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1. From Color to QCD
q

q

q

?

?
?
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• Enter the Gluon

• If φq/H(x) = probability to find q with momentum xp,

• then,

Mq =
∑
q

∫ 1
0 dx x φq/H(x) = total fraction of momentum

carried by quarks.

• Experiment gave

Mq ∼ 1/2

• What else? Quanta of force field that holds H together?

• ‘Gluons’ – but what are they?
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• Where color comes from.

• Quark model problem:

– sq = 1/2 ⇒ fermion ⇒ antisymmetric wave function, but

– (uud) state symmetric in spin/isospin combination for nu-
cleons and

– Expect the lowest-lying ψ(~xm, ~x
′
u, ~xd) to be symmetric

– So where is the antisymmetry?

• Solution: Han Nambu, Greenberg, 1968: Color

• b, g, r, a new quantum number.

• Here’s the antisymmetry: εijkψ(~xu, ~x
′
u, ~xd), (i,j,k)= (b,g,r)
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• Quantum Chromodynamics: Dynamics of Color

• A globe with no north pole

G
r

b

g

gb

• Position on ‘hyperglobe’ ↔ phase of wave function
(Yang & Mills, 1954)

• We can change the globe’s axes at different points in space-
time, and ‘local rotation’ ↔ emission of a gluon.

• QCD: gluons coupled to the color of quarks
(Gross & Wilczek; Weinberg; Fritzsch, Gell-Mann, Leutwyler, 1973)
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2. Field Theory Essentials

• Fields and Lagrange Density for QCD

• qf(x), f = u, d, c, s, t, b: Dirac fermions (like electron) but
extra (i, j, k) =(b, g, r) quantum number.

•Aµa(x) Vector field (like photon) but with extra a ∼ (gb̄ . . .)
quantum no. (octet).

• L specifies quark-gluon, gluon-gluon propagators and
interactions.

L =
∑
f
q̄f

([
i∂µ − gAµaTa

]
γµ −mf

)
qf −

1

4

(
∂µAνa − ∂νAµa

)2

−
g

2

(
∂µAνa − ∂νAµa

)
CabcA

µ
bA

ν
c

−
g2

4
CabcA

µ
bA

ν
cCadeAµdAνe

5



From a Lagrange density to observables, the pattern:

Lagrangian

Fields Symmetries

Perturbation Theory Rules

Green Functions

S - Matrix

Cross Sections

Observables

Renormalization
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• UV Divergences (toward renormalization & the renormaliza-
tion group)

• Use as an example

Lφ4 =
1

2

∂µφ)2 −m2φ2
 −

λ

4!
φ4

• The “four-point Green function”:

M(s,t) =
1

2

3

4

1
1 1

2
2 2

3

3
3

4
4

4+ ++

+ . . .

∫ ∞ d4k

(k2 −m2)((p1 + p2 − k)2 −m2)
∼

∫ ∞ d4k

(k2)2
⇒ ∞
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Interpretation: The UV divergence is due entirely states of
high ‘energy deficit’,

Ein − Estate S = p0
1 + p0

2 − ∑
i ∈S

√√√√~k2
i −m2

Made explicit in Time-ordered Perturbation Theory:

1

2

3

4

=

1

2

3

4

1

2

3

4

+

E E
E E

1in
in 1E

out

E
out

∫ ∞ d4k

(k2 −m2)((p1 + p2 − k)2 −m2)
=

∑
states

 1

Ein − E1

+
1

Ein − E′
1



Analogy to uncertainty principle ∆E → ∞ ⇔ ∆t → 0.
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• This suggests: UV divergences are ‘local’ and can be absorbed
into the local Lagrange density. Renormalization.

• For our full 4-point Green function, two new “counterterms”:

M (s,t) =
ren

1

2

3

4

1

2

3

4

1 1

2 2

3

3

4

4+ ++

+ + ++

+ + ++

+ δλ

δm

counterterm

counterterm

The renormalized 4-point function:

• The combination is supposed to be finite.
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• How to choose them? This is the renormalization “scheme”

1

2

3

4

++ + !" = finite

+

!m

= 0 (only natural choice)

{{{

Renormalization:

But what should we choose for these?

A B C D

• For example: define A+B+C b cutting off ∫ d4k at k2 = Λ2

(regularization). Then

A+B + C = a ln
Λ2

s
+ b(s, t, u,m2)
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• Now choose:

D = − a ln
Λ2

µ2

so that

A+B + C +D = a ln
µ2

s
+ b(s, t, u,m2)

independent of Λ.

