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The Exterior Derivative

In Part | of this two-part series, published in the Fall 2024 issue of
Radiations, we met differential forms and exterior products.! Recall
that in a space of N dimensions the differential form "“r~vector” is
defined according to
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where py <p, <+ <u, and r <N, and the antisymmetric
wedge product of two vectors makes a directed area. The
differential form (illustrated here with a 2-form) has the structure
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where the dx* are basis vectors rescaled by the corresponding
coordinate differential. Thus equipped with differential forms, the
exterior derivative now falls readily to hand. The exterior derivative
of an rform T, tildes optional, produces a differential (+1)-form
dAT, alternatively denoted dT, defined as the sum over pu of

AT = dx*A(9,T). 3)

(In applications to special and general relativity, df = d%° must be
introduced for the time dimension in spacetime.) If T is a scalar
function—a 0-form ¢—then Eq. (3) gives a 1-form—the vector
(9,¢) dx* . (For scalar ¢ there is no vector for the wedge to "hook
on to," so the wedge is as benign as multiplying by 1.) In Euclidean
3-space in rectangular coordinates, this becomes

NG (B p)dx i+ (8,¢)dyj+ (3,¢)dz k. 4

Now let T be the differential 1-form, @ = A,dxX + A,dy + A,dZ =
Ajda?f, and evaluate its exterior derivative. Equation (3) gives

NG = (9;4))( dXNdRT). 5)

In Cartesian coordinates the sum over x ),z and wedge product
antisymmetry turns Eq. (5) into

NG = (0,4, — 0,A,)(dYNdZ) + (0,A, — 0,A,)(dZN\d%)
+(0,4, — 0,4,)(dZNdY). (6)
These coefficients of the wedge products are, in three dimensions,
the components of V x A. Unlike the cross-product, the exterior
product generalizes to higher dimensions. The reader may show
that the exterior derivative of a 2-form in three-dimensional

Euclidean space contains the familiar Euclidean divergence,
because when T is a 2-form like Eqg. (5), then

AT = (V- A)(dZAdFA d2). %)
We are now in a position to state and prove Poincaré’s lemma,
ANAT) =0, ®

where an arbitrary r-form T may in general be written in a notation
simplified from Eq. (1),

T = Z Cp (dRIAAR2A - AdFT), )
R

where R denotes terms in the sum over all permutations of the
wedge products consistent with their antisymmetry. The first
exterior derivative of T is

ac
ONT = Z 6x$ (dxVAdFNdZ2A -+ NdET), (10)
R

and for the second exterior derivative we find
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Now comes the punch line: Since 4 and v are dummy variables
that are summed out, we may interchange them. But

0°Cp__ _0°Cy hile d¥#*Adx” = —d#’Adx* 12
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Therefore, IA(OAT) = —0A(OAT) = 0.

Now we are equipped to unify V.x (V¢p) =0and V- (V x A) =
0. Suppose T is a 0-form, some scalar function ¢. Then Poincaré’s
lemma in Cartesian coordinates becomes

ON@AD) = oA (d a—"b.) _ (@rinai) 22 s
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This clearly vanishes because, again, when exchanging i and j the
second derivative is symmetric but the wedge product
antisymmetric. So it remains to show that Eg. (13) contains
Vx (V¢) in Euclidean 3-space. In familiar notation, but
temporarily using subscripts to denote the partial derivatives of ¢,
the curl of a gradient may be calculated according to

i j k
Vx (Vp) =0, 9, 0,
b By b

= (¢yz - ¢zy)i + (¢zx - ¢xz)i + (¢xy - ¢yx)lz (14)

Return to Eq. (13), write out the double sum, and use wedge
product antisymmetry to find

INOAD) = (By, — Bzy ) AINAD) + (P — Brz) (AZAAR)
+(¢xy - ¢yx)(d£/\d5})- (15)

Because the geometric interpretation of (d¥Ady) corresponds to
k and similarly for the other directed bivectors, we see that Egs.
(13) and (15) are equivalent and vanish together.

Turning to V- (V x A) = 0, the exterior derivative of the 1-form
@ = A;d%" produces the 2-form dA@ = 9;4;(d%/Adx"), and the
second derivative a 3-form,

9%4;
dxkaxs

0N (ON\D) = (dx*ANdXINdXY), (16)
which again vanishes, as Poincaré’s lemma predicts. It remains to
show that Eq. (16) contains the operator V - (V X A), an exercise |
leave to the reader.

Applications to Electrodynamics

Consider the homogeneous Maxwell equations of
electrodynamics: the Faraday-Lenz law VX E + dB/dt = 0 and
Gauss's law for B, V- B = 0, where E and B, respectively, are the
electric and magnetic fields due to all sources. Both equations are
subsumed into a single one with exterior derivatives. To carry this
out, introduce a timelike basis vector df = dx° into the 2-form,

& = E(dX*NdX°) + B;(dx/ Adx¥), (17)
ijk cyclic

where the ijk indices, which run over 1, 2, 3, denote spatial
dimensions. Set dA& = 0 to obtain

0= Z [00B; + (V X E);] (d#/ AdZ*NdZ°)
ijk cyclic
+[V - B](dX*A\dX?N\d%?). (18)

Because the two trivectors in Eq. (18) are independent of one
another, the coefficients of each one must be set to zero,
producing the Faraday-Lenz and magnetic Gauss's laws.

