Introduction to the Parton Model and Pertrubative QCD

George Sterman, YITP, Stony Brook
CTEQ summer school, May 30, 2007
U. of Wisconsin, Madison
II. From the Parton Model to QCD

1. Color and QCD
2. Field Theory Essentials
3. Infrared Safety
4. From Color to QCD

- Enter the Gluon
- If $\phi_{q / H^{(}}(x)=$ probability to find q with momentum $x p$,
- then,

$$
M_{q}=\sum_{q} \int_{0}^{1} d x x \phi_{q / H}(x)=\begin{gathered}
\text { total fraction of momentum } \\
\text { carried by quarks. }
\end{gathered}
$$

- Experiment gave

$$
M_{q} \sim 1 / 2
$$

- What else? Quanta of force field that holds H together?
- 'Gluons' - but what are they?
- Where color comes from.
- Quark model problem:
$-s_{q}=1 / 2 \Rightarrow$ fermion \Rightarrow antisymmetric wave function, but
- (uud) state symmetric in spin/isospin combination for nucleons and
- Expect the lowest-lying $\psi\left(\vec{x}_{m}, \vec{x}_{u}^{\prime}, \vec{x}_{d}\right)$ to be symmetric
- So where is the antisymmetry?
- Solution: Han Nambu, Greenberg, 1968: Color
- b, g, r, a new quantum number.
- Here's the antisymmetry: $\epsilon_{i j k} \psi\left(\vec{x}_{u}, \vec{x}_{u}^{\prime}, \vec{x}_{d}\right),(\mathrm{i}, \mathrm{j}, \mathrm{k})=(\mathrm{b}, \mathrm{g}, \mathrm{r})$
- Quantum Chromodynamics: Dynamics of Color
- A globe with no north pole

- Position on 'hyperglobe’ \leftrightarrow phase of wave function (Yang \& Mills, 1954)
- We can change the globe's axes at different points in spacetime, and 'local rotation' \leftrightarrow emission of a gluon.
- QCD: gluons coupled to the color of quarks
(Gross \& Wilczek; Weinberg; Fritzsch, Gell-Mann, Leutwyler, 1973)

2. Field Theory Essentials

- Fields and Lagrange Density for QCD
- $q_{f}(x), f=u, d, c, s, t, b$: Dirac fermions (like electron) but extra $(i, j, k)=(b, g, r)$ quantum number.
- $A_{a}^{\mu}(x)$ Vector field (like photon) but with extra $a \sim(g \bar{b} \ldots)$ quantum no. (octet).
- \mathcal{L} specifies quark-gluon, gluon-gluon propagators and interactions.

$$
\begin{aligned}
\mathcal{L}=\sum_{f} & \bar{q}_{f}\left(\left[\boldsymbol{i} \partial_{\mu}-\boldsymbol{g} A_{\mu a} \boldsymbol{T}_{a}\right] \gamma^{\mu}-\boldsymbol{m}_{\boldsymbol{f}}\right) \boldsymbol{q}_{f}-\frac{1}{4}\left(\partial_{\mu} A_{\nu a}-\partial_{\nu} A_{\mu a}\right)^{2} \\
& -\frac{g}{2}\left(\partial_{\mu} A_{\nu a}-\partial_{\nu} A_{\mu a}\right) C_{a b c} A_{b}^{\mu} A_{c}^{\nu} \\
& -\frac{g^{2}}{4} C_{a b c} A_{b}^{\mu} A_{c}^{\nu} C_{a d e} A_{\mu d} A_{\nu e}
\end{aligned}
$$

From a Lagrange density to observables, the pattern:

- UV Divergences (toward renormalization \& the renormalization group)
- Use as an example

$$
\left.\mathcal{L}_{\phi^{4}}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-m^{2} \phi^{2}\right)-\frac{\lambda}{4!} \phi^{4}
$$

- The "four-point Green function":

$$
\begin{aligned}
& M(\mathrm{~s}, \mathrm{t})={ }_{2}^{1} X_{4}^{3}+{\underset{2}{2}}_{2}^{3}+\bigcup_{2}^{1} X_{4}^{3}+\bigcup_{2}^{1}{ }_{3}^{4} \\
& \int^{\infty} \frac{d^{4} k}{\left(k^{2}-m^{2}\right)\left(\left(p_{1}+p_{2}-k\right)^{2}-m^{2}\right)} \sim \rho^{\infty} \frac{d^{4} k}{\left(k^{2}\right)^{2}} \Rightarrow \infty
\end{aligned}
$$

