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The Exterior Derivative 
 
In Part I of this two-part series, published in the Fall 2024 issue of 
Radiations, we met differential forms and exterior products.1 Recall 
that in a space of 𝑁𝑁 dimensions the differential form ‘‘r-vector’’ is 
defined according to 
 

�𝐶𝐶𝜇𝜇1𝜇𝜇2 ⋯𝜇𝜇𝑟𝑟�𝑒𝑒𝜇𝜇1⋀𝑒𝑒𝜇𝜇2⋀⋯⋀𝑒𝑒𝜇𝜇𝑟𝑟�,
𝜇𝜇

                        (1) 

 
where 𝜇𝜇1 < 𝜇𝜇2 < ⋯ < 𝜇𝜇𝑟𝑟 and 𝑟𝑟 ≤ 𝑁𝑁, and the antisymmetric 
wedge product of two vectors makes a directed area. The 
differential form (illustrated here with a 2-form) has the structure 
 

� 𝐶𝐶𝜇𝜇(𝑑𝑑�⃗�𝑥𝜈𝜈⋀ 𝑑𝑑�⃗�𝑥𝜉𝜉)
𝜇𝜇,𝜈𝜈,𝜉𝜉 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

,                                  (2) 

 
where the 𝑑𝑑�⃗�𝑥𝜇𝜇 are basis vectors rescaled by the corresponding 
coordinate differential. Thus equipped with differential forms, the 
exterior derivative now falls readily to hand. The exterior derivative 

of an r-form 𝑇𝑇�� , tildes optional, produces a differential (r+1)-form 
𝜕𝜕⋀𝑇𝑇, alternatively denoted 𝐝𝐝𝑇𝑇, defined as the sum over 𝜇𝜇 of 
 

𝜕𝜕⋀𝑇𝑇 ≡  𝑑𝑑�⃗�𝑥𝜇𝜇⋀�𝜕𝜕𝜇𝜇𝑇𝑇�.                                       (3) 
 
(In applications to special and general relativity, 𝑑𝑑𝑡𝑡 = 𝑑𝑑�⃗�𝑥0 must be 
introduced for the time dimension in spacetime.) If 𝑇𝑇 is a scalar 
function-----a 0-form 𝜙𝜙-----then Eq. (3) gives a 1-form-----the vector 
(𝜕𝜕𝜇𝜇𝜙𝜙) 𝑑𝑑�⃗�𝑥𝜇𝜇 . (For scalar 𝜙𝜙 there is no vector for the wedge to ‘‘hook 
on to,’’ so the wedge is as benign as multiplying by 1.) In Euclidean 
3-space in rectangular coordinates, this becomes  
 

           𝜕𝜕⋀𝜙𝜙 (𝜕𝜕𝑥𝑥𝜙𝜙)𝑑𝑑𝑥𝑥 �̂�𝐢 +  �𝜕𝜕𝑐𝑐𝜙𝜙�𝑑𝑑𝑑𝑑 �̂�𝐣 + (𝜕𝜕𝑧𝑧𝜙𝜙)𝑑𝑑𝑑𝑑 �̂�𝐤.              (4)  
 
 
Now let 𝑇𝑇 be the differential 1-form, 𝜔𝜔� =  𝐴𝐴𝑥𝑥𝑑𝑑�⃗�𝑥 + 𝐴𝐴𝑐𝑐𝑑𝑑�⃗�𝑑 + 𝐴𝐴𝑧𝑧𝑑𝑑𝑑𝑑 =
𝐴𝐴𝑗𝑗𝑑𝑑�⃗�𝑥𝑗𝑗 , and evaluate its exterior derivative. Equation (3) gives 

 
𝜕𝜕⋀𝜔𝜔� =  (𝜕𝜕𝑐𝑐𝐴𝐴𝑗𝑗)� 𝑑𝑑�⃗�𝑥𝑐𝑐⋀𝑑𝑑�⃗�𝑥𝑗𝑗�.                              (5) 

 
In Cartesian coordinates the sum over x,y,z and wedge product 
antisymmetry turns Eq. (5) into 
 

𝜕𝜕⋀𝜔𝜔� = �𝜕𝜕𝑐𝑐𝐴𝐴𝑧𝑧 − 𝜕𝜕𝑧𝑧𝐴𝐴𝑐𝑐�(𝑑𝑑�⃗�𝑑⋀𝑑𝑑𝑑𝑑) + (𝜕𝜕𝑧𝑧𝐴𝐴𝑥𝑥 − 𝜕𝜕𝑥𝑥𝐴𝐴𝑧𝑧)(𝑑𝑑𝑑𝑑⋀𝑑𝑑�⃗�𝑥) 
 