For the inhomogeneous Maxwell equations, define a pair of 2-
forms, one with the magnetic field H and the electric field D
respectively produced by free electric currents and free charges:

f = —H,(d%'\dE) + DEIAdR"). (19)
ijk cyclic

Let the other 2-form include the current density J and charge
density p for free electric charges:

5= Z J BINdZKADE) — p(dZAdFAdD).  (20)
ijk cyclic

By setting 6/\§ = —¥ and equating coefficients of like 3-forms, the
inhomogeneous Maxwell equations emerge: the Amperé-Maxwell

law,

V><H+6D— 21
=1 21)

and Gauss's Law for D,

V:D = p. (22)

Integrals of r-Forms

Because the derivative of a differential r-form produces a (r+1)-
form, we expect the integral of a differential r-form to yield a (r —
1)-form for r = 1. Here it is useful to replace the notation AT with



dT. One might expect the integral of dT to be merely T, but in the
literature on differential forms we find another weird-looking
expression:

Lde fme' (23)

where bd R denotes the boundary of the higher-dimensioned
region R. The appearance of T still within an integral on the right-
hand side of Eq. (23) can be unsettling, but recall that a differential
r-form for r > 0 already contains one or more differentials, such as
T = A,dx*. A few comments might enhance familiarity. Recall
that in ordinary calculus, we write

b
f df (x) = F(b) — f (@), @24)

where the antiderivative of df is evaluated at the endpoints of the
interval [a,b]—the boundary of the integration interval. A higher-
dimension analog arises in Gauss's divergence theorem,

ff (V- A) dxdydz = fA-ﬁ ds, (25)
v S

where § denotes the closed surface that forms the boundary of
volume V. Another example arises in Stoke's theorem,

ff(VxA)-ﬁdS’ziA-dr, (26)
o

where C denotes the closed contour forming the boundary of the
surface §'. Equations (24)-(26) are merely special cases of Eq.
(23)! The terse notation in Eq. (23) comes to life with an example.
Consider, say, a differential 1-form = A,dx*. Evaluate its
exterior derivative:

4y = 3,4, (dZ'A\dzZH)

= > (9,4y - 9,4,) @P*AIFY). (27)

u<v

Undo the derivative by integrating dy over a region R. According
to Eq. (23) we are to write

f = 28)
R bd R

To bring this to life, in three-dimensional Euclidean space, let R be
an unclosed surface §' that has closed contour € for its boundary.
Use Eq. (27) on the left-hand side of Eq. (28) and use ¢ = A#da?“
on the right-hand side, with u and v ranging through 1, 2, 3.
Equation (28) then becomes

f Z(aﬂAv — 0yA,) (dX*NdRY) = 3@ Ay dxt, (29)
s' v (o4

and we behold Stoke's theorem in the language of differential
forms! As Steven Weinberg rightly observed, these differential
forms and exterior derivatives “possess certain remarkably simple
and useful properties.”

| hope this little introduction to differential forms and exterior
derivatives will lower barriers to making their acquaintance and,
as Misner, Thorne, and Wheeler intended, enable us to become
"better acquainted with their charms.”
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WHAT GREEK LETTERS MEAN IN EQUATIONS

1T THIS MATH 15 EITHER VERY SIMPLE OR IMPOSSIBLE.
A\ SOMETHING HAS CHANGED

5 SOMETHING HAS CHANGED AND ITS A
MATHEMATICIANS FAULT

B CIRCLES!
¢ ORBS
€ NOT IMPORTANT, DONT WORRY ABOUT IT.
U,V 15 THAT A VOR A U? OR...OH NO, ITS ONE OF TROSE.

P THIS MATH IS COOL BUT IT'S NOT ABOUT ANYTHING
THAT You WILL EVER SEE OR TOUCH, 50 UHATEVER.

27 THANK YOU FOR PURCHASING ADDITION PRO®!
TT ..AND HE MULTIPLICATION® EXPANSION PACK!
£ THIS MATH WILL ONLY LEAD T0 MORE MATH.
[ THERE ARE. JUST TOO MANY COEFFICIENTS.

o OH BOY, Now 7745 15 MATH ABOUT SOMETHING
REAL. THIS 1S MATH THAT COULD KILL SOMEDNE.

Q O0DH, SOME MATHEMATICIAN THINKS THEIR
FUNCTION IS COOL AND IMPORTANT,

o A LOT OF WORK WENT INTO THESE EQUATIONS

AND YOU ARE GOING TO DIE HERE AMONG THEM.

SOME POOR S0UL IS TRYING TO APPLY THS

MATH TO REAL UIFE AND IT'S NOT WORKING,

f EMHER THS 15 TERREYING MATHEMATICS OR
THERE WAS A HAIR ON THE SCANNED PAGE.

Y 007 PEWIPEW PEW [SPACE NOISES] 20000/
UNFORTUNATELY, THE TEST VEHICLE SUFFERED
AN UNEXPECTED WING SEPARATION EVENT.

., GREETINGS! WIE HOPE TO LEARN A GREAT

= DEAL BY EXCHANGING KNOWLEDGE WiTH
YOUR EARTH MATHEMATICIANS,

‘Jf YOU HAVE ENTERED THE DOMAIN OF KING
TRITON, RULER OF THE WAVES

o}

Credit: xked, xkcd.com/2586/.


https://xkcd.com/2586/