Interpretation: The UV divergence is due entirely states of high 'energy deficit',

$$
E_{\text {in }}-E_{\text {state S }}=p_{1}^{0}+p_{2}^{0}-\underset{i}{\sum} \sqrt{\sum_{S}} \sqrt{\vec{k}_{i}^{2}-m^{2}}
$$

Made explicit in Time-ordered Perturbation Theory:

Analogy to uncertainty principle $\Delta E \rightarrow \infty \Leftrightarrow \Delta t \rightarrow 0$.

- This suggests: UV divergences are 'local’ and can be absorbed into the local Lagrange density. Renormalization.
- For our full 4-point Green function, two new "counterterms":
The renormalized 4-point function:

- The combination is supposed to be finite.
- How to choose them? This is the renormalization "scheme"

Renormalization:

$$
\begin{aligned}
& \mathbb{X}+\dot{\chi m}=0 \text { (only natural choice) } \\
& { }_{2}^{1} \alpha_{4}^{3}+\gamma+\dot{Y}+\lambda \delta \lambda=\text { finite }
\end{aligned}
$$

But what should we choose for these?

$$
\begin{array}{cccc}
A & B & C & D
\end{array}
$$

- For example: define $\mathrm{A}+\mathrm{B}+\mathrm{C}$ b cutting off $d^{4} k$ at $k^{2}=\Lambda^{2}$ (regularization). Then

$$
A+B+C=a \ln \frac{\Lambda^{2}}{s}+b\left(s, t, u, m^{2}\right)
$$

- Now choose:

$$
D=-a \ln \frac{\Lambda^{2}}{\mu^{2}}
$$

so that

$$
A+B+C+D=a \ln \frac{\mu^{2}}{s}+b\left(s, t, u, m^{2}\right)
$$

independent of Λ.

- Criterion for choosing μ is a "renormalization scheme": MOM scheme: $\mu=s_{0}$, some point in momentum space. MS scheme: same μ for all diagrams, momenta
- But the value of μ is still arbitrary. $\mu=$ renormalization scale.
- Modern view (Wilson) We hide our ignorance of the true high- E behavior.
- All current theories are "effective" theories with the same low-energy behavior as the true theory.
- μ-dependence is the price we pay for working with an effective theory: The Renormalization Group
- As μ changes, mass m and coupling g have to change: $m=m(\mu) g=g(\mu) \quad$ "renormalized" but...
- Physical quantities can't depend on μ :

$$
\mu \frac{d}{d \mu} \sigma\left(\frac{s_{i j}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, g(\mu), \mu\right)=0
$$

- The 'group' is just the set of all changes in μ.
- 'RG' equation (Mass dimension $[\sigma]=d_{\sigma}$):

$$
\left(\mu \frac{\partial}{\partial \mu}+\mu \frac{\partial g}{\partial \mu} \frac{\partial}{\partial g}+\mu \frac{\partial m}{\partial \mu} \frac{\partial}{\partial m}+d_{\sigma}\right) \sigma\left(\frac{s_{i j}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}, g(\mu), \mu\right)=0
$$

The beta function : $\quad \beta(g) \equiv \mu \frac{\partial g(\mu)}{\partial \mu}$

- The Running coupling
- Consider any $\sigma\left(m=0, d_{\sigma}=0\right)$:

$$
\begin{equation*}
\mu \frac{d \sigma}{d \mu}=0 \quad \rightarrow \quad \mu \frac{\partial \sigma}{\partial \mu}=-\beta(g) \frac{\partial \sigma}{\partial g} \tag{1}
\end{equation*}
$$

- in PT:

$$
\begin{equation*}
\sigma=g^{2}(\mu) \sigma^{(1)}+g^{4}(\mu)\left[\sigma^{(2)}\left(\frac{s_{i j}}{s_{k l}}\right)+\tau^{(2)} \ln \frac{s_{12}}{\mu^{2}}\right]+\ldots \tag{2}
\end{equation*}
$$

