradient. In our case the force per
unit volume is �E, so 	2� P=�E, or integrating over the
volume of the left segment,

	2�Pt − Pb�A = �EAw . �26�

Putting Eq. �26� into Eq. �23� and using I=�Av, we get

I
B
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y

F
d

+

_

Fig. 6. A fine wire between the plates allows current I to flow, discharging
the capacitor. The magnetic force on the current delivers an impulse to the
capacitor.
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Fig. 7. If the magnetic field is gradually reduced, an electric field is induced,

in the counterclockwise direction, imparting an impulse to the capacitor.
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phid =
vl

c2�EAw =
IlEw

c2 , �27�

the same as before �Eq. �15b��.

IV. ELECTRIC DIPOLE AT THE CENTER
OF A SPINNING, UNIFORMLY CHARGED
SPHERICAL SHELL

What about a capacitor in the magnetic field of a solenoid?
In this case the hidden momentum is located in the solenoid
�that is where the moving charges are�, and the electric field
responsible for the variation in 	 must be the exterior �fring-
ing� field of the capacitor.24 The fringing field is notoriously
difficult to calculate, and the results are independent of the
geometry, so we begin with a simpler model, replacing the
capacitor by an electric dipole with dipole moment p= pŷ,25

and the solenoid by a spherical shell of radius R which car-
ries a uniform surface charge � and spins at a constant an-
gular velocity �=ẑ �see Fig. 10�.26 This configuration pro-
duces a uniform magnetic field,

B = 2
3�0�R� �28�

for points inside the sphere, and a dipole field

B =
�0

4�

1

r3 �3�m · r̂�r̂ − m�, where m =
4�

3
�R4� �29�

for points outside. The field of the electric dipole is

E =
1

4��0

1

r3 �3�p · r̂�r̂ − p� −
1

3�0
p�3�r� . �30�

rE

B
z

x

y
φ

Fig. 8. In this model the magnetic field is produced by a long solenoid, and
the induced electric field can be calculated explicitly �Eq. �9��.
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Fig. 9. The simplest model for hidden momentum: a steady current I con-
sisting of noninteracting charges constrained to move around a rectangular
tube. In the presence of an external electric field E, the charges accelerate up

the left segment and decelerate down the right segment.
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To calculate the electromagnetic momentum, we integrate
�0�E�B� over the interior and exterior of the sphere,27

pin = �0�� 
 1

4��0

1

r3 �3�p · r̂�r̂ − p�

−
1

3�0
p�3�r��d
� � B �31a�

=−
1

3
�p � B� . �31b�

This part comes exclusively from the delta function because
the angular integral of the first term �using spherical coordi-
nates and p= pŷ�,

� �3�p sin � sin ���sin � cos �x̂ + sin � sin �ŷ

+ cos �ẑ� − pŷ�sin �d�d� , �32�

is zero. The contribution from outside the sphere is

pout = �0
1

4��0

�0

4�
� 1

r6 �3�p · r̂�r̂ − p�

� �3�m · r̂�r̂ − m�r2 sin �drd�d� �33a�

=−
�0mp

12�R3 x̂ = −
1

6
�p � B� , �33b�

where B is the magnetic field inside the sphere. So

pem = pin + pout = − 1
2 �p � B� . �34�

The hidden momentum in the spinning sphere is �see Eq.
�19a��

z

x

y

p
σ

B

Fig. 10. A uniformly charged spherical shell spins at constant angular ve-
locity, producing a uniform magnetic field at interior points; an electric
dipole is located at the center.

z

r
p

θ

r sin θ

Fig. 11. Geometry for calculating the magnetic field of a discharging electric

dipole.
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phid = −
1

c2� VKda

= −
1

c2� � p · r̂

4��0r2����� � r��da �35a�

=− �0�0
p

4��0
�R� sin � sin ��sin � cos �ŷ

− sin � sin �x̂�sin �d�d� �35b�

=
�0

4�
p�R�4

3
�x̂� =

1

2
�p � B� . �35c�

So far, so good: the momentum, pem+phid, is zero.
Now let’s connect a wire between the ends of the electric

dipole, allowing it to discharge. The impulse delivered to the
dipole is

Idip =� Fdt =� I�d � B�dt

= ��
q

0

dq�d � B = − �p � B� , �36�

where d is the separation of the charges, and p=qd. At the
same time, the changing electric field of the dipole induces a
magnetic field, which exerts a force on the spinning sphere.
To calculate the induced magnetic field, we orient the polar
axis along p �see Fig. 11� and apply the Ampere–Maxwell
law �	B ·d�=�0Ienc+�0�0d�E /dt� to the dotted “Amperian
loop” using the spherical cap to determine �E,

