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QCD events in e+e- annihilations 

Perturbative hierarchy: 

2-jets (tree): αS
→ no QCD

3-jets (tree): αS
→ Leading order 

(LO) one loop
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Perturbative calculations 

• NLO:  αS [1980’s and 1990’s] 

→ 2-loop corrections to e+e- → 2 jets
→ all variables (MC integration programs)

• NLLA:  [1990’s]   Next-to-leading-log-approximation
→ summation of colinear terms to all orders in αS

• NLO+NLLA:  the standard at end of LEP data-taking (2000)

• NNLO:  αS → 3-loop corrections 
→ total e+e- → hadron cross section  [1990’s] 

→ Event shapes (Thrust, etc.)  [2007] 

• Current state-of-the-art :  NNLO + matched NLLA    [2008,…] 
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SPEAR
(1970’s)

PETRA & PEP
(1980’s)

LEP-1 & SLC
(1990’s)

LEP-2
(1990’s)

• SPEAR (SLAC) → Discovery of quark jets 

• PETRA (DESY) & PEP (SLAC): first high energy (> 10 GeV) jets
→ Discovery of gluon jets, many pioneering QCD studies

• LEP (CERN) and SLC (SLAC): 
→ Large energies [small αS → more reliable calculations, smaller had.

uncertainties]  ;  large data samples (~3x106 hadronic Z decays)
→ Precision tests of QCD
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e+e- accelerators & experiments 

TRISTAN
(1990’s) ECM
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Discovery of jets: SPEAR @ SLAC
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i ppSSphericity:

higher energies → particles cluster around an axis

→ first observation of jet structure

SLAC-LBL Collaboration, G. Hanson et al., PRL 35 (1975) 1609
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Discovery of gluon jets: PETRA @ DESY

TASSO, PLB86(1979)243; MARK-J PRL43(1979)830; PLUTO PLB86(1979)418; 
JADE PLB91(1980)142

Oblateness O = Tmajor – Tminor:

→ Events at ECM ~30 GeV exhibit
larger Oblateness (planar
structure) than models without
hard gluon radiation1st three-jet event seen by TASSO
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Monte Carlo event generators 

Essential :
• detector response
• hadronization effects
• sensitivity to physics

Principal programs: 
• Pythia (aka Jetset)

• Herwig
• Ariadne

Tuned: LEP-1 data
• global properties:

Thrust distr., ‹nch›
• identified particle 

rates & spectra
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Jetset/Pythia

→ Longitudinal phase space model

→ Analytic parametrizations for
momenta & particle species

Each segment hadronizes in its rest frame:

hadronization: 
→ the Lund String model
→ q-q terminate each

segment
→ color triplet fields

_
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Herwig

hadronization: 
→ the cluster model

→ use leading order color 
flow of pQCD to evolve   
partonic system to low
mass colorless clusters

→ 2-body isotropic phase 
space decay of clusters

→ No analytic parametrizations

→ Simpler and more intuitive than string fragmentation
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String vs. cluster hadronization

→ rules out simplest (purest) form of isotropic cluster decay

→ Herwig: introduce angular correlations between perturbatively
produced partons and the clusters that contain them → “string-like”

TPC (PEP), PRL 55 (1985) 1047 

ALEPH (LEP), Phys. Rep. 294 (1998) 1
cos θ* distribution 

of pp pairs:
_
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Jet algorithms 

Many QCD tests: group particles into 

Recombination ``cluster’’ algorithms
→ the most common choice for e+e- events

• Metric:                                       ;   s = ECMsMy ijij /2=
• combine particle pair ij with smallest ijy

jik ppp +=• E-scheme:    add 4-momenta  →  

• iterate until all pairs satisfy cutij yy >

• E0-scheme:  require jets to be massless    →
k

ji

ji
k E

pp
pp

p
|| 




+

+
=

jik EEE +=
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The JADE jet finder
JADE Collaboration (PETRA), Z. Phys. C33 (1986) 23

→ The original recombination jet algorithm

• Metric:                                                     (invariant mass)2 

• Original version: E0-scheme combination of particles
≈−= )cos1(22

ijjiij EEM θ

Can lead to “junk jets”:

→ a 2-jet event with soft, colinear radiation can be
classified, unnaturally, as a 3-jet event

