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This means that there is an outward force per unit area equal to 0°/2¢, = w at
the surface of the conductor. This result is normally derived by taking the product
of the surface-charge density and the electric field, with care taken to eliminate
the electric field due to the element of surface-charge density itself.

For a system of n conductors, each with potential V; and total charge
Q;(i=1,2,...,n) in otherwise empty space, the electrostatic potential energy
can be expressed in terms of the potentials alone and certain geometrical quan-
tities called coefficients of capacity. For a given configuration of the conductors,
the linear functional dependence of the potential on the charge density implies
that the potential of the ith conductor can be written as

Vi=21piij (i=1,2,...,n
. 7=

where the p; depend on the geometry of the conductors. These n equations can
be inverted to yield the charge on the ith conductor in terms of all the potentials:

0=3¢cv, G(=12....n) (1.61)

The coefficients C;; are called capacities or capacitances while the Cy, i # j, are
called coefficients of induction. The capacitance of a conductor is therefore the
total charge on the conductor when it is maintained at unit potential, all other
conductors being held at zero potential. Sometimes the capacitance of a system
of conductors is also defined. For example, the capacitance of two conductors
carrying equal and opposite charges in the presence of other grounded conduc-
tors is defined as the ratio of the charge on one conductor to the potential dif-
ference between them. The equations (1.61) can be used to express this capaci-
tance in terms of the coefficients C;.
The potential energy (1.53) for the system of conductors is

W= = > Q= L > > C;ViV; (1.62)
2iz 2= 521

The expression of the energy in terms of the potentials V; and the Cy;, or in terms
of the charges Q; and the coefficients p;;, permits the application of variational
methods to obtain approximate values of capacitances. It can be shown, based
on the technique of the next section (see Problems 1.17 and 1.18), that there are
variational principles giving upper and lower bounds on C;;. The principles permit
estimation with known error of the capacitances of relatively involved configu-
rations of conductors. High-speed computational techniques permit the use of
elaborate trial functions involving several parameters. It must be remarked, how-
ever, that the need for a Green function satisfying Dirichlet boundary conditions
in the lower bound makes the error estimate nontrivial. Further consideration of
this technique for calculating capacitances is left to the problems at the end of
this and subsequent chapters.

Variational Approach to the Solution of the Laplace

and Poisson Equations

Variational methods play prominent roles in many areas of classical and quantum
physics. They provide formal techniques for the derivation of “equations of mo-
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tion” and also practical methods for obtaining approximate, but often accurate,
solutions to problems not amenable to other approaches. Estimates of resonant
frequencies of acoustic resonators and energy eigenvalues of atomic systems
come readily to mind.

The far-reaching concept that physical systems in equilibrium have minimal
energy content is generalized to the consideration of energy-like functionals. As
an example; consider the functional

1
I[y] = 3 J'V Vi Vi d’x — J'V gy d’x (1.63)

where the function ¢(x) is well-behaved inside the volume V and on its surface
S (which may consist of several separate surfaces), and g(x) is a specified
«“source” function without singularities within V. We now examine the first-order
change in the functional when we change ¢ —  + &, where the modification
8y(x) is infinitesimal within V. The difference 8I = I[¢ + 8¢] — I[Y] is

8l = L Vi - V(8Y) d’x — JV gy d’x + -+ (1.64)

The neglected term is semipositive definite and is second order in 8. Use of
Green’s first identity with ¢ = 8¢ and ¢ = ¢ yields ‘

d
8l = J;/ [-V2y — g] 8y d’x + jgs Sy a—;’fda (1.65)

Provided 8y = 0 on the boundary surface S (so that the surface integral vanishes),
the first-order change in I[i] vanishes if ¢/(x) satisfies

V2 = —g (1.66)

Recalling that the neglected term in (1.64) is semipositive definite, we see that
I[y] is a stationary minimum if satisfies a Poisson-like equation within the
volume V and the departures 8¢ vanish on the boundary. With ¢ — ® and g —
pl€o, the minimization of the functional yields the “equation of motion” of the
electrostatic potential in the presence of a charge density and Dirichlet boundary
conditions (& given on S and so 8@ =0 there).