- (2) in (1) \rightarrow

$$
\begin{aligned}
g^{4} \tau^{(2)} & =2 g \sigma^{(1)} \beta(g)+\ldots \\
\beta(g) & =\frac{g^{3} \tau^{(2)}}{2} \frac{\sigma^{(1)}}{\sigma^{(1)}}+\mathcal{O}\left(g^{5}\right) \equiv-\frac{g^{3}}{16 \pi^{2}} \beta_{0}+\mathcal{O}\left(g^{5}\right)
\end{aligned}
$$

- In QCD:

$$
\beta_{0}=11-\frac{2 n_{f}}{3}
$$

- $-\beta_{0}<0 \rightarrow g$ decreases as μ increases.
- Asymptotic Freedom: Solution for the QCD coupling

$$
\begin{aligned}
\mu \frac{\partial g}{\partial \mu} & =-g^{3} \frac{\beta_{0}}{16 \pi^{2}} \\
\frac{d g}{g^{3}} & =-\frac{\beta_{0}}{16 \pi^{2}} \frac{d \mu}{\mu} \\
\frac{1}{g^{2}\left(\mu_{2}\right)}-\frac{1}{g^{2}\left(\mu_{1}\right)} & =-\frac{\beta_{0}}{16 \pi^{2}} \ln \frac{\mu_{2}}{\mu_{1}} \\
g^{2}\left(\mu_{2}\right) & =\frac{g^{2}\left(\mu_{1}\right)}{1+\frac{\beta_{0}}{16 \pi^{2}} g^{2}\left(\mu_{1}\right) \ln \frac{\mu_{2}}{\mu_{1}}}
\end{aligned}
$$

- Vanishes for $\mu_{2} \rightarrow \infty$. Equivalently,

$$
\alpha_{s}\left(\mu_{2}^{2}\right) \equiv \frac{g^{2}\left(\mu_{2}^{2}\right)}{4 \pi}=\frac{\alpha_{s}\left(\mu_{1}\right)}{1+\frac{\beta_{0}}{4 \pi} \alpha_{s}\left(\mu_{1}\right) \ln \frac{\mu_{2}}{\mu_{1}}}
$$

- Dimensional transmutation: Λ_{QCD}
- Two mass scales appear in

$$
\alpha_{s}\left(\mu_{2}^{2}\right)=\frac{\alpha_{s}\left(\mu_{1}\right)}{1+\frac{\beta_{0}}{4 \pi} \alpha_{s}\left(\mu_{1}\right) \ln { }_{\mu_{1}}^{\mu_{2}}}
$$

but the value of $\alpha_{s}\left(\mu_{2}\right)$ can't depend on choice of μ_{1}.

- Reduce it to one by defining $\Lambda \equiv \mu_{1} e^{-\beta_{0} / \alpha_{s}\left(\mu_{1}\right)}$, independent of μ_{1}. Then

$$
\alpha_{s}\left(\mu_{2}^{2}\right)=\frac{4 \pi}{\beta_{0} \ln \frac{\mu_{2}}{\mu^{2}}}
$$

- Asymptotic freedom strongly suggests a relationship to the parton model, in which partons act as if free at short distances. But how to quantify this observation?

3. Infrared Safety

- To use perturbation theory, would like to choose μ 'as large as possible to make $\alpha_{s}(\mu)$ as small as possible.
- But how small is possible?
- A "typical" cross section, , define $Q^{2}=s_{12}$ and $x_{i j}=$ $s_{i j} / Q^{2}$,

$$
\sigma\left(\frac{Q^{2}}{\mu^{2}}, x_{i j}, \frac{m_{i}^{2}}{\mu^{2}}, \alpha_{s}(\mu), \mu\right)=\sum_{n=1}^{\infty} a_{n}\left(\frac{Q^{2}}{\mu^{2}}, x_{i j}, \frac{m_{i}^{2}}{\mu^{2}}\right) \alpha_{s}^{n}(\mu)
$$

with m_{i}^{2} all fixed masses - external, quark, gluon $(=0$!)

