

- we're going to take a walk-"unspoiled"-on a tough course
- our walk will have only good lies, avoiding the rough
- we start in wide fairways, but dogleg to a difficult approach
- we'll take drops, in order to stay in the fairway and avoid the rough
- we'll use "gimmes" to quickly skip through material that Soper covered (he's already holed out)
- we'll occasionally be schematic - it's the broad lay of the land that I want to get across as this is highly technical stuff - doesn't naturally recommend itself in full glory to lectures ...

The game is the Royal and Ancient:

W and Z Boson Production and Resummation

1. a bit of history
2. Drell-Yan formalism
naïve DY - kinematics and cross section
kinematics, corrected for finite p_{T}
Compton and annihilation cross sections
3. multiple gluon emission - Sudakov exponential
4. resummation: "CSS" formalism
5. W/Z boson production
6. global fitting of all Drell-Yan data - new
7. conclusions

It started innocuously enough...

\triangleright Searching for the W

the idea was mature by 1960

- Heisenberg's notion of an exchange force, 1932
- Fermi's theory of β decay, 1934
- Yukawa's notion of an exchanged boson, 1935

Feynman and GellMann, 1958

- an audacious paper - so enamored of the "Universal V-A" interaction that they introduced, that they concluded that a long-standing experiment on He was wrong: A not the measured T .

Lee and Yang

- didn't predict parity violation in 1957, but indicated that it hadn't been tested
- in 1960, fleshed out the properties of the $W\left(W^{0} \& W^{ \pm}\right)$and proposed production scenarios

\triangleright Lee and Yang considered W production

$$
\text { they suggested } \begin{aligned}
v N & \rightarrow N \mu W(\rightarrow \ell v) \\
h N & \rightarrow p W(\rightarrow \ell v)
\end{aligned}
$$

K, π decays a serious low p_{T} bkgnd but W should produce high $p_{\mathrm{T}} \mu$'s

An experiment was mounted in 1970 at BNL with a $30 \mathrm{GeV} / \mathrm{c}$ proton beam.
no evidence of W , but what Lederman and Pope found was a little unsettling:

- unrelated to the W search, at a suggestion that there would be a γ continuum, they looked...
\triangleright investigated by forming mass-pairs of muons momenta from range...

\triangleright it's not the W

the only known source was photons...but at such high p_{\top} ?

- much theoretical scurrying about
- one explanation stuck - that of Drell and Yan in 1971
they extrapolated from the (young, circa. 1970) parton model to suggest that the mechanism was:

we can quickly reproduce their calculation

immediate plans...

1. work out kinematics for the naive model
2. calculate the naïve Drell-Yan cross section

- find some measurables
- check predictions

3. un-naive the calculation a bit

- especially work on the kinematics for finite p_{T} for the produced photon
\triangleright the Drell-Yan ansatz:
independence and incoherence \mathbf{q} of the primary process:
i.e, buried inside

Let's calculate it: first, kinematics. we'll presume the simple CM:

hadron/parton/V kinematics

hadrons $\left\{\begin{aligned} P_{A}^{\mu} & =(P, \overrightarrow{0}, P) \\ P_{B}^{\mu} & =(P, \overrightarrow{0},-P)\end{aligned}\right.$
partons $\left\{\begin{aligned} p_{A}^{\mu} & =\left(E_{a}, \overrightarrow{0}, p_{a}^{3}\right) \\ p_{B}^{\mu} & =\left(E_{b}, \overrightarrow{0},-p_{b}^{3}\right)\end{aligned}\right.$
the IVB $\begin{cases}p_{V}^{\mu} & =\left(E_{V}, \overrightarrow{0}, p_{V}^{3}\right)\end{cases}$
parton-hadron connection:

$$
\begin{align*}
p_{L} & =p_{a}^{3}-p_{b}^{3} \\
& =\xi_{a} P_{A}^{3}-\xi_{b} P_{B}^{3}=\left(\xi_{a}-\xi_{b}\right) P \tag{1}\\
x_{F} & =p_{L} / P=\xi_{a}-\xi_{b}
\end{align*}
$$

$$
\begin{aligned}
p_{A}^{\mu} & =\xi_{a} P_{A} \\
p_{B}^{\mu} & =\xi_{b} P_{B}
\end{aligned}
$$

kinematics2

$$
\begin{align*}
p_{V}^{\mu}=p_{a}^{\mu}+p_{b}^{\mu} & \rightarrow p_{V}^{3}=p_{a}^{3}-p_{b}^{3}=p_{L} \\
E_{V} & =E_{a}+E_{b} \\
= & \xi_{b} P_{A}^{0}+\xi_{b} P_{B}^{0}=\left(\xi_{a}+\xi_{b}\right) P \tag{2}\\
p_{V}^{2}= & M^{2} \\
= & E_{V}^{2}-\left(p_{V}^{3}\right)^{2} \\
= & \left(E_{V}-p_{V}^{3}\right)\left(E_{V}+p_{V}^{3}\right) \tag{3}\\
\text { eq }(1) \pm \mathrm{eq}(2) \rightarrow & E_{V}-p_{V}^{3}=2 \xi_{b} P \\
& E_{V}+p_{V}^{3}=2 \xi_{a} P
\end{align*}
$$

\triangleright hadron invariants

$$
\begin{aligned}
s & \equiv\left(P_{A}+P_{B}\right)^{2}=4 P^{2} \\
t & \equiv\left(p_{V}-P_{A}\right)^{2}=M^{2}-2 P\left(E_{V}-p_{V}^{3}\right)=M^{2}-\xi_{b} s \\
u & \equiv\left(p_{V}-P_{B}\right)^{2}=M^{2}-2 P\left(E_{V}+p_{V}^{3}\right)=M^{2}-\xi_{a} s
\end{aligned}
$$

parton invariants

$$
\begin{aligned}
\hat{s} & \equiv\left(p_{a}+p_{b}\right)^{2}=\xi_{a} \xi_{b} s \\
\hat{t} & \equiv\left(p_{V}-p_{a}\right)^{2}=M^{2}-\xi_{a} \xi_{b} s \\
\hat{u} & \equiv\left(p_{V}-p_{b}\right)^{2}=M^{2}-\xi_{a} \xi_{b} s
\end{aligned}
$$

from equation (3) $\quad M^{2}=\left(2 \xi_{b} P\right)\left(2 \xi_{a} P\right)=4 \xi_{a} \xi_{b} P=\xi_{a} \xi_{b} s$
-which allows for a definition: $\tau=M^{2} / s$ here: $\tau=\xi_{a} \xi_{b}$
\triangleright define:

$$
y_{V} \equiv \frac{1}{2} \ln \left(\frac{E_{V}+p_{V}}{E_{V}-p_{V}}\right) \quad \begin{aligned}
& \text { the familiar "rapidity", additive } \\
& \text { under Lorentz boosts... }
\end{aligned}
$$

in this simple case: $=\frac{1}{2} \ln \left(\frac{\xi_{a}}{\xi_{b}}\right)$
using the above... $\xi_{a, b}=\sqrt{\tau} e^{ \pm y}$
also, there are connections among invariants:

$$
\begin{array}{ll}
\left(\frac{\hat{t}}{s}-\tau\right)=\xi_{a}\left(\frac{t}{s}-\tau\right) & E_{V}-p_{V}^{3}=-\left(\frac{t-M^{2}}{\sqrt{s}}\right) \\
\left(\frac{\hat{u}}{s}-\tau\right)=\xi_{b}\left(\frac{u}{s}-\tau\right) & E_{V}+p_{V}^{3}=-\left(\frac{u-M^{2}}{\sqrt{s}}\right) \\
\text { so: } p_{V}^{3}=\left(\frac{M^{2}-u}{4 P}\right)-\left(\frac{M^{2}-t}{4 P}\right) & =\left(\xi_{a}-\xi_{b}\right) P
\end{array}
$$

kinematical boundaries

\triangleright for one early Drell-Yan experiment - E288

world's experimental regions

kinematics for DY
experiments

the Drell-Yan calculation

\triangleright simple Feynman diagram:

with cross section $\quad d \sigma=\frac{\sum_{i} \sum_{f}|T|^{2} d_{2} \rho}{(\text { flux } \cdot \text { normalization })}$
colinear beams
where

$$
(\text { flux } \cdot \text { normalization })=4 \sqrt{\left(p_{a} \cdot p_{b}\right)^{2}-m_{a} m_{b}}=4 p \sqrt{s}
$$

and

$$
d_{2} \rho\left(\vec{P}_{c}, \vec{P}_{d}\right)=(2 \pi)^{4} \delta\left(p_{a}+p_{b}-p_{c}-p_{d}\right) d \vec{P}_{c} d \vec{P}_{d}
$$

In CM of $a+b$:

integrate away "d" detect angular distribution of "c"

\triangleright my definitions...

$$
\begin{aligned}
d_{2} \rho(\vec{p} c) & =d_{2} \rho\left(\Omega_{c}, p_{c}\right) \equiv \int d_{2} \rho\left(\vec{p}_{c}, \vec{p}_{d}\right) d^{3} \vec{p}_{d} \\
d_{2} \rho\left(\vec{p}_{3}\right) & =\frac{1}{(2 \pi)^{2}} d \Omega_{c} \frac{p_{c} d E_{c}}{4}\left(\frac{p_{c}^{2}}{E_{a} p_{c}^{2}-\vec{p}_{a} \cdot \vec{p}_{c} E_{c}^{R}}\right) \delta\left(E_{c}-E_{c}^{R}\right) \\
E_{c}^{R} & =E_{a}-\sqrt{\left(\vec{p}_{a}-\vec{p}_{c}\right)^{2}+m_{d}^{2}}
\end{aligned}
$$

where $d_{2} \rho\left(\Omega_{c}\right)=\int d_{2} \rho\left(\vec{p}_{c}\right) d p_{c} \ldots$

$$
\begin{aligned}
& \text { and then } \quad=\frac{p_{c}}{16 \pi^{2} \sqrt{s}} d \Omega_{c} \\
& \text { so, } \quad d \sigma=\frac{1}{64 \pi^{2}} \frac{1}{s} \frac{p_{c}}{P} \sum_{i} \sum_{f}|T|^{2} d \Omega
\end{aligned}
$$

\triangleright the whole enchilada

$$
\begin{aligned}
\sum_{i}^{-} \sum_{f}|T|^{2}=\frac{1}{4} \sum_{i} \sum_{f}|T|^{2}= & \frac{1}{4} \frac{e_{q}^{2} e^{4}}{\left(p_{a}+p_{b}\right)^{4}} \sum_{q} \sum_{\bar{q}} \sum_{\mu} \sum_{\bar{\mu}} \\
& {\left[\bar{u}\left(p_{b}\right) \gamma_{\mu} u\left(p_{a}\right]\left[\bar{v}\left(p_{b}\right) \gamma_{\nu} u\left(p_{a}\right)\right]\right.} \\
& \cdot\left[\bar{u}\left(p_{c}\right) \gamma^{\mu} v\left(p_{d}\right)\right]\left[\bar{u}\left(p_{c}\right) \gamma^{\nu} v\left(p_{d}\right)\right]^{\dagger}
\end{aligned}
$$

$$
=\left(\frac{e_{q}^{2} e^{4}}{4 s^{2}}\right) \operatorname{Tr}\left[\not p_{a} \gamma_{\mu} \not p_{b} \gamma_{\nu}\right] \operatorname{Tr}\left[\not{ }_{c} \gamma^{\mu} \not p_{d} \gamma^{\nu}\right]
$$

$$
=\left(\frac{e_{q}^{2} e^{4}}{4 s^{2}}\right) 32\left[p_{a} \cdot p_{c} p_{b} \cdot p_{d}+p_{a} \cdot p_{d} p_{b} \cdot p_{c}\right]
$$

with our frame choice: $=\left(\frac{e_{q}^{2} e^{4}}{4 s^{2}}\right) 64 E_{a}^{2} E_{c}^{2}\left(1+\cos ^{2} \theta\right)$

putting it together

\triangleright the real inspiration:

a function which incoherently sums all quarks:

$$
\begin{aligned}
\mathcal{P}_{q \bar{q}}\left(\xi_{a} \xi_{b}\right)= & \sum_{i=1}^{n_{f}} e_{q_{i}}^{2}\left[f_{q_{i} / A}\left(\xi_{a}\right) f_{\bar{q}_{i} / B}\left(\xi_{b}\right)\right. \\
& \left.+f_{\bar{q}_{i} / A}\left(\xi_{a}\right) f_{q_{i} / B}\left(\xi_{b}\right)\right]
\end{aligned}
$$

where $f_{q_{i} / A}\left(\xi_{a}\right)$ is the probability of finding an atype parton in hadron A carrying fraction of P_{A} equal to ξ_{a}

$$
\sigma\left(A B \rightarrow \gamma^{\star} \rightarrow \mu \mu\right)=\frac{4 \alpha^{2}}{3 \hat{s}} \frac{\pi}{3} \int \mathcal{P}_{q \bar{q}}\left(\xi_{a} \xi_{b}\right) d \xi_{a} d \xi_{b}
$$

$$
\text { must average over colors - DY didn } \mathrm{t} \text { know this }
$$

find some measurables...