The derivation of the Poisson equation from the variational functional is the
formal aspect. Equally important, the stationary nature of the extremum of I[¢]
permits a practical approach to an approximate solution for P(x). We choose a
flexible “trial”” function ¢(x) = A¥(x, a, B, . . .) that depends on a normalization
constant A and some number of other parameters, «, B,...,andis constructed
to satisfy the given boundary conditions on the surface S. The function ¥ may
be a sum of terms with the parameters as coefficients, or a single function of
several parameters; it should be chosen with some eye toward the expected form
of the solution. (Intuition plays a role here!) Calculation of I[¢] gives the func-
tion, I(A, a, B, .. .)- We now vary the parameters to locate the extremum (actually
a minimum) of I(A, e, B,...). With the optimum parameters, the trial solution
is the best possible approximation to the true solution with the particular func-
tional form chosen. For the Laplace equation, the normalization constant is de-
termined by the Dirichlet boundary values of . For the Poisson equation, it is
determined by the source strength g(x), as well as the boundary values on S.

A different functional is necessary for Neumann boundary conditions. Sup-

TSI TR A

TR AT

B




Sect. 1.12 Variational Approach to the Solution of the Laplace and Poisson Equations 45

;urate, pose that the boundary conditions on ¢ are specified by dy/on|s = f(s), where s
sonant locates a point on the surface S. The appropriate functional is
ystems 1 .
I[y] = —J V- Vi d?x — j gyd?x — § fi da (1.67)
inimal 2v L4 5
als. As The same steps as before with ¢ —  + 8¢ lead to the first-order difference in
functionals, ‘
(1.63) - 2 3 oy
g ol = V[—Vc//—-g] oY d°x + 4 a—f(s) &y da (1.68)
urface The requirement that 87 vanish independent of &y implies
ecified
Fopder Vg = —gwithin V and £ = f(s)on S (1.69)
ication & : 7 :
Again the functional is a stationary minimum for satisfying (1.69). Approximate
solutions can be found by the use of trial functions that satisfy the Neumann
(1.64) boundary conditions, just as described above for Dirichlet boundary conditions.
As a simple application to the Poisson equation, consider the two-dimen-
Use of sional problem of a hollow circular cylinder of unit radius centered on the z-axis,
with an interior source density g(x) = g(p), azimuthally symmetric and inde-
; pendent of z. The potential vanishes at p = 1. The “equation of motion” for
(1.65) ] ¥ (a function of p alone) in polar coordinates is
) 109 oY
ishes), | -— (p —) = —g(p) (1.70)
pop \" 9p
1.66 For trial functions we consider finite polynomials in powers of (1 — p) and p. A
(1.66) . :
three-parameter function of the first type is
ze that 5 "
iin the V= a1 = p) + Bl — p)* + 1 —p) (1.71)
d g — : This choice might seem natural because it automatically builds in the boundary
of the : condition at p = 1, but it contains a flaw that makes it a less accurate represen-
undary ] tation of ¢ than the power series in p. The reason is that, if the source density g
_ is well behaved and finite at the origin, Gauss’s law shows that s has a maximum
Lis the i or minimum there with vanishing slope. The requirements at both the origin and
of I[y] p = 1 are met by a three-parameter trial function in powers of p:
l0ose a
jzation | | W, =ap’+ B’ + ypt —(a+ B+ ) (1.72)
ructed i We expect this trial function in general to be a better approximation to ¢ than
\? may . ¥, for the same number of variational parameters. [We could, of course, impose
tion of the constraint, a; + 2B8; + 37 = 0 on (1.71) to get the proper behavior at the
dform origin, but that would reduce the number of parameters from three to two.]
e func- The functional integral (1.63) for ¥, is easily shown to be
ictually » .
olution : 1 1 6 4 3
— IV, = |z +zaB+say+ B
1 func- 27 [¥:] [2 5 op 3% 7] ’B 173
tis de- 12 (1.73)
n, it is + Ea By + ¥V | — [exa + esB + esy]
n S.
s. Sup- where e,, = [ g(p)(p" — 1) p dp. S
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The integral for ¥, has the same form as (1.73), but different coefficients.
As described above, we seek an extremum of (1.73) by setting the partial deriv-
atives with respect to the parameters «, 8, and 7y equal to zero. The three coupled
algebraic linear equations yield the “best” values,

a = 225e, — 420e; + 210e,

B

2450
'_42062 + e3 — 42064 (1.74)

