
 
Chapter 52 

Does a Uniformly Accelerating Charge Radiate? 

Yes (I think)  but not everyone can see it (perhaps). 

Last Update: 26/10/11  

A point charge undergoes constant acceleration wrt its instantaneous rest frame. It has 
done so for the indefinite past and will do so for the indefinite future. You might think 
the question of the electromagnetic radiation it emits would be simple book work, 
presenting no problems of principle. You would be wrong. This problem is notorious. 

Part of the difficulty lies in a paradox. We can look at the charge from two different 
frames of reference. In the first, an inertial frame, we have a Minkowski spacetime in 
which some applied force is causing our point charge to accelerate uniformly at a rate 
g  (wrt its instantaneous rest frame). According to our usual understanding of 
electromagnetism this will cause electromagnetic radiation to be emitted. On the other 
hand we can adopt a frame of reference which is comoving with the charge. In this 
frame we see a uniform gravitational field, with the charge being supported against 
gravity by the externally applied force. The charge is, of course, stationary in this 
frame. The relativistic principle of equivalence requires that we regard both frames of 
reference as equally valid. But, in the comoving frame, why should an apparently 
stationary charge emit radiation? Or does a charge held stationary in a uniform 
gravitational field truly emit radiation?  

I spent a long time worrying about this question. Only later did I realise that a great 
many others had done so too. A roll-call of excellent physicists in the first half of the 
twentieth century fell victim to its snares. Even now it is not entirely clear that the 
matter is settled, though I think that a consensus has emerged. Gratifyingly this does 
involve a true resolution of the paradox (if you believe it). 

Constant acceleration wrt a fixed inertial frame is not possible, of course. It would 
soon lead to the velocity of light being exceeded. The type of motion that is envisaged 
here is constant acceleration, g , wrt the instantaneous rest frame of the charge. This is 
so-called hyperbolic motion. Assuming that motion takes place along the z-axis, the 
motion is defined by,      
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where gc /2 . This defines hyperbolae with branches in the regions z  and 
z , such as those shown in Figure 1. We shall take our charge to be travelling on 
the former, on the positive z-axis. The asymptotes are ctz . At early times the 
charge is approaching the origin at a speed arbitrarily close to the speed of light, and 
similarly moves away at arbitrarily close to the speed of light at sufficiently late 
times. The velocity, v , and acceleration, a , as seen from the inertial frame are readily 
derived from (1) and are,   
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So the velocity has the asymptotic behaviour described above and the acceleration in 
the inertial frame is vanishingly small at early and late times but approximately g

 
near 0t .  

Figure 1 The hyperbolae of constant acceleration 

  

Before reviewing the history of this issue, it is worth recalling why we are inclined to 
believe that accelerating charges radiate. The electromagnetic field due to a charge in 
arbitrary motion is usually formulated in terms of the retarded potentials. The 
derivation can be found in standard electromagnetism texts, such as Duffin (1968), 
Jackson (1975) or Bleaney and Bleaney (1965). The full field contains terms 

independent of acceleration which fall off with distance as 2/1 r . However the 
acceleration dependent terms in the fields fall off as r/1 . Specifically they are,    
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The notation acc  denotes that only the acceleration dependent terms are displayed. 
Equs.(3,4) are more tricky than they at first appear. This is because all the quantities 

varvr ,,  must be understood as retarded. That is, in evaluating the field at a given 



point and time, you must first find the point (and time) on the charge s trajectory such 
that an influence propagating at the speed of light reaches your required field point at 
the desired time. Thus, r  is the vector connecting your field point to the position 
where the charge was such that a signal emitted from it reaches your field point at the 
desired time. More succinctly put, r  is the path of a light beam connecting the 
emission event with your observation event. The velocity and acceleration, v  and a , 
also relate to this retarded time and position.  

