- 1. Consider the quantum harmonic oscillator. The energy eigenvalues are $E_n = (n + \frac{1}{2})\hbar\omega$. Recall that \hat{a} is the lowering operator and \hat{a}^{\dagger} is the raising operator.
 - (a) What is the unitary time evolution operator $\hat{U}(t,0)$ in terms of the Hamiltonian operator \hat{H} ? (This is easy; don't complicate it.)
 - (b) By calculating their action on energy eigenkets $|n\rangle$, find expressions for the time-dependent Heisenberg picture operators $\hat{B}_H(t)$ in terms of the time-independent Schrödinger picture operators \hat{B}_S :

i.
$$\hat{a}_H(t) = \hat{U}^{\dagger}(t,0) \; \hat{a}_S \; \hat{U}(t,0)$$

ii.
$$\hat{a}_H^\dagger(t) = \hat{U}^\dagger(t,0) \; \hat{a}_S^\dagger \; \hat{U}(t,0)$$

iii.
$$\hat{X}_H(t) = \hat{U}^{\dagger}(t,0) \; \hat{X}_S \; \hat{U}(t,0)$$

iv.
$$\hat{P}_H(t) = \hat{U}^{\dagger}(t,0) \; \hat{P}_S \; \hat{U}(t,0)$$

(c) Show that $\hat{U}^{\dagger}(t=\frac{\pi}{2\omega},0)|x\rangle$ is an eigenket of the Schrödinger picture momentum operator \hat{P} and find its eigenvalue.

- 2. Complex contour integration
 - (a) Show that all the zeros of $\cos(z)$ are real. Hint: write z = x + iy and use the angle addition formula, then equate the real and imaginary parts to zero and solve these two coupled equations.
 - (b) Use the previous problem to evaluate $\oint_{|z|=2} \tan(z) dz$.