- Generically, the a_{n} depend logarithmically on their arguments, so a choice of large μ results in large logs of m_{i}^{2} / μ^{2}.
- But if we could find quantities that depend on $m_{i}^{\prime} s$ only through powers, $\left(m_{i} / \mu\right)^{p}, p>0$, the large- μ limit would exist.

$$
\begin{aligned}
\sigma\left(\frac{Q^{2}}{\mu^{2}}, x_{i j}, \frac{m_{i}^{2}}{\mu^{2}}, \alpha_{s}(Q), \mu\right) & =\sigma\left(\frac{Q}{\mu}, x_{i j}, \frac{m_{i}^{2}}{\mu^{2}}, \alpha_{s}(\mu), \mu\right) \\
& =\sum_{n=1}^{\infty} a_{n}\left(\frac{Q}{\mu}, x_{i j}\right) \alpha_{s}^{n}(\mu)+\mathcal{O}\left(\left[\frac{m_{i}^{2}}{\mu^{2}}\right]^{p}\right)
\end{aligned}
$$

- Such quantities are called infrared (IR) safe.
- Measure $\sigma \rightarrow$ solve for α_{s}. Allows observation of the running coupling.
- Most pQCD is the computation of IR safe quantities.
- Consistency of $\alpha_{s}(\mu)$ found as above at various momentum scales
(Particle Data Group)

- To find IR safe quantities, need to understand where the lowmass logs come from.
- To analyze diagrams, we generally think of $m \rightarrow 0$ limit in m / Q.
- Generic source of IR (soft and collinear) logarithms:

- IR logs come from degenerate states: Uncertainty principle $\Delta E \rightarrow 0 \Leftrightarrow \Delta t \rightarrow \infty$.
- For soft emission and collinear splitting it's "never too late". But these processes don't change the flow of energy ... The problem is asking for particle content.
- For IR safety, sum over degenerate final states in perturbation theory, and see what the sum is. This requires us to introduce another regularization, this time for IR behavior.
- The IR regulated theory is like QCD at short distances, but is better-behaved at long distances.
IR-regulated QCD not the same as QCD except for IR safe quantities.
- See how it works for the total $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation cross section to order α_{s}. Lowest order is $2 \rightarrow 2, \sigma_{2}^{(0)} \equiv \sigma_{0}, \sigma_{3}$ starts at order α_{s}.
- Gluon mass regularization: $1 / k^{2} \rightarrow 1 /\left(k^{2}-m_{G}\right)^{2}$

$$
\begin{aligned}
\sigma_{3}^{\left(m_{G}\right)} & =\sigma_{0} \frac{4 \alpha_{s}}{3}\left(2 \ln ^{2} \frac{Q}{m_{g}}-3 \ln Q m_{g}-\frac{\pi^{2}}{6}+\frac{5}{2}\right) \\
\sigma_{2}^{\left(m_{G}\right)} & =\sigma_{0}\left[1-\frac{4 \alpha_{s}}{3} \pi\left(2 \ln ^{2} \frac{Q}{m_{g}}-3 \ln \frac{Q}{m_{g}}-\frac{\pi^{2}}{6}+\frac{7}{4}\right)\right]
\end{aligned}
$$

which gives

$$
\sigma_{\mathrm{tot}}=\sigma_{2}^{\left(m_{G}\right)}+\sigma_{3}^{\left(m_{G}\right)}=\sigma_{0}\left[1+\frac{\alpha_{s}}{\pi}\right]
$$

- Pretty simple! (Cancellation of virtual (σ_{2}) and real (σ_{3}) gluon diagrams.)
- Dimensional regularization: change the area of the sphere from $4 \pi R^{2}$ to $(4 \pi)^{(1-\varepsilon)} \frac{\Gamma(1-\varepsilon)}{\Gamma(2(1-\varepsilon))} R^{2-2 \varepsilon}$ with $\varepsilon=2-D / 2$ in D dimensions.