+�𝜕𝜕𝑥𝑥𝐴𝐴𝑐𝑐 − 𝜕𝜕𝑐𝑐𝐴𝐴𝑥𝑥�(𝑑𝑑�⃗�𝑥⋀𝑑𝑑�⃗�𝑑).  (6) 
 
These coefficients of the wedge products are, in three dimensions, 
the components of 𝛁𝛁 × 𝐀𝐀. Unlike the cross-product, the exterior 
product generalizes to higher dimensions. The reader may show 
that the exterior derivative of a 2-form in three-dimensional 
Euclidean space contains the familiar Euclidean divergence, 

because when 𝑇𝑇��  is a 2-form like Eq. (5), then 
 

𝜕𝜕⋀𝑇𝑇�� = (𝛁𝛁 ∙ 𝐀𝐀)(𝑑𝑑�⃗�𝑥⋀𝑑𝑑�⃗�𝑑⋀ 𝑑𝑑𝑑𝑑).                          (7) 
  
     We are now in a position to state and prove Poincaré’s lemma,  
 

𝜕𝜕⋀(𝜕𝜕⋀𝑇𝑇) = 0,                                     (8) 
 
where an arbitrary 𝑟𝑟-form 𝑇𝑇 may in general be written in a notation 
simplified from Eq. (1), 
 

𝑇𝑇 =  �𝐶𝐶𝑅𝑅  (𝑑𝑑�⃗�𝑥1⋀𝑑𝑑�⃗�𝑥2⋀⋯⋀𝑑𝑑�⃗�𝑥𝑟𝑟),
𝑅𝑅

                     (9) 

 
where 𝑅𝑅 denotes terms in the sum over all permutations of the 
wedge products consistent with their antisymmetry. The first 
exterior derivative of 𝑇𝑇 is 
 

𝜕𝜕⋀𝑇𝑇 =  �
𝜕𝜕𝐶𝐶𝑅𝑅
𝜕𝜕𝑥𝑥𝜈𝜈  (𝑑𝑑𝑥𝑥𝜈𝜈⋀𝑑𝑑�⃗�𝑥1⋀𝑑𝑑�⃗�𝑥2⋀⋯⋀𝑑𝑑�⃗�𝑥𝑟𝑟),

𝑅𝑅

            (10) 

 
and for the second exterior derivative we find 



 

𝜕𝜕⋀(𝜕𝜕⋀𝑇𝑇) = �
𝜕𝜕2𝐶𝐶𝑅𝑅
𝜕𝜕𝑥𝑥𝜇𝜇𝜕𝜕𝑥𝑥𝜈𝜈  (𝑑𝑑�⃗�𝑥𝜇𝜇⋀𝑑𝑑�⃗�𝑥𝜈𝜈⋀𝑑𝑑�⃗�𝑥1⋀𝑑𝑑�⃗�𝑥2⋀⋯⋀𝑑𝑑�⃗�𝑥𝑟𝑟).

𝑅𝑅

 (11) 

 
Now comes the punch line: Since 𝜇𝜇 and 𝜈𝜈 are dummy variables 
that are summed out, we may interchange them. But 
 
𝜕𝜕2𝐶𝐶𝑅𝑅
𝜕𝜕𝑥𝑥𝜇𝜇𝜕𝜕𝑥𝑥𝜈𝜈 =  

𝜕𝜕2𝐶𝐶𝑅𝑅
𝜕𝜕𝑥𝑥𝜈𝜈𝜕𝜕𝑥𝑥𝜇𝜇 , while  𝑑𝑑�⃗�𝑥𝜇𝜇⋀𝑑𝑑𝑥𝑥𝜈𝜈 =  −𝑑𝑑�⃗�𝑥𝜈𝜈⋀𝑑𝑑𝑥𝑥𝜇𝜇 .        (12) 

 
Therefore, 𝜕𝜕⋀(𝜕𝜕⋀𝑇𝑇) =  −𝜕𝜕⋀(𝜕𝜕⋀𝑇𝑇) = 0. 
     Now we are equipped to unify 𝛁𝛁 × (𝛁𝛁𝜙𝜙) = 𝟎𝟎 and 𝛁𝛁 ∙ (𝛁𝛁 × 𝐀𝐀) =
0. Suppose 𝑇𝑇 is a 0-form, some scalar function 𝜙𝜙. Then Poincaré’s 
lemma in Cartesian coordinates becomes 
 