\triangleright in order to get the differential cross section:

$$
\begin{aligned}
\frac{d^{2} \sigma}{d \xi_{a} \xi_{b}} & =\frac{4 \alpha^{2} \pi}{9 \hat{s}} \mathcal{P}_{q \bar{q}}\left(\xi_{a}, \xi_{b}\right) \\
\text { use } \tau & =\xi_{a} \xi_{b}(\text { or } \hat{s}=\tau s) \text { plus } x_{F}=\xi_{a}-\xi_{b}
\end{aligned}
$$

which allows us to calculate the Jacobian to take

$$
d \xi_{a} d \xi_{b} \rightarrow d \tau d x_{F} \rightarrow d Q^{2}
$$

$$
\frac{d \sigma}{d \tau d x_{F}}=\frac{1}{\left(\xi_{a}+\xi_{b}\right)} \frac{d^{2} \sigma}{d \xi_{a} \xi_{b}} \longrightarrow \frac{d \sigma}{d \tau d x_{F}}=\frac{4 \alpha^{2} \pi}{9 Q^{2}} \frac{\mathcal{P}_{q \bar{q}}\left(\xi_{a}, \xi_{b}\right)}{\sqrt{x_{F}^{2}+4 \tau}}
$$

$$
\begin{array}{rll}
\frac{d \sigma}{d Q^{2}} & =\frac{4 \alpha \pi}{9 Q^{4}} \tau \int_{\tau}^{1} \frac{d \xi_{a}}{\xi_{a}} \mathcal{P}_{q \bar{q}}\left(\xi_{a}, \tau / \xi_{a}\right) & \begin{array}{l}
\text { We have a prediction: } \\
\text { this quantity is } \\
\text { independent of } \\
Q^{4} \frac{d \sigma}{d Q^{2}}
\end{array}=\frac{4 \alpha \pi}{9} F(\tau) \quad Q \ldots \text { only } \tau
\end{array}
$$

\triangleright Drell and Yan's explanation of the Lederman/Pope

 results proved substantially correct

\triangleright well, because of two approximations:

1. scale invariant parton distribution functions
and
2. presumption of the γ produced with $p_{T}=0$

\triangleright scale-violating pdf's

The Factorization Theorem (Collins, Soper, Sterman) puts the physically appealing quark - parton model on a firm, formal basis:

> separate short-distance (calculable) from long distance (not calculable) using a scale, $\mu_{\mathrm{f}} \cdots$ hard part is only implicitly dependent on μ_{f} - in practice, μ_{f} set $=\mu$.
physical cross section:

$$
\frac{d \sigma_{A B}}{d Q^{2}}=
$$

$$
\sum_{a, b} \underbrace{f_{a / A}\left(\xi_{a}, \mu^{2}, \mu_{f}\right)} \otimes \hat{\sigma}_{a b}\left(\xi_{a}, \xi_{b}, Q^{2}, \frac{\mu}{Q}, \frac{\mu_{f}}{\mu}, \alpha_{S}(\mu)\right) \otimes \underbrace{f_{b / B}\left(\xi_{b}, \mu^{2}, \mu_{f}\right)}
$$

> measurable, universal not calculated, long-distance effects are absorbed into pdf's
finite effects - the infamous "k-factor"
from now on, we'll presume scale-violating pdf's

\triangleright finite p_{T}... comes in 2 ways:

soft emission (think: "complicated"!)...(we'll do it later)

\triangleright to first order in α_{s}, the elementary processes are:

for example, emission is 1 gluon
This is a familiar fundamental process: annihilation
...one of a set of order $-\alpha_{s} \alpha_{E M}$ hard processes which can be treated perturbatively

Annihilation graphs, "A"

Compton graphs, "C"

\triangleright it's harder this time...

in principle, n states, for the i th particle...

$$
\begin{aligned}
p_{i} & :\left(E_{i}, \vec{p}_{i T}, p_{i L}\right) \\
p_{i}^{2} & =m_{i}^{2}=\left(E_{i}^{2}-\vec{p}_{i T}^{2}-p_{i L}^{2}\right) \\
& =\left(E_{i}-p_{i L}\right)\left(E_{i}+p_{i L}\right)-p_{i T}^{2}
\end{aligned}
$$

presume cm $\underset{96^{60}}{\frac{q}{q}}$
and consider that the $i^{\text {th }}$ is V

$$
\begin{aligned}
s & =4 P^{2} \\
t & =\left(p-P_{A}\right)^{2}=M^{2}-2 p \cdot P_{A}=M^{2}-2 E P_{A}+2 p P_{A} \cos \theta \\
& =M^{2}-2 P\left(E-p_{L}\right)
\end{aligned}
$$

kinematics, 2

\triangleright from solution for t,

$$
\begin{aligned}
t & =M^{2}-2 P\left(E-p_{L}\right) \Rightarrow E-p_{L}=\frac{M^{2}-t}{2 P} \\
u & =M^{2}-2 P\left(E-p_{L}\right) \Rightarrow E+p_{L}=\frac{M^{2}-u}{2 P} \\
p_{L} & =\left(\frac{M^{2}-u}{2 P}\right)-\left(\frac{M^{2}-t}{2 P}\right) \\
& =\left[\left(\frac{M^{2}-u}{2 P}\right)-\left(\frac{M^{2}-t}{2 P}\right)\right] P \quad \begin{array}{l}
\text { express the } \\
\text { longitudinal } p \\
\text { as a fractional } \\
\text { difference of } P
\end{array} \\
p_{L} & =\left[x_{1}-x_{2}\right] P
\end{aligned}
$$

different from before:

$$
p_{L}=\left(\xi_{a}-\xi_{b}\right) P
$$

kinematics, 3

\triangleright to get...

$$
\begin{aligned}
x_{1} & \equiv \frac{M^{2}-u}{4 P^{2}}=\frac{E+p_{L}}{\sqrt{s}} \\
x_{2} & \equiv \frac{M^{2}-t}{4 P^{2}}=\frac{E-p_{L}}{\sqrt{s}}
\end{aligned}
$$

solving for $\mathrm{M}: \quad M^{2}=\left(E-p_{L}\right)\left(E+p_{L}\right)-p_{T}^{2}$

$$
\begin{aligned}
M^{2} & =s x_{1} x_{2}-p_{T}^{2} \\
\text { so, } \quad x_{1} x_{2} s & =M^{2}+p_{T}^{2} \equiv M_{T}^{2}
\end{aligned}
$$

and therefore,
$=\xi_{a} \xi_{b} s+p_{T}^{2}$ so, not the same as $\xi_{a} \xi_{b} s!$
also,

$$
\begin{aligned}
y & =\frac{1}{2} \ln \left(\frac{E+p_{L}}{E_{i}-p_{L}}\right) \\
& =\frac{1}{2} \ln \left(\frac{x_{1}}{x_{2}}\right) \text { so, not the same as } \ln \left(\frac{\xi_{a}}{\xi_{b}}\right)!
\end{aligned}
$$

$$
\begin{aligned}
x_{1} & =\frac{M_{T}}{\sqrt{s}} e^{+y} \quad x_{2}=\frac{M_{T}}{\sqrt{s}} e^{-y} \\
x_{1} x_{2}= & \frac{M_{T}^{2}}{s} \\
x_{T} & \equiv \frac{p_{T}}{P}=\frac{2 p_{T}}{\sqrt{s}} \\
x_{1} x_{2}= & \tau+\frac{x_{T}^{2}}{4} \text { since, still } \tau=\frac{M^{2}}{s} \\
& \left(\text { recalling } \tau=\xi_{a} \xi_{b} \text { only in the zero } p_{T}\right. \text { case...) }
\end{aligned}
$$

immediate plans...