→ Inhibits NLLA re-summation techniques (what is 2-jets
@ one order becomes >2-jets at higher order)    
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The kT (“Durham”)  jet finder
S. Catani et al., Phys. Lett. B269 (1991) 432

• Metric:                                                     

• E-scheme combination of particles
)cos1(),(min2 222

ijjiij EEM θ−=

For small emission angles       ,ijθ
22222222 ),(min)]2/1(1[),(min2 ⊥≈≈+−−≈ KEEEEM ijjiijjiij θθ 

→ smaller of the transverse momentum of i wrt j vs. j wrt i

→ soft colinear radiation is attached to the correct jet

→ Largely inhibits junk jets, allows resummation
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2-jet matrix element: Spin of the quark

(integrating over FB asymmetry)

dσ/dΩ ~ 1 + cos2θ
(spin ½)

~ sin2θ
(spin 0)

Matrix elements → Predictions for the energy &
angular distributions of jets
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Angle θthrust between thrust & beam axes
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Thrust axis:  
direction         that maximizes 
longitudinal momentum sum 

Tn

TASSO (PETRA)
1984: Sphericity axis

ALEPH Collab. (LEP), Phys. Rep. 294 (1998) 1

Limit of 
acceptance
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3-jet matrix element: Spin of the gluon
Example: SLD Collaboration (SLC), PR D55 (1997) 2533

• Select 3-jet events:  JADE jet finder with
→ 25% of events classified as 3-jet events

02.0=cuty

∑
=

=
3,1
sin/sin

i
iiCMi EE θθ

• Calculate jet energies: assume massless jets & E, p cons.

• Order by energy: E1 > E2 > E3
→ jet 3 is the gluon jet in 75% of the events (energy tagging)

• Scaled jet energies: CMii EEx /2=



vector
scalar
tensor
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Ellis-Karliner angle cosθEK = (x2-x3) / x1

J.Ellis & I. Karliner, Nucl. Phys. B148 (1979) 141

Scaled jet energies CMii EEx /2=

TASSO Collaboration (PETRA)
PL B97 (1980) 453

SLD (SLC), PR D55 (1997) 2533
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4-jet matrix element: triple-gluon vertex

• Select 4-jet events:  JADE jet finder with
→ 9% of events classified as 4-jet events

• Order jets by energy: E1 > E2 > E3 > E4
→ jets 3 & 4 more likely to be the radiated particles

02.0=cuty

Example: L3 Collaboration (LEP), PL B248 (1990) 227

versus 

• Bengtsson-Zerwas angle: χBZ
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Bengtsson-Zerwas angle χBZ

Abelian model U(1)3:
→ 3 quark colors
→ No 3-gluon coupling

4-jet angular structure sensitive 
to the gauge group structure of 
strong interactions

L3 (LEP), PL B248 (1990) 227

VENUS (Tristan), 
PRL 66 (1991) 280
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αS:  (1) Inclusive measurements

Inclusive:  independent of event shape (topology)

• Rl = Γ [Z → hadrons] / Γ (Z → l+l-) 

• σhad (Born-level peak hadronic cross section @ the Z)

• σlep = σhad / Rl (peak leptonic cross section @ the Z)

• Rτ = Γ[τ→hadrons] / Γ(τ→l+l-) 

→ based on event counting 
→ known to αS [1990’s]

→ small theoretical & experimental uncertainties
→ no hadronization corrections, etc.

→ reliable determination of αS

0

0 0

3
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Rl = Γ [Z → hadrons] / Γ (Z → l+l-)

versus
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+

2.5% precision
→ Experimental

uncertainties 
dominant

LEP combined:
(~ 12x106 Z events)  

0.00300.1189)(Mα ZS ±=

LEP & SLC 
Collabs., 
Phys. 
Rep. 427
(2006)257

0.0420.484α

0.0952α0.333αδ
3
s

2
sSQCD

≈+

+=

αS from Rl and σlep = σhad / Rl
0 0
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αS:  (2) Event shapes

Event shapes: the momentum structure of an event

→ 3-jet dominated;   one entry “y” per event;
leading terms ~ αS

+
• Thrust

• Jet broadening BW & BT ;   y23 ; Heavy jet mass MH, 
C parameter;  differ in higher order corrections

