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1. Factorization in DIS

• Challenge: use AF in observables
(cross sections, also some amplitudes)
that are not infrared safe

• Possible if: σ has a short-distance subprocess.
Separate IR Safe from IR: this is factorization

• IR Safe part (short-distance) is calculable in pQCD

• Infrared part – example: parton distribution –
measureable and universal

• Infrared safety – insensitive to soft gluon emission
collinear rearrangements
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• For DIS, will find a result . . .

• Just like Parton Model except in Parton Model
the infrared safe part is σBorn ⇒ f(x) normalized uniquely

• In pQCD must define parton distributions
more carefully: the factorization scheme

• Basic observation: virtual states are not truly frozen.
Some states fluctuate on scale 1/Q . . .

• Just like Parton Model except in Parton Model
the infrared safe part is σBorn ⇒ f(x) normalized uniquely

• In pQCD must define parton distributions
more carefully: the factorization scheme

• Basic observation: virtual states not truly frozen.
Some states fluctuate on scale 1/Q . . .

+

q
p p

< Q
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Short-lived states ⇒ ln(Q)
Short-lived states ⇒ ln(Q)

p

 Q

p

<< Q

(collinear

  divergence)

(ln Q)

Long-lived states ⇒ Collinear Singularity (IR)Longer-lived states ⇒ Collinear Singularity (IR)
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• Generalization: all sources of long-distance behavior from
“physical processes” made of on-shell particles

S

S

Collinear lines

P

q q

P

A A*

soft lines

scattered
lines

J

• The story: h splits into collinear partons, then one of them
scatters, producing jets that recede at speed of light, con-
nected only by “infinite wavelength soft” quanta.
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• Use of the optical theorem. No physical processes in the final
state remain, and it collapses to a “short-distance” function
C, that depends only on xp and q:

S
S

P

q

J

!N

N

= Im

Cq q q

• Final-state interactions now suppressed by powers of Q
“higher-twist”.
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• The partons on each side of the C(p, q) must have the same
flavor and momentum fraction.

!

xp,axp,a

p p

Im

•Definition of parton distribution generates all the same long-
distance behavior left in in the original diagrams (quark case)
after the sum over hadronic final states:

φa/h(x, µ) =
∑

spins σ

∫ dy−

2π
e−ixp+y−

〈p, σ|q̄(y−)γ+q(0)|p, σ〉

• This matrix element requires renormalization: thus the ‘µ’.
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The result: factorized DIS

F
γq
2 (x, Q2) =

∫ 1
x dξ C

γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)


× φq/q(ξ, µF , αs(µ))

≡ C
γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)

 ⊗ φq/q(ξ, µF , αs(µ))

• φq/q has ln(µF /ΛQCD) . . .

•C has ln(Q/µ), ln(µF /µ)

•Often pick µ = µF and often pick µF = Q. So often see:
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F
γq
2 (x, Q2) = C

γq
2


x

ξ
, αs(Q)

 ⊗ φq/q(ξ, Q2)

2. DIS at one loop

• But we still need to specify what we really
mean by factorization: scheme as well as scale.

• For this, compute F
γq
2 (x, Q).

• Keep µ = µF for simplicity.
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• “Compute quark-photon scattering” – What does this mean?

Must use an IR-regulated theory

Extract the IR Safe part then take away the regularization

• Let’s see how it works . . .

• At zeroth order – no interactions:

Cγqf(0) = Q2
f δ(1 − x/ξ)

(Born cross section; parton model)

φ
(0)
qf/qf ′(ξ) = δff ′ δ(1 − ξ)

(at zeroth order, momentum fraction conserved)
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F
γqf (0)
2 (x, Q2) =

∫ 1
x dξ C

γqf (0)
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)



× φ
(0)
qf/qf

(ξ, µF , αs(µ))

= Q2
f

∫ 1
x dξ δ(1 − x/ξ) δ(1 − ξ)

= Q2
f x δ(1 − x)

•On to one loop . . .
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• F γq at one loop: factorization schemes

• Start with F2 for a quark:

F γq AT ONE LOOP: FACTORIZATION SCHEMES

• Start with F2 for a quark:

+

2

+ 2 Re ( )
*( )+

Have to combine final states with different phase space . . .
Have to combine final states with different phase space . . .
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• “Plus Distributions”:

∫ 1
0 dx

f(x)