1.set up the hadronic QCD "Compton" process
2.but, be lazy: calculate the e γ Compton cross section

- everyone has done this, don't need to really calculate...
- ...except we'll do it to a "heavy" photon
3.convert it to the QCD process by simple substitutions
4.use crossing to infer the Annihilation cross section
5.put it together...and then look at low p_{T} for trouble

Compton process:

\triangleright from our earlier phase space outline:

for the simple 2-2:

$$
\begin{aligned}
d \hat{\sigma}(a b \rightarrow V d) & =\frac{\hat{\Sigma}_{i} \Sigma_{f}|T|^{2} d_{2} \rho\left(\vec{p}_{V}, \vec{p}_{d}\right)}{4 E_{a} \sqrt{s}} \\
d_{2} \rho & =(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{V}-p_{d}\right) \frac{d^{3} p_{V}}{(2 \pi)^{3} 2 E_{V}} \frac{d^{3} p_{d}}{(2 \pi)^{3} 2 E_{d}}
\end{aligned}
$$

set up to ignore d, and embed the process inside hadrons:

$$
d \sigma=\int d \xi_{a} \int d \xi_{b} \mathcal{P}_{\substack{\text { note! }}}\left(\xi_{a}, \xi_{b}\right) \frac{\bar{\Sigma}_{i} \Sigma_{f}|T|^{2}}{32 \pi^{2} E_{a} E_{b}} \delta\left(p_{d}^{2}\right) \delta^{4}(\ldots) d^{4} p_{d} \frac{d^{3} p_{V}}{2 E_{V}}
$$

integrate trivially:

$$
=\left.\int d \xi_{a} \int d \xi_{b} \mathcal{P}_{q g}\left(\xi_{a}, \xi_{b}\right) \frac{\bar{\Sigma}_{i} \Sigma_{f}|T|^{2}}{32 \pi^{2} E_{a} E_{b}} \delta\left(p_{d}^{2}\right) \frac{d^{3} p_{V}}{2 E_{V}}\right|_{p_{d}=p_{a}+p_{b}-p_{V}}
$$

Δ mess with the delta function:

you can show that $p_{d}^{2}=\hat{s}+\hat{t}+\hat{u}-M^{2}$

$$
\text { you remember } \begin{aligned}
& \text { so, } \delta\left(\hat{s}+\hat{t}+\hat{u}-M^{2}\right) \rightarrow \text { function of } \xi_{a, b} \\
& \delta[f(x)]=\left|\frac{\partial f}{\partial x}\right|_{x=x_{R}}^{-1} \delta\left(x-x_{R}\right) \\
& f\left(x_{R}\right)=0
\end{aligned}
$$

so... $f\left(\xi_{a}\right)=\hat{s}+\hat{t}+\hat{u}-M^{2}=\left(\xi_{a} \xi_{b}-\xi_{a} x_{1}-\xi_{b} x_{2}+\tau\right) s$

$$
\xi_{a}=\frac{\xi_{b} \xi_{2}-\tau}{\xi_{b}-x_{1}} \equiv \xi_{a}^{R} \quad \text { is the root... }
$$

$$
\frac{\partial f}{\partial \xi_{a}}=\xi_{b}-x_{1} \quad \text { is the derivative... }
$$

so: $\quad \delta\left(p_{d}^{2}\right) \rightarrow \frac{\delta\left(\xi_{a}-\xi_{a}^{R}\right)}{s\left(\xi_{b}-x_{1}\right)} \quad$ allows us to do the ξ_{a} integration

\triangleright so, putting it together:

$$
E_{V} \frac{d \hat{\sigma}}{d^{3} p_{V}}=\int d \xi_{a} \delta\left(\xi_{a}-\xi_{a}^{R}\right) \int d \xi_{b} \mathcal{P}_{q g}\left(\xi_{a}, \xi_{b}\right) \frac{\hat{\Sigma}_{i} \Sigma_{f}|T|^{2}}{64 E_{a} E_{b} \pi^{2} s\left(\xi_{b}-x_{1}\right)}
$$

for 2 body kinematics

$$
\frac{d \hat{\sigma}}{d \hat{t}}=\frac{1}{16 \pi \hat{s}^{2}}|T|^{2}
$$

integrating and changing variables...
$\frac{d \hat{\sigma}}{d Q^{2} d y d p_{T}^{2}}=\frac{1}{\tau} \int_{\xi_{b}^{\text {min }}}^{1} \frac{d \xi_{b}}{\left(\xi_{b}-x_{1}\right)} \mathcal{P}_{q g}\left(\xi_{a}, \xi_{b}\right) \xi_{a}^{R} \xi_{b} \frac{d \hat{\sigma}}{d \hat{t} d Q^{2}}$
where

$$
\xi_{b}^{\min }=\frac{x_{1}-\tau}{1-x_{2}}
$$

"regular" Compton scattering

\triangleright textbook, but for keeping the outgoing photon mass

$$
\begin{aligned}
\hat{s}=(p+k)^{2} & =\left(p^{\prime}+k^{\prime}\right)^{2}=2 p \cdot k=Q^{2}+2 p^{\prime} \cdot k^{\prime} \\
\hat{t}=\left(p-k^{\prime}\right)^{2} & =\left(k-p^{\prime}\right)^{2}=Q^{2}-2 k^{\prime} \cdot p=-2 k \cdot p^{\prime} \\
\hat{u}=\left(k-k^{\prime}\right)^{2} & =\left(p-p^{\prime}\right)^{2}=Q^{2}-2 k^{\prime} \cdot k=-2 p \cdot p^{\prime}
\end{aligned}
$$

"regular" Compton scattering, 2

\triangleright actually, an exercise in Halzen and Martin...