• Criterion for choosing µ is a “renormalization scheme”:
MOM scheme: µ = s0, some point in momentum space.
MS scheme: same µ for all diagrams, momenta

• But the value of µ is still arbitrary. µ = renormalization scale.

• Modern view (Wilson) We hide our ignorance of the true
high-E behavior.

• All current theories are “effective” theories with the same
low-energy behavior as the true theory.
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• µ-dependence is the price we pay for working with an effective
theory: The Renormalization Group

• As µ changes, mass m and coupling g have to change:
m = m(µ) g = g(µ) “renormalized” but . . .

• Physical quantities can’t depend on µ:

µ
d

dµ
σ


sij

µ2
,
m2

µ2
, g(µ), µ

 = 0

• The ‘group’ is just the set of all changes in µ.

• ‘RG’ equation (Mass dimension [σ] = dσ):
µ
∂

∂µ
+ µ

∂g

∂µ

∂

∂g
+ µ

∂m

∂µ

∂

∂m
+ dσ

σ

sij

µ2
,
m2

µ2
, g(µ), µ

 = 0

The beta function : β(g) ≡ µ
∂g(µ)

∂µ
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• The Running coupling

• Consider any σ (m = 0, dσ = 0):

µ
dσ

dµ
= 0 → µ

∂σ

∂µ
= −β(g)

∂σ

∂g
(1)

• in PT:

σ = g2(µ)σ(1) + g4(µ)

σ(2)

sij

skl

 + τ (2) ln
s12

µ2

 + . . . (2)

• (2) in (1) →

g4τ (2) = 2gσ(1)β(g) + . . .

β(g) =
g3

2

τ (2)

σ(1)
+ O(g5) ≡ −

g3

16π2
β0 + O(g5)

• In QCD:

β0 = 11 −
2nf

3

• −β0 < 0 → g decreases as µ increases.
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• Asymptotic Freedom: Solution for the QCD coupling

µ
∂g

∂µ
= −g3 β0

16π2

dg

g3
= −

β0

16π2

dµ

µ

1

g2(µ2)
−

1

g2(µ1)
= −

β0

16π2
ln
µ2

µ1

g2(µ2) =
g2(µ1)

1 + β0
16π2g

2(µ1) ln µ2
µ1

• Vanishes for µ2 → ∞. Equivalently,

αs(µ
2
2) ≡

g2(µ2
2)

4π
=

αs(µ1)

1 + β0
4παs(µ1) ln µ2

µ1
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• Dimensional transmutation: ΛQCD

– Two mass scales appear in

αs(µ
2
2) =

αs(µ1)

1 + β0
4παs(µ1) ln µ2

µ1

but the value of αs(µ2) can’t depend on choice of µ1.

– Reduce it to one by defining Λ ≡ µ1 e
−β0/αs(µ1), indepen-

dent of µ1. Then

αs(µ
2
2) =

4π

β0 ln µ2
Λ2

• Asymptotic freedom strongly suggests a relationship to the
parton model, in which partons act as if free at short dis-
tances. But how to quantify this observation?
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3. Infrared Safety

• To use perturbation theory, would like to choose µ ‘as large
as possible to make αs(µ) as small as possible.

• But how small is possible?

• A “typical” cross section, , define Q2 = s12 and xij =

sij/Q
2,

σ


Q2

µ2
, xij,

m2
i

µ2
, αs(µ), µ

 =
∞∑
n=1

an


Q2

µ2
, xij,

m2
i

µ2

 α
n
s (µ)

with m2
i all fixed masses – external, quark, gluon (=0!)

• Generically, the an depend logarithmically on their arguments,
so a choice of large µ results in large logs of m2

i/µ
2.
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• But if we could find quantities that depend on m′
is only

through powers, (mi/µ)p, p > 0, the large-µ limit would
exist.

σ


Q2

µ2
, xij,

m2
i

µ2
, αs(Q), µ

 = σ


Q

µ
, xij,

m2
i

µ2
, αs(µ), µ



=
∞∑
n=1

an


Q

µ
, xij

 αns (µ) + O



m2
i

µ2


p

• Such quantities are called infrared (IR) safe.

• Measure σ → solve for αs. Allows observation of the running
coupling.

• Most pQCD is the computation of IR safe quantities.
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• Consistency of αs(µ) found as above at various momentum
scales
(Particle Data Group)

0

0.1

0.2

0.3

1 10 10
2

µ GeV

α
s(
µ

)

0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

τ decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

Υ decay

e+e- rates

αs(MZ)

• To find IR safe quantities, need to understand where the low-
mass logs come from.
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• To analyze diagrams, we generally think of m → 0 limit in
m/Q.