$$
\begin{aligned}
\sigma_{3}^{(\varepsilon)}= & \sigma_{0} \frac{4 \alpha_{s}}{3}\left(\frac{(1-\varepsilon)^{2}}{(3-2 \varepsilon) \Gamma(2-2 \varepsilon)}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon} \\
& \times\left(\frac{1}{\varepsilon^{2}}-\frac{3}{2 \varepsilon}-\frac{\pi^{2}}{2}+\frac{19}{4}\right) \\
\sigma_{2}^{(\varepsilon)}= & \sigma_{0}\left[1-\frac{4}{3} \frac{\alpha_{s}}{\pi}\left(\frac{(1-\varepsilon)^{2}}{(3-2 \varepsilon) \Gamma(2-2 \varepsilon)}\right)\left(\frac{4 \pi \mu^{2}}{Q^{2}}\right)^{\varepsilon}\right. \\
& \left.\times\left(\frac{1}{\varepsilon^{2}}-\frac{3}{2 \varepsilon}-\frac{\pi^{2}}{2}+4\right)\right]
\end{aligned}
$$

which gives again

$$
\sigma_{\mathrm{tot}}=\sigma_{2}^{\left(m_{G}\right)}+\sigma_{3}^{\left(m_{G}\right)}=\sigma_{0}\left[1+\frac{\alpha_{s}}{\pi}\right]
$$

- This illustrates IR Safety: σ_{2} and σ_{3} depend on regulator, but their sum does not.
- Generalized IR safety: sum over all states with the same flow of energy into the final state. Introduce $I R$ safe weight "e(\{ $\left.\left.p_{i}\right\}\right)$ "

$$
\frac{d \sigma}{d e}=\sum_{n} \int_{P S(n)}\left|M\left(\left\{p_{i}\right\}\right)\right|^{2} \delta\left(e\left(\left\{p_{i}\right\}\right)-w\right)
$$

with

$$
\begin{aligned}
& e\left(\ldots p_{i} \ldots p_{j-1}, \alpha p_{i}, p_{j+1} \ldots\right)= \\
& \quad e\left(\ldots(1+\alpha) p_{i} \ldots p_{j-1}, p_{j+1} \ldots\right)
\end{aligned}
$$

- Neglect long times in the initial state for the moment and see how this works in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation: event shapes and jet cross sections.
- "Seeing" Quarks and Gluons With Jet Cross Sections
- Simplest example: cone jets in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation

- Intuition: eliminating long-time behavior \Leftrightarrow recognize the impossibility of resolving collinear splitting/recombination of massless particles
- No factors Q / m or $\ln (Q / m)$ Infrared Safety.
- In this case,

$$
\begin{aligned}
\sigma_{2 J}(Q, \delta, \epsilon)= & \frac{3}{8} \sigma_{0}\left(1+\cos ^{2} \theta\right) \\
& \times\left(1-\frac{4 \alpha_{s}}{\pi}\left[4 \ln \delta \ln \epsilon+3 \ln \delta+\frac{\pi^{2}}{3}+\frac{5}{2}\right]\right)
\end{aligned}
$$

- Perfect for QCD: asymptotic freedom $\rightarrow d \alpha_{s}(Q) / d Q<0$.
- No unique jet definition. \leftrightarrow Each event a sum of possible histories.
- Relation to quarks and gluons always approximate but corrections to the approximation computable.
- The general form of a jet cross section:

$$
\sigma_{\mathrm{jet}}=\sigma_{0} \sum_{n=0}^{\infty} c_{n}\left(y_{i}, N, C_{F}\right) \alpha_{s}^{n}(Q)
$$

- Choices for $y_{i}: \delta, \Omega_{\mathrm{jet}}, T, y_{\mathrm{cut}}, \ldots$
- δ, cone size; Ω, jet direction
- Shape Variable, e.g. thrust ($T=1$ for "back-to-back" jets

$$
T=\frac{1}{s} \max _{\hat{n}} \sum_{i}\left|\hat{n} \cdot \vec{p}_{i}\right|
$$

- $y_{\text {cut }}$ Cluster Algorithm: $y_{i j}>y_{\text {cut }}$,

$$
y_{i j}=2 \min \left(E_{i}^{2}, E_{j}^{2}\right)\left(1-\cos \theta_{i j}\right)
$$

Summarize: what makes a cross section infrared safe?

- Independence of long-time interactions:

More specifically: should depend on only the flow of energy into the final state. This implies independence of collinear re-arrangements and soft parton emisssion.
But if we prepare one or two particles in the initial state (as in DIS or proton-proton scattering), we will always be sensitive to long time behavior inside these particles. The parton model suggests what to do: factorize. This is the subject of Part III.