$$
\begin{aligned}
\sum_{\text {initial e }}^{-} \sum_{\text {initial }}^{-} \sum_{\gamma \text { final e final } \gamma} \sum_{\gamma}|T|^{2} & =32 \pi^{2} \alpha\left(-\frac{\hat{t}}{\hat{s}}-\frac{\hat{s}}{\hat{t}}-\frac{2 \hat{u} Q^{2}}{\hat{s} \hat{t}}\right) \\
\text { standard } 2 \text { body kinematics } \frac{d \sigma}{d \Omega} & =\frac{1}{64 \pi^{2} s} \frac{p^{\prime}}{p}|T|^{2}
\end{aligned}
$$

Jacobian to go to invariants $\quad \frac{d \sigma}{d \Omega}=\frac{p p^{\prime}}{\pi} \frac{d \sigma}{d \hat{t}}$ affects the interference term
so: $\quad \frac{d \sigma}{d \hat{t}}=\frac{2 \pi \alpha^{2}}{\hat{s}^{2}}\left(-\frac{\hat{t}}{\hat{s}}-\frac{\hat{s}}{\hat{t}}-\frac{2 \hat{u} Q^{2}}{\hat{s} \hat{t}}\right)$

from QED to QCD with hadrons...

\triangleright now exploit our laziness...

\rightarrow annihilation

\triangleright use crossing symmetry to go Compton \rightarrow Annihilation:

plus color changes... $\frac{1}{8} \cdot \frac{1}{3} \operatorname{Tr}\left[T_{g}, T_{g}\right]=\frac{1}{6} \quad \rightarrow \frac{1}{3} \cdot \frac{1}{3} \operatorname{Tr}\left[T_{q}, T_{q}\right]=\frac{4}{9}$

total order- α_{S} Drell-Yan cross section

\triangleright putting it together...

$$
\begin{aligned}
\frac{d \sigma(A B \rightarrow \mu \mu j)}{d Q^{2} d y d p_{T}^{2}} & =\frac{1}{\pi} \int_{\xi_{b}^{\min }}^{1} \frac{\xi_{b}}{\left(\xi_{b}-x_{1}\right)} \xi_{a}^{R} \xi_{b} \mathcal{P}_{q \bar{q}}\left(\xi_{a}, \xi_{b}\right) \frac{d \hat{\sigma}_{A}}{d Q^{2} d \hat{t}} \\
& +\frac{1}{\pi} \int_{\xi_{b}^{\min }}^{1} \frac{\xi_{b}}{\left(\xi_{b}-x_{1}\right)} \xi_{a}^{R} \xi_{b} \mathcal{P}_{q g}\left(\xi_{a}, \xi_{b}\right) \frac{d \hat{\sigma}_{C}}{d Q^{2} d \hat{t}} \\
\text { where } \quad & \frac{d \hat{\sigma}_{C}}{d Q^{2} d \hat{t}}=\frac{1}{9} \frac{\alpha^{2} e_{q}^{2} \alpha_{S}}{Q^{2} \hat{s}^{2}}\left(\frac{-\hat{t}^{2}-\hat{s}^{2}-2 \hat{u} Q^{2}}{\hat{s} \hat{t}}\right) \\
& \frac{d \hat{\sigma}_{A}}{d Q^{2} d \hat{t}}=\frac{8}{27} \frac{\alpha^{2} e_{q}^{2} \alpha_{S}}{Q^{2} \hat{s}^{2}}\left(\frac{\hat{t}^{2}+\hat{u}^{2}+2 \hat{s} Q^{2}}{\hat{u} \hat{t}}\right)
\end{aligned}
$$

this leads to trouble... the annihilation hard cross section goes like:

$$
\frac{1}{\hat{s} \hat{t} \hat{u}} \text { which, since } \hat{t} \hat{u}=\xi_{a} \xi_{b} s p_{T}^{2} \text { leads to } \frac{1}{p_{T}^{2}} \text { behavior for } \hat{\sigma}_{A}
$$

\triangleright perhaps not surprisingly, logs float to the surface...

factor out the $1 / p_{T}{ }^{2}$ behavior and as $x_{T} \rightarrow 0$, the leading terms go like:

$$
\int_{\xi_{k_{T}}^{\text {min }}}^{1} \frac{d \xi_{b}}{\xi_{b}-x_{1}}\left[1+\frac{\tau^{2}}{\left(\xi_{a}^{R} \xi_{b}\right)^{2}}\right]_{\text {as } k_{T} \rightarrow 0} \rightarrow \underline{\underline{\ln \left(Q^{2} / k_{T}^{2}\right)}} \text { (There'll be others later) }
$$

so, in that limit, the form of the order- α_{S} Drell Yan cross section is:

$$
\frac{d \sigma}{d \tau d y d p_{T}^{2}}=\underbrace{\left(\frac{d \sigma}{d \tau d y}\right)_{B}}_{\text {which live here... }}\left[\frac{4 \alpha_{S}}{3 \pi} \frac{1}{p_{T}^{2}} \ln \left(Q^{2}\left\langle p_{T}^{2}\right)\right]\right.
$$

where: $\left(\frac{d \sigma}{d \tau d y}\right)_{B}=\sigma_{0} \frac{e_{q}^{2}}{3} \mathcal{P}_{q \bar{q}}\left(\xi_{a}, \xi_{b}, Q^{2}\right)$

```
here's a scale \(\left(p_{\mathrm{T}}\right)\) which cannot be absorbed into the pdf's: the dreaded "two scale problem"
```


sounds like a good theory

\triangleright what about data? R209 at the ISR, 1982

immediate plans...

1. an interlude, of sorts...

- calculate the probability of the emission of a low-pt gluon
- then calculate the probability of an infinite number of low-pt gluons
- call them "Sudakov" and identify the approximations as Leading Pole and Leading Double Log

itty, bitty gluon radiation

\triangleright a side calculations - dealing with soft gluon radiation(s)

define x_{1} and x_{2} to be the momentum fractions carried by
$\mathrm{q}\left(p_{1}\right)$ and $\mathrm{q}\left(p_{2}\right)$...then $x_{3}=1-x_{1}-x_{2}$ is the fraction carried by g.
then: $\frac{d \Gamma\left(\gamma^{\star} \rightarrow q \bar{q} g\right)}{d x_{1} d x_{2}}=3 \alpha e_{q}^{2} Q \frac{32 \alpha_{S}}{3 \pi} \frac{x_{1}^{2}+x_{2}^{2}}{\left(1-2 x_{1}\right)\left(1-2 x_{2}\right)}$ log divergence when $x_{1,2} \rightarrow 1 / 2$
define: $z \equiv E_{a} / E_{b}$ (which is small)
so, $\quad j \equiv\left(k+p_{3}\right)^{2} / Q^{2}=Q^{2}\left(1-2 x_{1}\right) / Q^{2}=\left(1-2 x_{1}\right)$
(invariant $q_{\mathrm{a}}-g$ mass, which is small)
\triangleright wave some hands here...