→ known to αS +NLLA   [1990’s; “final” LEP & SLC studies]

→ now known to αS +NLLA : recent & onging re-analyses

→ require hadronization corrections:  MC hadron/parton ratios

2

3
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Example: SLD Collaboration (SLC), PRD51 (1995) 962

(theor.)0.0070(expt.)0.00250.1192)(Mα ZS +±=

Solid:       experimental uncertainties
Dashed:  experimental + theory uncertainties
Shaded:  average αS and total uncertainty

→ 6% precision
→ uncertainty dominated by unknown 

higher order terms (dependence on
assumption for renormalization scale)

αS + NLLA studies2
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→ Re-analysis of ALEPH data   [G.Dissertori et al., JHEP 02(2008)040]

(theor.)0.0031(expt.)0.00130.1240)(Mα ZS +±= → 2.7% 
precision

New: αS calculations of event shapes3

[Gehrmann-De Ridder et al., JHEP 12(2007)094]

Renormalization scale uncertainty  reduced 30% wrt αS
2+NLLA 

ECM=91-
206 GeV)
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(theor.)0.0046(expt.)0.00210.1172)(Mα ZS +±=

Renormalization scale uncertainty  reduced 60% wrt αS
2+NLLA 

→ 4.3% 
precision

αS + NLLA studies3

αS + NLLA:  OPAL and ALEPH, in preparation3

→ αS + NLLA matching [Gehrmann et al., PL B664 (2008) 265]

→ Reanalysis of JADE data  [JADE Collab., arXiv:0810.1389 ]

3

ECM=14-
44 GeV)
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Color factors CF, CA, TF

CF, CA, TF measure the relative probabilities of

gluon radiation:
q → qg

triple gluon vertex:
g → gg

gluon splitting:
g → qq

CF = 4/3 CA = 3 TF = TR nf = ½nf =2.5

→ The gauge structure of strong interactions

→ The most important numbers in QCD besides αS !
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Angular correlations in 4-jet events

• kinematic factors, independent of gauge group:EA σσ 

• Angular observables “y”  differ for the three diagrams:  χBZ

• αS expressions   [Nagy & Trocsanyi, PRD57 (1998) 5793]
3

e+e-→ 4-jets @ αS (tree level): [K.Ellis, Ross & Terrano, NP B178 (1978) 421]2
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Color factors from event shapes
Example: S. Kluth et al. (JADE+LEP), EPJ C21 (2001) 199

Virtual terms in  ≥ O(αS
2) 2- and 3-jet cross sections  ~ CA, CF, TF

→ Thrust and C parameter to O(αS
2)+NLLA 

→ Simultaneously fit data from 14-189 GeV 
(PETRA, PEP, TRISTAN, LEP), use constraint on CA, CF from running αS

CA  = 2.84 ± 0.24   
CF  = 1.29 ± 0.18   

QCD
3

1.33

→  8% precision

→  14% precision
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Color factors from a combination 
of 4-jet events & event shapes

S. Kluth, Rept. Prog. Phys. 69 (2006) 1771

CA = 2.89 ± 0.21   
CF = 1.30 ± 0.09   →  7% precision for both CA & CF

QCD
3

1.33

→ Combine 4-jet and event
shape results, accounting
for correlations between
measurements

→ Include constraints on 
CA /CF from differences
between gluon & quark jets
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Differences between quark & gluon jets

Quark and gluon jets have different coupling strengths to 
emit gluons     → expressed by the color factors

CF=4/3 CA=NC=3

→ Naïve “asymptotic” expectation: 2.25
C
C

n
n

r
F

A

q

g
g/q ==

〉〈

〉〈
=

[Brodsky & Gunion, PRL37(1976)402; 
Veneziano et al., PLB78(1978)243]

→  Gluon jets have a larger multiplicity, softer fragmentation
function, and are broader, than quark jets 

→ Expect large differences, on order ~ 2
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Particle multiplicity difference: rG/Q
OPAL (LEP), ZPC58(1993)387

→  Algebraically solve for G and Q results: rG/Q = 1.25±0.04

Note:  rG/Q ≠ 2.25: the jets are biased (depend on a jet definition)
non-asymptotic, and the quarks not massless (20% b jets) 

2ndary vertex2400 events

→  Select 1-fold symmetric events (increase event statistics,
highest energy jet = q jet) :   “Y events”