(1 − x)+
≡

∫ 1
0 dx

f(x) − f(1)

(1 − x)
∫ 1
0 dx f(x)


ln(1 − x)

1 − x


+

≡
∫ 1
0 dx ( f(x) − f(1) )

ln(1 − x)

(1 − x)

and so on . . . where

• f(x) will be parton distributions

• f(x) term: real gluon, with momentum fraction 1 − x

• f(1) term: virtual, with elastic kinematics

•DGLAP “evolution kernel” = “splitting function”

P (1)
qq (x) = CF

αs

π


1 + x2

1 − x


+
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• αs Expansion:

F
γq
2 (x, Q2) =

∫ 1
x dξ C

γq
2


x

ξ
,
Q

µ
,
µF

µ
, αs(µ)


× φq/q(ξ, µF , αs(µ))

F
γqf
2 (x, Q2) = C

(0)
2 φ(0)

+
αs

2π
C(1) φ(0)

+
αs

2π
C(0) φ(1) + . . .
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• And result:

F
γqf
2 (x, Q2) = Q2

f { x δ(1 − x)

+
αs

2π
CF


1 + x2

1 − x


ln(1 − x)

x

 +
1

4
(9 − 5x)


+

+
αs

2π
CF

∫ Q2

0
dk2

T

k2
T


1 + x2

1 − x


+

} + . . .

F
γqf
1 (x, Q2) =

1

2x

F
γqf
2 (x, Q2) − CF α

αs

π2
2x


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• Factorization Schemes

MS (Corresponds to matrix element above.)

φ
(1)
q/q(x, µ2) =

αs

π2
Pqq(x)

∫ µ2

0
dk2

T

k2
T

With kT -integral “IR regulated”.

Advantage: technical simplicity; not tied to process.

C(1)(x)MS = (αs/2π) Pqq(x) ln(Q2/µ2) + µ-independent

DIS:

φq/q(x, µ2) =
αs

π2
F γqf(x, µ2)

Absorbs all uncertainties in DIS into a PDF.

Closer to experiment for DIS.

C(1)(x)DIS = (αs/2π) Pqq(x) ln(Q2/µ2) + 0

16



• Using the Regulated Theory to Get Parton Distributions for
Real Hadrons . . .

IR-regulated QCD is not REAL QCD

BUT it only differs at low momenta

THUS we can use it for IR Safe functions: C
γq
2 , etc.

THIS enables us to get PDFs from experiment.
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• Compute F
γq
2 , F

γG
2 . . .

Define factorization scheme; find IR Safe C’s

Use factorization in the full theory

F
γN
2 =

∑
a=qf ,q̄f ,G

Cγa ⊗ φa/N

Measure F2; then use the known C’s to derive φa/N

NOW HAVE φa/N(ξ, µ2) AND CAN USE IT IN ANY OTHER
PROCESS THAT FACTORIZES.

•Multiple flavors and cross sections complicate technicalities;
not logic (Global Fits)
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• Evolution: Q2-dependence

• In general, Q2/µ2 dependence still in Ca
(
x/ξ, Q2/µ2, αs(µ)

)

Choose µ = Q

F
γA
2 (x, Q2) =

∑
a

∫ 1
x dξ C

γa
2


x

ξ
, 1, αs(Q)

 φa/A(ξ, Q2)

Q � ΛQCD → compute C’s in PT.

C
γa
2


x

ξ
, 1, αs(Q)

 =
∑
n


αs(Q)

π


n

C
γa
2

(n)

x

ξ



But still need PDFs at µ = Q: φa/A(ξ, Q2) for different Q’s.
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3. Evolution

• A remarkable consequence of factorization.

• Can use φa/A(x, Q2
0) to determine

φa/A(x, Q2) and hence F1,2,3(x, Q2) for any Q

So long at αs(Q) is still small
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• Illustrate by a ‘nonsinglet’ distribution

F γNS
a = F γp

a − F γn
a

F
γNS
2 (x, Q2) =

∫ 1
x dξ C

γNS
2


x

ξ
,
Q

µ
, αs(µ)

 φNS(ξ, µ2)

Gluons, antiquarks cancel

At one loop: CNS
2 = C

γN
2
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• Basic tool:

• ‘Mellin’ Moments and Anomalous Dimensions

f̄(N) =
∫ 1
0 dx xN−1 f(x)

• Reduces convolution to a product

f(x) =
∫ 1
x dy g


x

y

 h(y) → f̄(N) = ḡ(N) h̄(N + 1)

22



•Moments applied to NS structure function:

F̄
γNS
2 (N, Q2) = C̄

γNS
2

N,
Q

µ
, αs(µ)

 φ̄NS(N, µ2)

(Note φNS(N, µ2) ≡ ∫1
0 dξξNf(ξ, µ2) here.)