�E =� E · da

=
1

4��0
� 1

r3 �3�p · r̂�r̂ − p� · r2 sin �d�d�r̂ �37a�

=
1

4��0r
� �2p cos ��sin �d�d� =

p sin2 �

2�0r
. �37b�

B points in the �̂ direction,

B�2�r sin �� = �0�0
d

dt
� p sin2 �

2�0r
� , �38�

so

B =
�0

4�

ṗ sin �

r2 =
�0

4�

ṗ � r̂
r2 , �39�

where ṗ=dp /dt. The force on the spinning sphere �reverting
p= pŷ and �=ẑ� is

F =� �K � B�da =
�0�

4�R2� ��� � r� � �ṗ � r̂��da

= −
�0�Rṗ

3
x̂ , �40�
and the impulse delivered to the shell is
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Isphere =� Fdt =
1

2
�p � B� . �41�

Curiously, this impulse is only half as great as the impulse to
the dipole �see Eq. �36��.

Alternatively, we could turn off the magnetic field by
bringing the spinning sphere to rest. During this process the
changing magnetic field induces an electric field,

E = − 1
2 Ḃr sin ��̂ , �42�

which exerts a force on the two ends of the dipole,

F = 2q� Ḃ

2

d

2
�x̂ =

1

2
pḂx̂ . �43�

The net impulse is

Idip = − 1
2 �p � B� �44�

�which is the same as the momentum originally stored in the
fields�. But this time there is no electromagnetic impulse to
the sphere �see Table III�. It is still inconsistent! The im-
pulses to the dipole and the spinning sphere do not balance,
and it seems that the total momentum of the system, after
turning off the fields, is not zero.

But wait: What happened to the hidden momentum when
we turned off the fields? This was purely mechanical mo-
mentum associated with the motion of the charges that con-
stitute the current; as the fields are reduced, the excess mo-
mentum of the charges is delivered to the structure that keeps
them on track �in this case the spherical shell�.28 Thus the
hidden momentum should be added to the impulse delivered
to the sphere as the fields are turned off, and finally every-
thing works out �see Table IV�.

V. ELECTRIC DIPOLE IN THE FIELD
OF A LONG SOLENOID

The calculations are no more difficult for the solenoid
model �see Fig. 12�.29 In this case, the magnetic field is

B�s� = �Bẑ �s � R�
0 �s � R� ,

� �45�

where R is the radius of the solenoid, s is the distance from
the axis, and B=�0K=�0nI �K is the surface current density,
n is the number of turns per unit length, and I is the current�.
The delta function term in the dipole field in Eq. �30� must
be handled with care: this represents the field inside a sphere
of radius � �in the limit �→0�; the “ordinary” dipole field

Table III. Electric dipole inside spinning sphere—naive solution.

Initial momentum pem=− 1
2 �p�B� phid= 1

2 �p�B� ptot=0

Dipole discharges Idip=−�p�B� Isphere= 1
2 �p�B� ptot=− 1

2 �p�B�
Sphere slows Idip=− 1

2 �p�B� Isphere=0 ptot=− 1
2 �p�B�

Table IV. Electric dipole inside spinning sphere—corrected.

Initial momentum pem=− 1
2 �p�B� phid= 1

2 �p�B� ptot=0
Dipole discharges Idip=−�p�B� Isphere+phid= �p�B� ptot=0

Sphere slows Idip=− 1
2 �p�B� phid= 1

2 �p�B� ptot=0
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prevails outside this sphere. It is safest to do the calculation
in spherical coordinates even though this makes the upper
limit on the r integral awkward: rmax=R /sin �,

pem = �0�� 
 1

4��0

1

r3 �3�p · r̂�r̂ − p�

−
1

3�0
p�3�r��d
� � B �46a�

=
B

4�
� 1

r3 �3�p · r̂��r̂ � ẑ� − �p � ẑ��d
 −
1

3
�p � B� .

�46b�

Now,

p · r̂ = p sin � sin � ,
�47�

r̂ � ẑ = sin � sin �x̂ − sin � cos �ŷ, p � ẑ = px̂ ,

so the integral is

p� 1

r3 �3 sin � sin ��sin � sin �x̂ − sin � cos �ŷ�

− x̂�r2 sin �drd�d�

= �px̂�
0

� ��
�

R/sin � 1

r
dr��3 sin2 � − 2�sin �d�

�48a�

=�px̂�
0

�

�ln R − ln�sin �� − ln ��

��1 − 3 cos2 ��sin �d� �48b�

=− �px̂�
0

�

ln�sin ���1 − 3 cos2 ��sin �d�

= −
2

3
�px̂ . �48c�

Thus

pem =
B

4�
�−

2�

3
px̂� −

1

3
�p � B� = −

1

2
�p � B� , �49�

which is the same as for the spinning sphere �see Eq. �34��.

r

p
R

z

y

θ

max

Fig. 12. A long solenoid produces a uniform magnetic field at interior
points; an electric dipole is located on the axis.
The hidden momentum in the solenoid is
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phid = −
1

c2� VKda = − �0�0� � p · r̂

4��0r2��K�̂�Rd�dz .