The energy flux is given by the Poynting vector, 0/BEN . The form of (3,4) 
implies that there will generally be a non-zero acceleration dependent term in the 

Poynting vector which falls off as 2/1 r  when the acceleration is non-zero. Such a 
term gives a non-zero total power flux through a closed surface of arbitrarily large 
size, 0

r

SdN . In contrast, the non-acceleration dependent terms in the Poynting 

vector fall off as 3/1 r  or 4/1 r  and hence will produce no such energy flux at infinity. 
Hence the acceleration dependent terms alone, (3,4), are associated with the 
production of radiation, i.e., the propagation of energy to infinity.  

In the general case, actually carrying out an integral like 
r

SdN  by insertion of 

(3,4) is made problematical by the fact that the fields must be evaluated at the retarded 
position and time. The Poynting vector at each point on the surface of integration is 
therefore determined by a different point on the trajectory of the charge, in general. In 
suitable circumstances approximations may render the integration tractable. For 
example, if the charge moves only slowly, so the distinction between retarded and 
current positions can be neglected, or perhaps the charge merely oscillates and does 
not change its position much as a consequence. In these situations the total radiated 
power can be evaluated to be,      
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This is the Larmor formula, the standard electromagnetic received wisdom. Equ.(5) is 
the expected relationship between the acceleration of a charge and the resulting 
radiated power. But note that the approximations required to derive (5) simply from 
(3,4) are not applicable to hyperbolic motion. With this background we turn to the 
history of the problem of hyperbolic motion. 

The story starts with Born (1909) who purported to have derived the solution for the 
fields. The Born solution is given by Equs.(6a-d) below if the delta function terms are 
ignored. However, his solution will not do, as pointed out by Milner (1921). To 
understand why, refer to Figure 1. Our source is travelling on a hyperbola in the 
positive z region. Signals travelling along the forward light cone from any point on 
this trajectory can only reach points above the line ctz . Points (strictly, events) 
below this line, for zct , must have zero fields because there is no retarded point 
on the charge s trajectory which connect with them via a null line (i.e., a light ray). 
For example, there is zero field at the origin for 0t  because no signal from the 
charge can have reached there yet. But the Born solution is non-zero for all tz, , and 
hence is not appropriate. Milner suggested that the Born solution actually describes 
two charges, the original charge and one of opposite sign travelling on the other 
branch of the hyperbola at negative z. But this will not do either, as remarked by 



Bondi and Gold (1955), because this situation would require zero field in the time-like 
region within the backward light cone1, i.e., the region zctt ,0 .  

This problem with the Born solution did not prevent Pauli (1920,1958) from using it 
as the basis of his discussion of the problem, concluding that eternal hyperbolic 
motion does not result in the emission of radiation. In his text book, von Laue (1919) 
also came to this conclusion. The arguments advanced in favour of this conclusion 
were, 

 

The Born field is symmetrical between past and future; 

 

At 0t , with the charge instantaneously at rest, the magnetic field vanishes, and 
hence so does the Poynting vector. Since changing to a different inertial frame, by 
a Lorentz transformation, can reduce any point on the trajectory to rest, the field 
simply moves with the charge; 

The first of these is actually just the result of the flaw in the Born solution, and should 
not be true of the actual situation. Past/future symmetry is broken by causality and the 
physical relevance of the retarded potentials only, not the advanced potentials.  

As for the second, I struggle to see that it is an argument at all. In any one inertial 
frame it only establishes that the energy flux is instantaneously zero. But the same can 
be said of an oscillating dipole, at two instants in every cycle, which nevertheless 
indubitably radiates. The observation that, for any given time, an inertial frame can be 
found such that the instantaneous radiated energy flux is zero does not mean that the 
radiated energy flux is zero at all times in a fixed inertial frame.  