𝜕𝜕⋀(𝜕𝜕⋀𝜙𝜙) = 𝜕𝜕⋀�𝑑𝑑�⃗�𝑥𝑗𝑗
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥𝑗𝑗

�    = �𝑑𝑑�⃗�𝑥𝑐𝑐⋀𝑑𝑑�⃗�𝑥𝑗𝑗�
𝜕𝜕2𝜙𝜙

𝜕𝜕𝑥𝑥𝑐𝑐𝜕𝜕𝑥𝑥𝑗𝑗
.       (13) 

 
This clearly vanishes because, again, when exchanging 𝑖𝑖 and 𝑗𝑗 the 
second derivative is symmetric but the wedge product 
antisymmetric. So it remains to show that Eq. (13) contains 
𝛁𝛁 × (𝛁𝛁𝜙𝜙) in Euclidean 3-space. In familiar notation, but 
temporarily using subscripts to denote the partial derivatives of 𝜙𝜙, 
the curl of a gradient may be calculated according to 
 

𝛁𝛁 × (𝛁𝛁𝜙𝜙) = �
�̂�𝐢 ȷ̂ �̂�𝐤
𝜕𝜕𝒙𝒙 𝜕𝜕𝒚𝒚 𝜕𝜕𝑧𝑧
𝜙𝜙𝑥𝑥 𝜙𝜙𝑐𝑐 𝜙𝜙𝑧𝑧

�                                                                       

 
                 = �𝜙𝜙𝑐𝑐𝑧𝑧 − 𝜙𝜙𝑧𝑧𝑐𝑐��̂�𝐢 + (𝜙𝜙𝑧𝑧𝑥𝑥 − 𝜙𝜙𝑥𝑥𝑧𝑧)�̂�𝐣 + �𝜙𝜙𝑥𝑥𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑥𝑥�𝐤𝐤.�     (14) 

 
Return to Eq. (13), write out the double sum, and use wedge 
product antisymmetry to find 
 

𝜕𝜕⋀(𝜕𝜕⋀𝜙𝜙) =  �𝜙𝜙𝑐𝑐𝑧𝑧 − 𝜙𝜙𝑧𝑧𝑐𝑐�(𝑑𝑑�⃗�𝑑⋀𝑑𝑑𝑑𝑑) + (𝜙𝜙𝑧𝑧𝑥𝑥 − 𝜙𝜙𝑥𝑥𝑧𝑧)(𝑑𝑑𝑑𝑑⋀𝑑𝑑�⃗�𝑥) 
 

+�𝜙𝜙𝑥𝑥𝑐𝑐 − 𝜙𝜙𝑐𝑐𝑥𝑥�(𝑑𝑑�⃗�𝑥⋀𝑑𝑑�⃗�𝑑).   (15) 
 
Because the geometric interpretation of  (𝑑𝑑�⃗�𝑥⋀𝑑𝑑�⃗�𝑑) corresponds to 
�̂�𝐤 and similarly for the other directed bivectors, we see that Eqs. 
(13) and (15) are equivalent and vanish together. 
     Turning to 𝛁𝛁 ∙ (𝛁𝛁 × 𝐀𝐀) = 0, the exterior derivative of the 1-form 
𝜔𝜔� =  𝐴𝐴𝑐𝑐𝑑𝑑�⃗�𝑥𝑐𝑐 produces the 2-form 𝜕𝜕⋀𝜔𝜔� =  𝜕𝜕𝑗𝑗𝐴𝐴𝑐𝑐(𝑑𝑑�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑐𝑐), and the 
second derivative a 3-form,  
 

𝜕𝜕 ∧ (𝜕𝜕⋀𝜔𝜔�) =  𝜕𝜕2𝐴𝐴𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘𝜕𝜕𝑥𝑥𝑗𝑗

(𝑑𝑑�⃗�𝑥𝑘𝑘⋀𝑑𝑑�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑐𝑐),                 (16) 

 
which again vanishes, as Poincaré’s lemma predicts. It remains to 
show that Eq. (16) contains the operator 𝛁𝛁 ∙ (𝛁𝛁 × 𝐀𝐀), an exercise I 
leave to the reader. 
 