• F̄
γNS
2 (N, Q2) is Physical

⇒ µ
d

dµ
F̄

γNS
2 (N, Q2) = 0
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• ‘Separation of variables’

µ
d

dµ
ln φ̄NS(N, µ2) = −γNS(N, αs(µ))

γNS(N, αs(µ)) = µ
d

dµ
ln C̄

γNS
2 (N, αs(µ))

• Because αs is the only variable held in common.
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µ
d

dµ
ln φ̄NS(N, µ2) = −γNS(N, αs(µ))

γNS(N, αs(µ)) = µ
d

dµ
ln C̄

γNS
2 (N, αs(µ))

•Only need to know C’s ⇒ γn from IR regulated theory!

⇓

Q-DEPENDENCE DETERMINED BY PT

EVOLUTION

THIS WAS HOW WE FOUND OUT QCD IS ‘RIGHT’

AND THIS IS HOW QCD PREDICTS PHYSICS
AT NEW SCALES
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• γNS at one loop (5th line is an exercise.)

γNS(N, αs) = µ
d

dµ
ln C̄

γNS
2 (N, αs(Q))

= µ
d

dµ

 (αs/2π) P̄qq(N) ln(Q2/µ2) + µ indep.


= −
αs

π

∫ 1
0 dx xN−1 Pqq(x)

= −
αs

π
CF

∫ 1
0 dx


xN−1 − 1

 1 + x2

1 − x



= −
αs

π
CF

 4
N∑

m=2

1

m
− 2

2

N(N + 1)
+ 1



≡ −
αs

π
γ

(1)
NS

Hint: (1− x2)/(1− x) = 1+x . . . (1− xk)/(1− x) = ∑k−1
i=0 xk
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• Solution and scale breaking.

µ
d

dµ
φ̄NS(N, µ2) = −γNS(N, αs(µ)) φ̄NS(N, µ2)

φ̄NS(N, µ2) = φ̄NS(N, µ2
0)× exp

 −
1

2

∫ µ2

µ2
0

dµ′2

µ′2 γNS(N, αs(µ))



⇓

φ̄NS(N, Q2) = φ̄NS(N, Q2
0)


ln(Q2/Λ2

QCD)

ln(Q2
0/Λ2

QCD)


−2γ

(1)
N /β0

Hint:

αs(Q) =
4π

β0 ln(Q2/Λ2
QCD)

So also: φ̄NS(N, Q2) = φ̄NS(N, Q2
0)

αs(Q
2
0)

αs(Q2)


−2γ

(1)
N /β0
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Qualitatively,

φ̄NS(N, Q2) = φ̄NS(N, Q2
0)


αs(Q

2
0)

αs(Q2)


−2γ

(1)
N /β0

• Is ‘mild’ scale breaking, to be contrasted to

• Case of αs → α0 6= 0, get a power Q-dependence:
Q2

γ(1)αs
2π

•⇒ QCD’s consistency with the Parton Model (73-74)
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• Inverting the Moments.

µ
d

dµ
φ̄NS(N, µ2) = −γN(αs(µ)) φ̄NS(N, µ2)

⇓

µ
d

dµ
φ̄NS(N, µ2) =

∫ 1
x

dξ

ξ
PNS(ξ, αs(µ)) φ̄NS(ξ, µ2)

Splitting function ↔ Moments

∫ 1
0 dx xN−1 Pqq(x, αs) = γqq(N, αs)
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• Singlet (Full) Evolution

µ
d

dµ
φ̄b/A(N, µ2) =

∑
b=q,q̄,G

∫ 1
x

dξ

ξ
Pab(ξ, αs(µ)) φ̄b/A(ξ, µ2)

• The Physical Context of Evolution

– Parton Model: φa/A(x) density of parton a with
momentum fraction x, assumed independent of Q