We should be suspicious of an argument based on the fields at 0t . In our inertial 
frame we need to evaluate the integral of the Poynting vector over a large closed 
surface. It must be large to capture just the radiation field. But, as noted above, the 
value of the Poynting vector on this surface relates to retarded times and positions on 
the charge s trajectory. Evaluation of the integral at 0t  therefore involves the 
acceleration, a , as it was at times roughly cr / earlier, where r  is the size of the 
surface of integration. Since r  must be large, so must this time be significantly in the 

past  and by (2) this means that the acceleration, 3/ vga , as seen by the inertial 
observer will be very small, since the charge s speed at this time will be nearly c. But 
the bulk of the radiation, as seen by this inertial observer, will occur when the 
acceleration is greatest, i.e., when the retarded time is close to zero. So the energy 
flux through our large surface will be greatest at times around cr / .  

Consequently, Pauli s arguments for zero radiation appear to be invalid. One may 
speculate, however, on the extent to which the general relativistic perspective may 
have influenced his judgment. Did the equivalence principle lead him to believe that 
he knew what the right answer was? If so, I sympathise. Until recently I also thought 
that zero radiation was the correct result. And so did many others, including Feynman. 
Papers continue to be published expounding this view, for example Mariwalla and 
Hari Dass (2002). The first to claim that, on the contrary, hyperbolic motion does 
result in radiation appears to have been Drukey (1949).  

                                                

 

1 I suspect the Born solution actually applies to the original charge plus one of opposite charge 
travelling on the other branch of the hyperbola but travelling backwards in time and creating fields via 
the advanced potentials. The reversal of causality implicit in the latter would prevent this from 
normally being considered as a physical solution. 



Then Bondi and Gold (1955) rectified the problem with the Born solution. This 
cannot be done merely by insisting by fiat that the field in the region zct  be zero. 
What would result fails to satisfy Maxwell s equations on the boundary zct . 
However, Bondi and Gold showed that a solution is obtained which is valid 
everywhere if a singular term ctx  is added to the Born solution, in addition to 
requiring that the field in the region zct  be zero. However, Bondi and Gold appear 
then to have fallen for Pauli s false arguments. Whilst they claimed that there was 
radiation present in their amended solution, they appear to associate this only with the 
delta-function.  

The turning point probably came mostly as a result of the paper by Fulton and 
Rohrlich (1960), shortly after supported by Lanz (1962) and later buttressed by 
Rohrlich (1990,1999,2000). Fulton and Rohrlich (1960) was perhaps the first source 
to emphatically claim that not only was radiation emitted, but it was finite and 
constant in time in the instantaneous rest frame. Moreover, in the instantaneous rest 
frame, the usual Larmor formula, (5), applies with the instantaneous acceleration 
being g. Contrary to Bondi and Gold (1955) who associated radiation only with the 
singular delta function, ctx , Fulton and Rohrlich, and Lanz, claimed ordinary, 
continuous radiation emission. But there were two problems with this: the first was 
what it might imply for the equivalence principle, throwing us back into the paradox, 
and the second was the issue of the radiation reaction. 

Normally a charge which is accelerating due to the action of some imposed force 
would experience a back-reaction from its radiation emission, increasing the work 
required from the externally agency to maintain the acceleration. This is the source of 
energy carried away as radiation. A study of the history of radiation reaction 
calculations in hyperbolic motion would be a long digression in its own right. Suffice 
it to say that repeated calculations seemed to show that the radiation reaction was 
zero. This, of course, meshed nicely with claims that there was no radiation, whilst it 
left those who claimed that there was radiation with a problem. From where did the 
energy come? 

Feynman threw his weight behind the no radiation camp. In his "Lectures on 
Gravitation", Feynman (1999)2, he says "we have inherited a prejudice that an 
accelerating charge should radiate", and then he goes on to argue that the usual 
Larmor formula, (5), "has led us astray" because it applies only to cyclic or bounded 
motions. He then derives an expression implicating the third time derivative of 
position to radiation, concluding that constant acceleration would therefore not result 
in radiation. Again one wonders to what extent he convinced himself of this in order 
to save the equivalence principle. The requirement for a non-vanishing third 
derivative is what I had myself thought to be the correct resolution of the paradox 
until recently.  