Applications to Electrodynamics 
 
     Consider the homogeneous Maxwell equations of 
electrodynamics: the Faraday–Lenz law 𝛁𝛁 × 𝐄𝐄 + 𝜕𝜕𝐁𝐁 𝜕𝜕𝑡𝑡 = 0⁄  and 
Gauss’s law for 𝐁𝐁, 𝛁𝛁 ∙ B = 0, where 𝐄𝐄 and 𝐁𝐁, respectively, are the 
electric and magnetic fields due to all sources. Both equations are 
subsumed into a single one with exterior derivatives. To carry this 
out, introduce a timelike basis vector 𝑑𝑑𝑡𝑡  ≡ 𝑑𝑑�⃗�𝑥0 into the 2-form, 
 

𝛼𝛼�� ≡  𝐸𝐸𝑘𝑘(𝑑𝑑�⃗�𝑥𝑘𝑘⋀𝑑𝑑�⃗�𝑥0) + � 𝐵𝐵𝑐𝑐�𝑑𝑑�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑘𝑘�,
𝑐𝑐𝑗𝑗𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

            (17) 

 
where the 𝑖𝑖𝑗𝑗𝑖𝑖 indices, which run over 1, 2, 3, denote spatial 
dimensions. Set 𝜕𝜕⋀𝛼𝛼�� = 0 to obtain 
 

0 =  � [𝜕𝜕0𝐵𝐵𝑐𝑐 + (𝛁𝛁 × 𝐄𝐄)𝑐𝑐]
𝑐𝑐𝑗𝑗𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�𝑑𝑑�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑘𝑘⋀𝑑𝑑�⃗�𝑥0� 

+[𝛁𝛁 ∙ 𝐁𝐁](𝑑𝑑�⃗�𝑥1⋀𝑑𝑑�⃗�𝑥2⋀𝑑𝑑�⃗�𝑥2).   (18) 
 
Because the two trivectors in Eq. (18) are independent of one 
another, the coefficients of each one must be set to zero, 
producing the Faraday–Lenz and magnetic Gauss’s laws. 
     For the inhomogeneous Maxwell equations, define a pair of 2-
forms, one with the magnetic field 𝐇𝐇 and the electric field 𝐃𝐃 
respectively produced by free electric currents and free charges: 
 

𝛽𝛽�� ≡ −𝐻𝐻𝑐𝑐(𝑑𝑑�⃗�𝑥𝑐𝑐⋀𝑑𝑑𝑡𝑡) + � 𝐷𝐷𝑐𝑐�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑘𝑘)
𝑐𝑐𝑗𝑗𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

.             (19) 

 
Let the other 2-form include the current density 𝐉𝐉 and charge 
density 𝜌𝜌 for free electric charges: 
 

𝛾𝛾�� ≡  � 𝐽𝐽𝑐𝑐
𝑐𝑐𝑗𝑗𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

(�⃗�𝑥𝑗𝑗⋀𝑑𝑑�⃗�𝑥𝑘𝑘⋀𝑑𝑑𝑡𝑡) − 𝜌𝜌(𝑑𝑑�⃗�𝑥⋀𝑑𝑑�⃗�𝑑⋀𝑑𝑑𝑑𝑑).         (20) 

 

By setting 𝜕𝜕⋀𝛽𝛽�� = −𝛾𝛾�� and equating coefficients of like 3-forms, the 
inhomogeneous Maxwell equations emerge: the Amperé–Maxwell 
law, 

𝛁𝛁 × 𝐇𝐇 +  
𝜕𝜕𝐃𝐃
𝜕𝜕𝑡𝑡 = 𝐉𝐉,                                 (21) 

 
and Gauss’s Law for 𝐃𝐃, 
 

𝛁𝛁 ∙ 𝐃𝐃 =  ρ.                                 (22)    
 
 

Integrals of 𝒓𝒓-Forms 
 
     Because the derivative of a differential 𝑟𝑟-form produces a (𝑟𝑟+1)-
form, we expect the integral of a differential 𝑟𝑟-form to yield a (𝑟𝑟 −
1)-form for 𝑟𝑟 ≥ 1. Here it is useful to replace the notation 𝜕𝜕⋀𝑇𝑇 with 



𝐝𝐝𝑇𝑇. One might expect the integral of 𝐝𝐝𝑇𝑇 to be merely 𝑇𝑇, but in the 
literature on differential forms we find another weird-looking 
expression: 