$$
\theta \approx \tan \theta=\frac{k_{T}}{k_{\|}} \cong \frac{k_{T}}{Q / 2} \quad \begin{aligned}
& \text { and so, } \\
& \text { small }
\end{aligned}
$$

change variables, for photon "lifetime":

$$
\frac{d \Gamma\left(\gamma^{\star} \rightarrow q \bar{q} g\right)}{d j d z}=\frac{4 \alpha_{S} \alpha e_{q}^{2} Q^{3}}{\pi}\left[\frac{j}{1-z}+\frac{1+z^{2}}{j(1-z)}+\frac{16}{1-z}\right]
$$

when j small (m_{qg} small) and z near 1 (E_{g} small) \quad log divergence, $j \rightarrow 0$
the middle term dominates...
called the "Leading Pole Approximation", (LPA)

$$
\begin{aligned}
\frac{1}{\sigma_{0}}\left(\frac{d \sigma}{d j d z}\right)_{\mathrm{LPA}} & =\frac{2 \alpha_{S}}{3 \pi} \frac{1+z^{2}}{(1-z) j} \\
& =\frac{\alpha_{S}}{2 \pi j} \mathcal{P}_{q \bar{q}}(z)
\end{aligned}
$$

related to the $\mathcal{P}_{q g}$ splitting function

summing glue

\triangleright add up a series of emissions

in the limit, the angle is small

$$
\theta \cong \tan \theta=\frac{k_{T}}{k_{\|}}=\frac{k_{T}}{Q / 2}
$$

define: $\mathcal{S}(\theta) \equiv$ probability of q emitting g with angle $<\theta$
$\mathcal{T}(\theta) \equiv$ probability of q emitting g with angle $>\theta$
so... $\quad 1=\mathcal{S}(\theta)+\mathcal{T}(\theta)$
as a function of k_{T}, the probability of $>\theta$
$\mathcal{T}\left(k_{T}^{2}\right)=\int_{k_{T}^{2}}^{Q^{2} / 4} \frac{1}{\sigma_{0}} \frac{d \sigma}{d k_{T}^{\prime 2}} d k_{T}^{\prime 2} \quad$ so, $\quad \frac{1}{\sigma_{0}} \frac{d \sigma}{d k_{T}^{2}}=-\frac{d \mathcal{T}}{d k_{T}^{2}}=\frac{d \mathcal{S}}{d k_{T}^{2}}$

\triangleright change variables

$$
\mathcal{T}(\theta)_{\mathrm{LPA}}=\frac{2 \alpha_{S}}{3 \pi} \iint \frac{1+z^{2}}{(1-z) j} d z d j
$$

from $\quad k_{T}^{2} / Q^{2}=z(1-z) j \equiv \ell j>\theta^{2} / 4$

$$
\mathcal{T}(\theta)=\frac{2 \alpha_{S}}{3 \pi} \int_{\theta^{2} / 4}^{1} \frac{d j}{j} \int_{\theta^{2} / 4 j}^{1} \frac{2 d \ell}{\ell}
$$

$\mathcal{T}(\theta)_{\mathrm{LDLA}}=\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(\theta^{2} / 4\right)-\begin{aligned} & \text { leading double log } \\ & \text { approximation, LDLA }\end{aligned}$
likewise, then $\mathcal{S}(\theta)_{\mathrm{LDLA}}=1-\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(\theta^{2} / 4\right)$

$$
\text { remember } \frac{1}{\sigma_{0}} \frac{d \sigma}{d k_{T}^{2}}=-\frac{d \mathcal{T}}{d k_{T}^{2}}=\frac{d \mathcal{S}}{d k_{T}^{2}}
$$

so, $\frac{d \sigma}{d k_{T}^{2}}=\frac{4 \alpha_{S}}{3 \pi} \frac{1}{k_{T}^{2}} \ln \left(Q^{2} / k_{T}^{2}\right) \quad$ again, with at least $k^{2}{ }_{T} \ll Q^{2}$

\triangleright treat radiations as independent

the probability of n, with $<\theta$
$\left.\mathcal{S}_{n}\left(k_{T}\right)\right|_{\text {LDLA }}=\frac{1}{n!}\left[-\frac{2 \alpha_{S}}{3 \pi} \ln \left(k_{T}^{2} / Q^{2}\right)\right]^{n} \gamma^{*}(\mathrm{Q})<$
adding the probabilities for all possible n's

$$
\mathcal{S}_{\mathrm{LDLA}}\left(k_{T}\right)=\sum_{n=0}^{\infty} \mathcal{S}_{n}\left(k_{T}\right)
$$

which is an exponential: $=\exp \left[-\frac{2 \alpha_{S}}{3 \pi} \ln \left(k_{T}^{2} / Q^{2}\right)\right]$
SO $\frac{d \mathcal{S}}{d k_{T}^{2}}=\left.\frac{1}{\sigma_{0}} \frac{d \sigma}{d k_{T}^{2}}\right|_{\text {LDLA }}=\frac{4 \alpha_{S}}{3 \pi} \frac{1}{k_{T}^{2}} \ln \left(Q^{2} / k_{T}^{2}\right) e^{-\frac{2 \alpha_{S}}{3 \pi} \ln \left(k_{T}^{2} / Q^{2}\right)}$
a significant result: as $p_{\mathrm{T}} \rightarrow 0$, cross $\sigma \rightarrow 0$!

\triangleright this is where we started

$$
\frac{d \mathcal{S}}{d k_{T}^{2}}=\left.\frac{1}{\sigma_{0}} \frac{d \sigma}{d k_{T}^{2}}\right|_{\text {LDLA }}=\frac{4 \alpha_{S}}{3 \pi} \frac{1}{k_{T}^{2}} \ln \left(Q^{2} / k_{T}^{2}\right) e^{-\frac{2 \alpha S}{3 \pi} \ln \left(k_{T}^{2} / Q^{2}\right)}
$$

for the k_{T} of the radiating quark has the same form as our order- α_{S} cross section for the $q \ldots$...but including the effects of copious radiation of soft glue

$$
\left.\begin{array}{l}
\text { we can improve our Drell-Yan cross section } \\
\text { the same way: } \\
\frac{d \sigma}{d \tau d y d p_{T}^{2}}=\left(\frac{d \sigma}{d \tau d y}\right)_{B}\left[\frac{4 \alpha_{S}}{3 \pi} \frac{1}{p_{T}^{2}} \ln \left(Q^{2} / p_{T}^{2}\right) e^{-\left(\frac{2 \alpha_{S}}{3 \pi}\right)} \ln \left(p_{T}^{2} / Q^{2}\right)\right.
\end{array}\right] .
$$

what we got perturbatively at order- α_{S}
adding infinite-order soft radiation
this "RESUMMATION" (the exponential) tames the bad behavior

immediate plans...