– PQCD: φa/A(x, µ): same density, but
with transverse momentum ≤ µ
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• If there were a maximum transverse momentum Q0,
each φa/h(x, Q0) would freeze for µ ≥ Q0

• Not so in renormalized PT

• Scale breaking measures the change in the density
as maximum transverse momentum increases

• Cross sections we compute still depend on our
choice of µ through uncomputed “higher orders” in C
and evolution
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• Evolution in DIS (with CTEQ6 fits)
– Evolution in DIS (with CTEQ6 fits)
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4. Factorization in hadron-hadron scattering

• General relation for hadron-hadron scattering for a hard, in-
clusive process with momentum transfer M to produce final
state F + X:

dσH1H2
(p1, p2, M) =
∑

a,b

∫ 1
0 dξa dξbdσ̂ab→F+X (ξap1, ξbp2, M, µ)

×φa/H1
(ξa, µ) φb/H2

(ξb, µ),

• “Factorization proofs: justifying the “universality” of the par-
ton distributions.
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As time allows . . . heuristic arguments for factorization, and a
hint of the origin of factorization for fragmentation functions
in pQCD.
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• The physical basis: classical fields

x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆= ∆ ≡ x′
3 − βct′

•Why a classical picture isn’t far-fetched . . .

The correspondence principle is the key to
to IR divergences.

An accelerated charge must produce classical radiation,

and an infinite numbers of soft gluons are required
to make a classical field.
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Transformation of a scalar field:

φ(x) =
q

(x2
T + x2

3)
1/2

= φ′(x′) =
q

(x2
T + γ2∆2)1/2

From the Lorentz transformation:
x3 = γ(βct′ − x′

3) ≡ −γ∆.

Closest approach is at ∆ = 0, i.e. t′ = 1
βcx

′
3 .

The scalar field transforms “like a ruler”: At any fixed
∆ 6= 0, the field decreases like 1/γ =

√
1 − β2.

Why? Because when the source sees a distance x3,
the observer sees a much larger distance.

36



x,y,z,t

q
β 1

x , y , z , t

x3cβt -−∆=

field x frame x′ frame

scalar q
|~x|

q
(x2

T +γ2∆2)1/2

gauge (0) A0(x) = q
|~x| A′0(x′) = −qγ

(x2
T +γ2∆2)1/2

field strength E3(x) = q
|~x|2 E′

3(x
′) = −qγ∆

(x2
T +γ2∆2)3/2

Gauge fields : E3 ∼ γ0, E3 ∼ γ−2

• The “gluon” ~A is enhanced, yet is a total derivative:

Aµ = q
∂

∂x′
µ

ln
(
∆(t′, x′

3)
)
+ O(1 − β) ∼ A−

• The “large” part of Aµ can be removed by
a gauge transformation!
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• The “force” ~E field of the incident particle does not
overlap the “target” until the moment of the scattering.

• “Advanced” effects are corrections to the total derivative:

1 − β ∼
1

2

√1 − β2
2 ∼

m2

2E2

• Power-suppressed! These are corrections to factorization.

• At the same time, a gauge transformation also induces
a phase on charged fields:

q(x) ⇒ q(x) ei ln(∆)

Cancelled if the fields are well-localized ⇔ σ inclusive
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• Initial-state interactions decouple from hard scattering

• Summarized by multiplicative factors: the parton distributions

⇒ Cross section for inclusive hard scattering is IR safe,
with power-suppressed corrections.

• But what about cross sections where we observe specific
particles in the final state? Single hadrons, dihadron
correlations, etc?
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•Much of the same reasoning holds:

x < βc t3

• For single-particle inclusive . . .

Interactions after the scattering are too late to affect
large momentum transfer, creation of heavy particle, etc.

The fragmentation of partons to jets is too slow to know
details of the hard scattering: factorization of fragmentation
functions.
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•How it works in pQCD, with pictures as in DIS:

• Separation of soft quanta from fragmenting partons:

h(p)

=

h(p)

x

S

h(p)

h(p)
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• The all-orders cancellation of soft singularities that connect
initial and final states for single-particle inclusive and other
short-distance cross sections in hadron-hadron scattering:

H

J1

2
J

S

H

J1

2
J

S

H

J1

2
J

S

= Im - -

= Im
H

J1

2
J

S

- H

J1

2
J

S

H

J1

2
J

S

-

• all terms on RHS are power-suppressed
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