441
Y = 21062 - 42063 ~+ T €4

These values can be inserted into (1.73) to give I[W,] i as a not very illuminating
function of the e,. One would then find that the “kinetic” (first) bracket was
equal to half the “potential” (second) bracket and opposite in sign, a character-
istic of the extremum.

To go further we must specify g(p). The results for the best trial functions
¥, and ¥, are shown in Fig. 1.9 for the source density,

g(p) = =51 — p) + 10%°(1 = p)° (1.75)

The choice of source is arbitrary and is chosen to give a potential that is not quite
featureless. The “best” parameters for ¥, are o = 2915, 3= —7.031,and y =
3.642. The variational integral has the value, I[¥;]mn = —1.5817, compared to
I[Wexact = —1.6017. The fractional error is 1.3%.

Note that the trial function ¥, fails rather badly for p < 0.3 because it does
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Figure 1.9 Comparison of the exact solution ¥(p) (solid curve) with two variational
approximations for the potential, ¥y (dotted curve) and ¥, (dashed curve). The charge
density (1.75) is indicated by the dash-dot curve (arbitrary scale).
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not respect the vanishing slope at p = 0. Nonetheless, it gives I[¥1]min = —1.5136,
which is somewhat, but not greatly, worse than ¥, (5.5% error). The insensitivity
of I[¥] to errors in the trial function illustrates both a strength and a weakness
of the variational method. If the principle is used to estimate eigenvalues (related
to the value of I[¥]), it does well. Used as a method of estimating a solution
 ~ ¥, it can fail badly, at least in parts of the configuration space.

The reader will recognize from (1.70) that a polynomial source density leads
to an exact polynomial solution for ¢, but the idea here is to illustrate the vari-
ational method, not to demonstrate a class of explicit solutions. Further illustra-
tion is left to the problems at the end of this and later chapters.

1.13 Relaxation Method for Two-Dimensional
Electrostatic Problems

The relaxation method is an iterative numerical scheme (sometimes called iter-
ative finite difference method) for the solution of the Laplace or Poisson equation
in two dimensions. Here we present only its basic ideas and its connection with
the variational method. First we consider the Laplace equation with Dirichlet
boundary conditions within a two-dimensional region S with a boundary contour
C. We imagine the region S spanned by a square lattice with lattice spacing h
(and the boundary contour C approximated by a step-like boundary linking lat-
tice sites along C). The independent variables are the integers (i, j) specifying
the sites; the dependent variables are the trial values of the potential ¥(i, j) at
each site. The potential values on the boundary sites are assumed given.

To establish the variational nature of the method and to specify the iterative
scheme, we imagine the functional integral I[¢] over § as a sum over small do-
mains of area /2, as shown in Fig. 1.10a. We consider the neighboring trial values
of the potential as fixed, while the value at the center of the subarea is a varia-
tional quantity to be optimized. The spacing is small enough to permit us to
approximate the derivatives in, say, the northeast quarter of the subarea by

W L~y (%) = Le-
(ax)NE—hwE o (ay)NE - (e — o)

and similarly for the other three quarters. The functional integral over the north-

east quarter is
h/2 h/2 2 2
gl oo () + ()]
X i (1.76)
= 8 (Yo — ) + (Yo — )]

The complete integral over the whole (shaded) subarea is evidently
1
I = 2 (o — ¥)* + (o — ¥)* + (Yo — Ps)? + (o — Yw)]  (L77)
Minimizing this integral with respect to ¢ gives the optimum value,

1
(¥0)optimum = 1 (Un + P + Us + Pw) (1.78)