Following Fulton and Rohrlich (1960) the view that the radiation was real and 
ordinary was on the ascendancy, being supported by many papers thereafter, such as 

Cohn (1978), Parrott (1997,2002), Gupta and Padmanabhan (1998), Harpaz and Soker 
(1998), and Eriksen and Gron (2000a,b,c,2002,2004). It is appropriate now to take a 
look at the fields. The following is the Born solution, augmented by the delta-function 
term advised by Bondi and Gold, but expressed in cylindrical polars, as used by 
Fulton and Rohrlich, 

                                                

 

2 Note that the lectures on which the book Feynman (1999) was based were delivered in 1962-63. 
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Here cosx , siny  and the particle is moving along the z-axis, in accord with 
(1). In (6a-d) the coordinates z,,  are ordinary coordinates, not retarded 
coordinates, unlike (3,4). Although we have included Bondi and Gold s delta-function 
in (6a) and (6c), it will play no part in the subsequent discussion. The radiation of 
interest, it will be seen, derives from the non-singular terms. The relevance of the 
delta functions is that they permit us to assert (6e) which gets rid of the unphysical 
fields in the causally unconnected region.  

The confusion over whether or not the above solution contains a radiation field can 
now be understood in terms of two distinct limiting conditions. Firstly consider a 
fixed time, t . To discover whether we have a radiation field we need to look at the 

form of the fields at spatial infinity, i.e., for z, . Putting 22 zr , (6d) 

gives 2r

 

and hence (6a,b,c) give the limiting behaviour of the fields to be,  
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Hence the Poynting vector falls off at large distances extremely rapidly, as 9/1 r , and 
there is apparently no radiation. However, a little thought tells us that we should not 
be surprised at this result. We are evaluating the fields at a very large distance but for 
a fixed, finite time. Such fields originate from the source at very early retarded times, 
when the source was still approaching at nearly the speed of light and hence with 
vanishingly small acceleration, a , as seen by our inertial observer [recall (2) with very 
large v ]. But little radiation would be expected when the acceleration is very small.  

The greatest accelerations are seen by the inertial observer at around 0~t . But any 
radiation emitted at 0~t  will reach a distance surface at radius r  only a time cr / 
later. This suggests that we should evaluate the fields on our large sphere at a time 

which is commensurate with its size, i.e., for 2222 ctzr . The difference is 
that the limiting condition now also involves ct , corresponding to retarded times 
around zero. This has a profound effect since (6d) now gives, 
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and the fields are of order, 
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So the Poynting vector is now of order 
22

1

r
 and hence is a radiation field which 

integrates to a finite, non-zero value over a limiting large sphere. Moreover, the result 

is proportional to 22 g , as expected. Of course this establishes only that there is 
energy flux through the surface at one particular time. The task is completed by 
integrating the energy flux over time. This is bound to be finite because we know that 
we get radiation only from retarded times around 0~t . The tolerance on this will be a 

timescale governed by 1~ g  and hence we expect that the total radiated energy will 

integrate to something proportional to ggg 12 . Carrying out the space and time 
integrals yields the result, 

Total energy radiated = ???????   (10) 

But if there really is radiation, what is the solution to the radiation reaction problem 
and how is the equivalence principle paradox resolved? 

The view put forward by Peierls (1979), and also by Harpaz and Soker (1998) in a 
different form, is that the source of the energy which is radiated is the charge s field 
itself. Normally the field of a charge is not available to do work. If a charge is initially 
in a state of constant velocity, and also ends in a state of constant velocity, whatever 
energy is within the charge s field is clearly the same before and after any intervening 
complex motion. So no energy has been extracted from the field to do work or cause 
radiation. However, the situation is different when the initial state is constant 
acceleration with incoming velocity (nearly) c , and the final state is also 
accelerating but with outgoing velocity c . The relevance of retarded, but not 
advanced, potentials breaks the symmetry and we have no reason to suppose that the 
charge s field is the same, and hence has the same energy content, in the initial and 
final states. With the energy balance problem solved (perhaps) the radiation reaction 
is free to be zero, it is no longer required. 