1. move to W/Z production

- (ah, to) be naïve again in order to adjust to EW parameters
- get a sense of the rates
- use our results and calculate for finite p_{T}

WIZ production

\triangleright Drell-Yan process is operative here too

the Feynman rules are slightly different

from photons to WIZ:

\triangleright just an EW lookup:

propagators: $\frac{d \hat{\sigma}}{d Q^{2}} \propto \frac{1}{Q^{4}} \longmapsto \frac{1}{\left(\hat{s}-M_{V}^{2}\right)^{2}+\left(\Gamma_{V} M_{V}\right)^{2}}$
couplings: W bosons

$$
\begin{aligned}
& e^{4} \rightarrow e^{4}\left[\frac{2}{\left(2 \sqrt{2} \sin ^{2} \theta_{W}\right)^{2}}\right]^{2} \text { leptons } \rightarrow e^{2}\left(v_{f}^{2}+a_{f}^{2}\right) \\
& e^{2} e_{q}^{2} \text { quarks } \rightarrow e^{2}\left(v_{f}^{2}+a_{f}^{2}\right) \\
& Q_{f}^{2} \rightarrow 1+\left[1-4\left|Q_{f}\right| \sin ^{2} \theta_{W}\right]^{2}
\end{aligned}
$$

plus, the connection between weak and electromagnetic couplings

$$
\frac{G_{F} M_{W}^{2}}{\sqrt{2}}=\frac{\pi \alpha}{2 \sin ^{2} \theta_{W}}
$$

W cross section - more laziness

\triangleright write down the, now standard, cross section:

$$
\sigma(A B \rightarrow W \rightarrow \ell \nu)=\frac{1}{3} \sum_{i j} \int d \xi_{a} d \xi_{b} f_{q_{i} / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{q}_{j} B}\left(\xi_{b}, Q^{2}\right) \hat{\sigma}\left(q_{i} \bar{q}_{j} \rightarrow \ell \nu\right)
$$

the hard part:

$$
\begin{aligned}
\sum_{\text {initial final }}^{-} \sum^{-}|T|^{2} & =8^{4}\left|V_{q_{i} q_{j}}\right|^{2}\left(\frac{G_{F} M_{W}^{2}}{\sqrt{2}}\right)^{2} \frac{\hat{u}^{2}}{\left(\hat{s}-M_{W}^{2}\right)^{2}+\left(M_{W} \Gamma_{W}\right)^{2}} \\
\frac{d \hat{\sigma}\left(q_{i} \bar{q}_{j} \rightarrow \ell \nu\right)}{d \cos \hat{\theta}} & =\frac{\left|V_{q_{i} \bar{q}_{j}}\right|^{2}}{8 \pi} \frac{G_{F}^{2} M_{W}^{4}}{2} \frac{\hat{s}(1+\cos \hat{\theta})^{2}}{\left(\hat{s}-M_{W}^{2}\right)^{2}+\left(M_{W} \Gamma_{W}\right)^{2}}
\end{aligned}
$$

make use of the "narrow width approximation":

$$
\frac{1}{\left(\hat{s}-M_{W}^{2}\right)^{2}+\left(M_{W} \Gamma_{W}\right)^{2}} \rightarrow \frac{\pi}{\Gamma_{W} M_{W}} \delta\left(\hat{s}-M_{W}^{2}\right)
$$

define W-specific parton density combination:

$$
\mathcal{P}_{q_{i}, \bar{q}_{j}}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right) \equiv f_{q_{i} / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{q}_{j} B}\left(\xi_{b}, Q^{2}\right)
$$

W - cross section

combine with K-M matrix elements for the isospin-changing process

$$
\begin{aligned}
\sum_{i j} \mathcal{P}_{q_{i}, \bar{q}_{j}}^{W} & \left(\xi_{a}, \xi_{b}, Q^{2}\right)=\quad\left(\sqrt{\text { cabbibo }^{2}+\text { cabibbo }^{2}}\right) \text { angles, actually } \\
& {\left[f_{u / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{d} / B}\left(\xi_{b}, Q^{2}\right)+f_{\bar{d} / A}\left(\xi_{a}, Q^{2}\right) f_{u / B}\left(\xi_{b}, Q^{2}\right)\right]\left|V_{u d}\right|^{2} } \\
& +\left[f_{u / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{s} / B}\left(\xi_{b}, Q^{2}\right)+f_{\bar{s} / A}\left(\xi_{a}, Q^{2}\right) f_{u / B}\left(\xi_{b}, Q^{2}\right)\right]\left|V_{u s}\right|^{2}
\end{aligned}
$$

SO,

$$
\mathcal{P}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right) \equiv \mathcal{P}_{u, d}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right)\left|V_{u d}\right|^{2}+\mathcal{P}_{u, s}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right)\left|V_{u s}\right|^{2}
$$

forget the Cabibbo-disallowed transition...

$$
\sigma_{W}(A B \rightarrow \ell \nu)=\frac{1}{3}\left|V_{u d}\right|^{2} \pi \sqrt{2} G_{F} \int d \xi_{a} d \xi_{b} \mathcal{P}_{u, d}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right) \delta\left(\hat{s}-M_{W}^{2}\right) \hat{s}
$$

some details, delta function gymnastics:

$$
\delta\left(\hat{s}-M_{W}^{2}\right)=\frac{1}{s} \delta\left(\xi_{a} \xi_{b}-\tau\right)=\frac{\delta\left(\xi_{a}-\tau / \xi_{b}\right)}{s \xi_{b}}
$$

so,

$$
\sigma_{W^{+}}(A B \rightarrow \ell \nu)=\frac{\sqrt{2} G_{F} \pi\left|V_{u d}\right|^{2}}{3} \tau \int_{\tau}^{1} \frac{d \xi_{b}}{\xi_{b}} \mathcal{P}_{u, d}^{W}\left(\xi_{a}, \xi_{b}, Q^{2}\right)
$$

Tevatron luminosities

FIG. 55. Quantity $(\tau / \hat{s}) d \mathscr{L} / d \tau$ for $u \bar{d}$ or $\bar{u} d$ interactions proton-antiproton collisions.