�𝐝𝐝𝑇𝑇
ℛ

= � 𝑇𝑇
𝑏𝑏𝑏𝑏 ℛ

,                                 (23) 

 
where 𝑏𝑏𝑑𝑑 ℛ denotes the boundary of the higher-dimensioned 
region ℛ. The appearance of 𝑇𝑇 still within an integral on the right-
hand side of Eq. (23) can be unsettling, but recall that a differential 
𝑟𝑟-form for 𝑟𝑟 > 0 already contains one or more differentials, such as 
𝑇𝑇� =  𝐴𝐴𝜇𝜇𝑑𝑑�⃗�𝑥𝜇𝜇. A few comments might enhance familiarity. Recall 
that in ordinary calculus, we write  
 

� 𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑏𝑏

𝑎𝑎
= 𝑑𝑑(𝑏𝑏) − 𝑑𝑑(𝑎𝑎),                            (24) 

 
where the antiderivative of 𝑑𝑑𝑑𝑑 is evaluated at the endpoints of the 
interval [𝑎𝑎,𝑏𝑏]-----the boundary of the integration interval. A higher-
dimension analog arises in Gauss’s divergence theorem, 
 

� (𝛁𝛁 ∙ 𝐀𝐀
𝒱𝒱

) 𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  �𝐀𝐀 ∙ 𝐧𝐧�
𝒮𝒮

 𝑑𝑑𝒮𝒮,                 (25) 

 
where 𝒮𝒮 denotes the closed surface that forms the boundary of 
volume 𝒱𝒱. Another example arises in Stoke’s theorem, 
 

�(𝛁𝛁 × 𝐀𝐀) ∙ 𝐧𝐧�
𝒮𝒮′

 𝑑𝑑𝑆𝑆′ =  �𝐀𝐀 ∙ d𝐫𝐫,                      (26)
𝒞𝒞

 

 
where 𝒞𝒞 denotes the closed contour forming the boundary of the 
surface 𝒮𝒮′. Equations (24)–(26) are merely special cases of Eq. 
(23)! The terse notation in Eq. (23) comes to life with an example. 
Consider, say, a differential 1-form 𝜓𝜓� =  𝐴𝐴𝜇𝜇𝑑𝑑�⃗�𝑥𝜇𝜇. Evaluate its 
exterior derivative: 
 

𝐝𝐝𝜓𝜓� = 𝜕𝜕𝜈𝜈𝐴𝐴𝜇𝜇 (𝑑𝑑�⃗�𝑥𝜈𝜈⋀𝑑𝑑�⃗�𝑥𝜇𝜇) 
 

                                               =  ��𝜕𝜕𝜇𝜇𝐴𝐴𝜈𝜈 − 𝜕𝜕𝜈𝜈𝐴𝐴𝜇𝜇�
𝜇𝜇<𝜈𝜈

(𝑑𝑑�⃗�𝑥𝜇𝜇⋀𝑑𝑑�⃗�𝑥𝜈𝜈).    (27) 

 
Undo the derivative by integrating 𝐝𝐝𝜓𝜓 over a region ℛ. According 
to Eq. (23) we are to write 
 

�𝐝𝐝𝜓𝜓�
ℛ

=  � 𝜓𝜓�
𝑏𝑏𝑏𝑏 ℛ 

.                                (28) 

 
To bring this to life, in three-dimensional Euclidean space, let ℛ be 
an unclosed surface 𝒮𝒮′ that has closed contour 𝒞𝒞 for its boundary. 
Use Eq. (27) on the left-hand side of Eq. (28) and use 𝜓𝜓� =  𝐴𝐴𝜇𝜇𝑑𝑑�⃗�𝑥𝜇𝜇 
on the right-hand side, with 𝜇𝜇 and 𝜈𝜈 ranging through 1, 2, 3. 
Equation (28) then becomes 

 

� ��𝜕𝜕𝜇𝜇𝐴𝐴𝜈𝜈 − 𝜕𝜕𝜈𝜈𝐴𝐴𝜇𝜇�
𝜇𝜇<𝜈𝜈

(𝑑𝑑�⃗�𝑥𝜇𝜇⋀𝑑𝑑�⃗�𝑥𝜈𝜈) =  �𝐴𝐴𝜇𝜇𝑑𝑑�⃗�𝑥𝜇𝜇 ,            (29)
𝒞𝒞𝒮𝒮′

 

 
and we behold Stoke’s theorem in the language of differential 
forms! As Steven Weinberg rightly observed, these differential 
forms and exterior derivatives ‘‘possess certain remarkably simple 
and useful properties.’’2 
     I hope this little introduction to differential forms and exterior 
derivatives will lower barriers to making their acquaintance and, 
as Misner, Thorne, and Wheeler intended, enable us to become 
‘‘better acquainted with their charms.’’3 
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