• Generic source of IR (soft and collinear) logarithms:

p

αp

• IR logs come from degenerate states:
Uncertainty principle ∆E → 0 ⇔ ∆t → ∞.

• For soft emission and collinear splitting it’s “never too late”.
But these processes don’t change the flow of energy . . . The
problem is asking for particle content.
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• For IR safety, sum over degenerate final states in perturbation
theory, and see what the sum is. This requires us to introduce
another regularization, this time for IR behavior.

• The IR regulated theory is like QCD at short distances, but
is better-behaved at long distances.

IR-regulated QCD not the same as QCD except for IR safe
quantities.
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• See how it works for the total e+e− annihilation cross section
to order αs. Lowest order is 2 → 2, σ

(0)
2 ≡ σ0, σ3 starts at

order αs.

– Gluon mass regularization: 1/k2 → 1/(k2 −mG)2

σ
(mG)
3 = σ0

4

3

αs

π

2 ln2 Q

mg
− 3 lnQmg −

π2

6
+

5

2



σ
(mG)
2 = σ0

1 −
4

3

αs

π

2 ln2 Q

mg
− 3 ln

Q

mg
−
π2

6
+

7

4





which gives

σtot = σ
(mG)
2 + σ

(mG)
3 = σ0

1 +
αs

π



– Pretty simple! (Cancellation of virtual (σ2) and real (σ3) gluon diagrams.)
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– Dimensional regularization: change the area of the sphere

from 4πR2 to (4π)(1−ε) Γ(1−ε)
Γ(2(1−ε))R

2−2ε with ε = 2−D/2
in D dimensions.

σ
(ε)
3 = σ0

4

3

αs

π


(1 − ε)2

(3 − 2ε)Γ(2 − 2ε)




4πµ2

Q2


ε

×

1

ε2
−

3

2ε
−
π2

2
+

19

4



σ
(ε)
2 = σ0 [1 −

4

3

αs

π


(1 − ε)2

(3 − 2ε)Γ(2 − 2ε)




4πµ2

Q2


ε

×


1

ε2
−

3

2ε
−
π2

2
+ 4

 ]

which gives again

σtot = σ
(mG)
2 + σ

(mG)
3 = σ0

1 +
αs

π



• This illustrates IR Safety: σ2 and σ3 depend on regulator,
but their sum does not.
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• Generalized IR safety: sum over all states with the same
flow of energy into the final state. Introduce IR safe weight
“e({pi})”

dσ

de
=

∑
n

∫
PS(n) |M({pi})|2δ (e({pi}) − w)

with

e(. . . pi . . . pj−1, αpi, pj+1 . . .) =

e(. . . (1 + α)pi . . . pj−1, pj+1 . . .)

• Neglect long times in the initial state for the moment and
see how this works in e+e− annihilation: event shapes and
jet cross sections.
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• “Seeing” Quarks and Gluons With Jet Cross Sections

• Simplest example: cone jets in e+e− annihilation
!

"Q

• Intuition: eliminating long-time behavior ⇔ recognize the
impossibility of resolving collinear splitting/recombination of
massless particles

• No factors Q/m or ln(Q/m) Infrared Safety.
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• In this case,

σ2J(Q, δ, ε) =
3

8
σ0(1 + cos2 θ)

×
1 −

4αs

π

4 ln δ ln ε+ 3 ln δ +
π2

3
+

5

2





• Perfect for QCD: asymptotic freedom → dαs(Q)/dQ < 0.

• No unique jet definition. ↔ Each event a sum of possible
histories.

• Relation to quarks and gluons always approximate but correc-
tions to the approximation computable.
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• The general form of a jet cross section:

σjet = σ0
∞∑
n=0

cn(yi, N,CF )αns (Q)

• Choices for yi: δ, Ωjet, T, ycut, . . .

• δ, cone size; Ω, jet direction

• Shape Variable, e.g. thrust (T = 1 for “back-to-back” jets

T =
1

s
maxn̂

∑
i
|n̂ · ~pi|

• ycut Cluster Algorithm: yij > ycut,

yij = 2min
E2
i , E

2
j

 (
1 − cos θij

)
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Summarize: what makes a cross section infrared safe?

• Independence of long-time interactions:

p

αp

More specifically: should depend on only the flow of energy
into the final state. This implies independence of collinear
re-arrangements and soft parton emisssion.

But if we prepare one or two particles in the initial state (as in
DIS or proton-proton scattering), we will always be sensitive
to long time behavior inside these particles. The parton model
suggests what to do: factorize. This is the subject of Part III.
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