→  KT jet finder, ycut=0.02 

→  Anti-tag the gluon jet from bbg events

65,000 events
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Unbiased G & Q jets: quantitative tests of QCD

QCD calculations → G & Q jets defined through pair production
from a color singlet (point) source

→  Jet properties given by inclusive sum over hemispheres

→  No jet algorithm dependence or ambiguity about which
(soft) particles to assign to the G and Q jets

→  Unbiased jets

Gluon jets: e.g.,
Υ→γgg decays

Quark jets: inclusive 
e+e- annihilations
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Unbiased high energy G jet

J.W. Gary, PRD 49 (1994) 4503

Gluon jet hemisphere “gincl” defined by all 
particles in hemisphere opposite to two 
tagged b (quark) jets

gincl properties same as a gg hemisphere, 
independent of jet finder → truly unbiased ! 

→ Gluon jet hemispheres in e+e- → Z → qtagqtagggincl events
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High energy G & Q jets: theory versus data

rG/Q = 1.51±0.04    (hadr. corr. ≈1)

OPAL (LEP), EPJC11(1999)217

→ Perfect agreement between theory & data 
[also for higher moments, OPAL, EPCJ1(1998)479]

→  CLEO Υ→γgg data too low in energy: non-perturbative
effects dominate
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Studies of the hadronization process

• String versus cluster models
→ cosθ∗ distribution of pp pairs 

[already discussed]

→ Baryon production in gluon jets

• The baryon production mechanism: diquarks or popcorn

• Color reconnection

• Octet neutralization of gluon jets
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Baryon production in gluon jets

Gluon jets in the Lund model  →  kinks on the string

Baryon 
production: 
diquarks

→ A gluon jet has 2 chances to acquire a leading baryon,
compared to only 1 chance for a quark jet

→ An enhancement of baryon production in gluon jets,
beyond the enhancement common to all particle species
due to the color factors
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Baryon production in gluon jets
DELPHI (LEP), EPJC17(2000)207

→ ~20% enhancement of protons in gluon jets beyond the 
~25% enhancement for all charged particles

→ No mechanism for this enhancement in the cluster model
→  Additional evidence against the simple cluster model

Rh = [‹nh›gluon/‹nh›quark] / [‹nch›gluon/‹nch›quark] 
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Baryon production mechanism

Lund string model: diquarks:

or “popcorn”:

Popcorn  model → looser
correlations in phase space
(rapidity) than for diquarks

TPC, OPAL, ALEPH, DELPHI (1985-2000):

→   ΛΛ & pp rapidity correlations
→  need popcorn at > 50% level

but sensitivity not strong

OPAL (LEP), PLB305(1993)415  

ΛΛ 
correlations
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Baryon production mechanism

OPAL (2009)  [awaiting CERN-PH-EP preprint number]: 

→  Delphi study of R versus ∆ymin also insensitive;
[popcorn model also describes data  to within ~ 2σ if the diquark
fragmentation function parameter PARJ(45) is varied]

→  Rapidity differences too model dependent

→  Previous studies insensitive;
diquark model strongly favored

→  R = NpMp / [Npp + NpMp] vs. ∆ymin

DELPHI  (LEP) PLB480(2000)61:
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Baryon production mechanism

OPAL (2009), CERN-PH-EP XXX 

→ use pure quantum number correlations

→  Σ- more likely to  be compensated by 

in diquark model

→  measure

−− ΞΣΛ ,,
−−−−− ++=

Ξ,ΣΣ,ΣΛ,Σ FFFF

Data MC (0.0) MC (0.5) MC (0.67) MC (0.91)

F 0.48±0.10 0.87 0.79 0.73 0.55

‹∆y› for ΛΛ 0.71±0.04 0.66 0.69 0.67 0.75

popcorn fraction

• MC’s: search parameter space, choose set with best χ2

• Pure diquark model disfavored with 3.8 σ significance

d,s → −− ΞΣ ,
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Summary

• e+e- unrivaled in simplicity
→ clear, unique & varied results

• Discovery of quark jets

• Discovery of gluon jets

• First precise measurements of αS and the color factors

• First observations of gluon & quark jet differences

• Uniquely sensitive probes of the hadronization process

• Provides tuning for the MCs
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