$$
\tau\left(\frac{d \mathcal{L}}{d \tau}\right)_{u \bar{d}}
$$

$$
\begin{array}{l|l}
\tau=\frac{Q^{2}}{s} \cong \frac{80^{2}}{2000^{2}} \approx 1.6 \times 10^{-3} & \begin{array}{l}
\text { defined as the } \\
\text { differential Parton } \\
\text { Luminosity }
\end{array} \\
\hat{s} \cong 0.08 \mathrm{TeV} / c^{2} \Rightarrow \frac{\tau}{\hat{s}} \frac{d \mathcal{L}}{d \tau} \cong 100 \mathrm{nb} &
\end{array}
$$

$$
\sigma=(6 \mathrm{nb}) \hat{s}\left(\frac{\tau}{\hat{s}} \frac{d \mathfrak{L}}{d \tau}\right)
$$

$$
=(6 \mathrm{nb})(80 \mathrm{GeV})^{2} \frac{1}{0.39\left(\mathrm{GeV}^{2} \mathrm{mb}\right)}\left(\frac{1 \mathrm{mb}}{10^{-3} \mathrm{~b}}\right)\left(\frac{10^{-9} \mathrm{~b}}{\mathrm{nb}}\right) 100 \mathrm{nb}
$$

$$
=9.9 \mathrm{nb}
$$

Z cross section:

\triangleright same idea: just follows the previous pattern...

$$
\sigma(A B \rightarrow Z \rightarrow \ell \ell)=\frac{1}{3} \sum_{i} \int d \xi_{a} d \xi_{b} f_{q_{i} / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{q}_{i} B}\left(\xi_{b}, Q^{2}\right) \hat{\sigma}\left(q_{i} \bar{q}_{i} \rightarrow \ell \ell\right)
$$

$$
\sum_{i j} \mathcal{P}_{q_{i}, \bar{q}_{i}}^{Z}\left(\xi_{a}, \xi_{b}, Q^{2}\right)=\left[f_{u / A}\left(\xi_{a}, Q^{2}\right) f_{\tilde{u}_{\bar{u}}}\left(\xi_{b}, Q^{2}\right)+f_{\bar{u} / A}\left(\xi_{a}, Q^{2}\right) f_{u / B}\left(\xi_{b}, Q^{2}\right)\right]\left(\frac{1}{4}-\frac{2}{3} x_{W}+\frac{8}{9} x_{W}^{2}\right)
$$

$$
+\left[f_{d / A}\left(\xi_{a}, Q^{2}\right) f_{\bar{d} / B}\left(\xi_{b}, Q^{2}\right)+f_{\bar{d} / A}\left(\xi_{a}, Q^{2}\right) f_{d / B}\left(\xi_{b}, Q^{2}\right)\right.
$$

$$
\left.+f_{s / A}\left(\xi_{a}, Q^{2}\right) f_{\overline{\bar{s}} / B}\left(\xi_{b}, Q^{2}\right)+f_{\overline{\bar{s}} / A}\left(\xi_{a}, Q^{2}\right) f_{s / B}\left(\xi_{b}, Q^{2}\right)\right]\left(\frac{1}{4}-\frac{1}{3} x_{W}+\frac{2}{9} x_{W}^{2}\right)
$$

where $\quad x_{W}=\sin ^{2} \theta_{W} \quad \mathcal{P}^{Z}\left(\xi_{a}, \xi_{b}, Q^{2}\right) \equiv \mathcal{P}_{u}^{Z}\left(\xi_{a}, \xi_{b}, Q^{2}\right)\left(\frac{1}{4}-\frac{2}{3} x_{W}+\frac{8}{9} x_{W}^{2}\right)$

$$
+\mathcal{P}_{d, s}^{Z}\left(\xi_{a}, \xi_{b}, Q^{2}\right)\left(\frac{1}{4}-\frac{1}{3} x_{W}+\frac{2}{9} x_{W}^{2}\right)
$$

So $\quad \sigma_{Z^{+}}(A B \rightarrow \ell)=2 \frac{\sqrt{2} G_{F} \pi}{3} \tau \int_{\tau}^{1} \frac{d \xi_{b}}{\xi_{b}} \mathcal{P}^{Z}\left(\xi_{a}, \xi_{b}, Q^{2}\right)$

reasonable description, overall

\triangleright the calculation is historical...the data and pdf fits are much advanced

$$
\text { EHLQ gives... } \sigma \cdot \mathrm{BR}(W \rightarrow \ell v) \approx 2.2 \mathrm{nb}
$$

but, data and phenomenology deserve more attention than possible here...

hep-ph/0101051

\triangleright let's un-naive the W calculation for finite p_{T} and then for radiation:

everything goes through as before...

$$
\begin{aligned}
\frac{d \hat{\sigma}_{A}}{d \hat{t}} & =\left(\frac{2 \pi \alpha_{S}}{\hat{s}^{2}}\right)\left(\frac{G_{F} M_{W}^{2}}{4 \pi \sqrt{2}}\right) \frac{8}{9}\left(\frac{\hat{t}^{2}+\hat{u}^{2}+2 M_{W}^{2} \hat{s}}{\hat{t} \hat{u}}\right) \\
\frac{d \hat{\sigma}_{C}}{d \hat{t}} & =\left(\frac{2 \pi \alpha_{S}}{\hat{s}^{2}}\right)\left(\frac{G_{F} M_{W}^{2}}{4 \pi \sqrt{2}}\right) \frac{1}{3}\left(\frac{\hat{t}^{2}+\hat{s}^{2}+2 M_{W}^{2} \hat{u}}{-\hat{t} \hat{s}}\right)
\end{aligned}
$$

so that:

$$
\frac{d \sigma^{W^{ \pm}}}{d y d p_{T}^{2}}=\left(\frac{d \sigma^{W^{ \pm}}}{d y}\right)_{B}\left[\frac{4 \alpha_{S}}{3 \pi} \frac{1}{p_{T}^{2}} \ln \left(M_{W}^{2} / p_{T}^{2}\right) e^{-\frac{2 \alpha_{S}}{3 \pi} \ln \left(p_{T}^{2} / M_{W}^{2}\right)}\right]
$$

so, what's wrong with this?

\triangleright The Sudakov factor includes the exponentiation of

$$
\mathcal{S}(\theta)_{\mathrm{LDLA}}=1-\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(-\theta^{2} / 4\right)
$$

I dropped the power of 2 in the exponentiated form

$$
\frac{d \sigma}{d \tau d y d p_{T}^{2}}=\left(\frac{d \sigma}{d \tau d y}\right)_{B}\left[\frac{4 \alpha_{S}}{3 \pi} \frac{1}{p_{T}^{2}} \ln \left(Q^{2} / p_{T}^{2}\right) e^{-\frac{2 \alpha_{S}}{3 \pi} \ln ^{2}\left(p_{T}^{2} / Q^{2}\right)}\right]
$$

please put that in...the web will be correct...