�50�

In this case, it is simplest to use cylindrical coordinates
�s ,� ,z�,

p · r̂ =
pR

r
sin �, r = �R2 + z2, �̂ = − sin �x̂ + cos �ŷ ,

�51�

so

phid = −
�0

4�
pKR2� sin ��− sin �x̂ + cos �ŷ�

�R2 + z2�3/2 d�dz

�52a�

=
1

2
�0pKR2x̂�

0

� dz

�R2 + z2�3/2

=
1

2
pBx̂ =

1

2
�p � B� , �52b�

as in the spherical model �Eq. �35��.
Now we discharge the dipole. The impulse to the dipole

itself is the same as in Eq. �36�, and the induced magnetic
field is again given by Eq. �39�. The force on the solenoid is

F =� �K � B�da =
�0

4�
� 1

r2 �K � �ṗ � r̂��Rd�dz . �53�

But

K � �ṗ � r̂� =
ṗK

r
�− R cos2 �x̂ − R sin � cos �ŷ

− z cos �ẑ� , �54�

so

F = −
1

2
�0ṗKR2x̂�

0

� 1

�R2 + z2�3/2dz = −
1

2
Bṗx̂ . �55�

The impulse delivered to the solenoid is

Isol =� Fdt = −
1

2
Bx̂� dp

dt
dt

= −
1

2
Bx̂�

p

0

dp =
1

2
Bpx̂ =

1

2
�p � B� , �56�

again reproducing the result for the spinning sphere in Eq.
�41�.

If we turn off B �by reducing the current in the solenoid�,
the induced electric field is the same as in Eq. �42�, and the
impulse delivered to the dipole is the same as in Eq. �44�;
again, there is no impulse to the solenoid. The entire table is

Table V. Electric dipole in the field of a solenoid.

Initial momentum pem=− 1
2 �p�B� phid= 1

2 �p�B� ptot=0
Dipole discharges Idip=−�p�B� Isol+phid= �p�B� ptot=0

Current decreases Idip=− 1
2 �p�B� phid= 1

2 �p�B� ptot=0
essentially unchanged �compare Tables IV and V�.

832 Am. J. Phys., Vol. 77, No. 9, September 2009
VI. CONCLUSION

We considered a rectangular current loop in a uniform
electric field, an electric dipole at the center of a spinning
charged spherical shell, and an electric dipole in the field of
a long solenoid; in each case the hidden momentum exactly
balances the electromagnetic momentum, so the total is zero,
consistent with the center of energy theorem. Can we prove
that this cancellation always works when the fields are static?
Yes, for if we use Ampere’s law ���B=�0J� to replace the
current density in the general expression for hidden momen-
tum �see Eq. �19b�� and integrate by parts, we obtain

phid = −
1

c2� VJd


= −
�0�0

�0
� V�� � B�d
 �57a�

=− �0� �� � �VB� + �B � ��V���d
 �57b�

=�0� VB � da + �0� �B � E�d


= − �0� �E � B�d
 = − pem. �57c�

�For a localized distribution the boundary term is zero.�
When the electric or magnetic field is turned off, the field

momentum disappears, the hidden momentum is absorbed,
and some element�s� in the system may receive an impulse.
But there is no obvious reason why this impulse should equal
the momentum originally stored in the fields—all we can say
in general is that the total momentum afterward, like the total
momentum before, is zero.30

The hero �or is it the villain?� of this story is hidden mo-
mentum. What can be said about the nature of hidden mo-
mentum in general? It seems to share three general features:

• It is purely mechanical.31 Although it arises most often in
electromagnetic contexts, it has nothing to do with electro-
dynamics. The force involved in Fig. 9 could just as well
be gravity, or little rockets attached to the particles, and
Eq. �19b� could be written more generally as

phid = −
1

c2� uvd
 , �58�

where u is the potential energy density �of whatever form�
and v is the local velocity.
• It occurs in systems with internally moving parts �such as

current loops�.32

• It is intrinsically relativistic.

A definitive characterization of the phenomenon remains
elusive, and some have suggested that the term should be
expanded to include all strictly relativistic contributions to
momentum �including electromagnetic momentum, the �	
−1�mv piece of particle momentum, and the 	2Pv /c2 portion
of the momentum density of a fluid under pressure�; others

33
urged that the term be expunged altogether.
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