The resolution of the paradox with the equivalence principle seems first to have been 
published by Peierls (1979), quoting his source as the anticipated work of Boulware, 
which was subsequently published, Boulware (1980). More recently de Almeida and 
Saa (2006) have provided a nice, accessible exposition of Boulware s thesis. The 
solution is elegant and I am inclined to believe it. The key is the realization that the 
comoving observer does not have access to the whole of the tz,  plane, in contrast to 
the inertial observer, who does. The comoving observer is aware only of the region 

zctz .  

The spacetime of the comoving observer is that of a Rindler coordinate system, as 
shown in Figure 1. These are hyperbolae like the trajectory of our charge, (1), except 
that  now plays the part of a spatial coordinate, taking values in the range ,0  for 

0z  and values in the range 0,  for 0z . The time coordinate is, of course, the 
proper time for a comoving observer, so the complete specification of the Rindler 
coordinates ,  is,    
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The importance of this limitation on what the Rindler observer can see is that the 
radiation all goes into the region he cannot see, the region zct . This neatly solves 

the problem of the inertial observer seeing radiation whilst the comoving observer 
does not, whilst saving the equivalence principle.  

Peierls (1979) has presented a very simple argument which shows why the radiation is 
observed only in the region zct , which the comoving observer cannot see. It is 

essentially the same issue as was raised in deriving the limiting forms (8,9). The 
identification of radiation requires us to consider a spatially large surface, r . But 
this means we must also consider commensurately late times rct ~  such that the 
retarded times correspond to times near 0~t when the radiation is emitted. So this 

means that zzct 22  and hence is not within the spacetime observable by the 

comoving Rindler observer.  

Peierls s version of the argument is worth stating also. Suppose the radiation is 
emitted at time 0t  from point 0z . When the signal has travelled a distance R in a 
direction at angle  to the z-axis we will have cos0 Rzz  and cRtt /0 . 
Hence,     

cos100 Rzctzct              (12) 

The first term on the RHS of (12) is necessarily negative, since this defines the region 
wherein the charge lies (Figure 1). The second term on the RHS of (12) is positive 
except exactly on 0 . Since, in identifying radiation, we need to consider R  it 
follows that (12) is positive where radiation can be identified. But this means that the 
region of radiation is zct , which the comoving observer cannot see.  

A paraphrasing of de Almeida and Saa (2006) makes a fitting conclusion, A free-
falling charge will radiate according to an observer at rest, because in a constant 
gravitational field, any particle should move with uniform acceleration. However, an 
observer falling freely with the charge would observe it at rest and no radiation at all. 
If the equivalence principle is assumed to be valid, we would conclude that a charged 
particle at rest on a table should radiate, because for free-falling inertial observers 
the particle is accelerating. To explain this puzzle we need to recognize that the 
concept of radiation has no absolute meaning and depends both on the radiation field 
and the state of motion of the observer. This dependence is the main conclusion of a 
celebrated and long debate, exhaustively presented in the recent series of papers by 
Eriksen and Grøn (2000a,b,c,2002,2004). We can conclude that comoving observers 
have no access to the radiation field of a uniformly accelerated charge. The concept 
of a horizon emerges naturally in this context. The electromagnetic field generated by 
a uniformly accelerated charge is observed by a comoving observer as a purely 
electrostatic field.

 

However, it would be wrong to end on a note which sounds definitive. There are still 
dissenting voices and some aspects of the near-consensus which now exists may 
prove unreliable. In this respect the very thorough review of Lyle (2008) is most 
noteworthy. In particular, whilst Lyle is content with the existence of radiation in the 
inertial frame, he demurs from the Boulware- Eriksen-Grøn resolution of the 
equivalence principle paradox.  
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