C T E Q

Experimental Results from CMS Φ ETH Institute for Particle Physics

Overall Outline

- Introduction
 - Section CMS, Lumi, performance
- SM Physics
 - 🔮 QCD, EWK, TOP
- BSM Physics
 - some Exotica and SUSY searches
- Searches for the Higgs
- Bonus Material (only in backup)
 - Machine
 - Physics expectations, requirements
 - Tools/Methods

Disclaimer 1 : Many introductory and theoretical aspects covered in the other lectures

Disclaimer 2 : For complete list of results: see <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults</u>

Disclaimer 3 : Some slides or slide content taken from seminars/lectures/write-ups of other colleagues or previous lectures of mine

G. Dissertori : Results from CMS

Introduction

Our play ground

CMS

THE REAL PROPERTY.

pp, B-Physics, CP Violation

General Purpose, pp, heavy ions

LHC ring: 27 km circumference

ALICE

Collisions at the LHC

Compact Muon Solenoid

CTEQ

CMS: another view

To remember:

- only one magnet
- very large B field
- large Si tracking system
- very high resolution, very granular ECAL
- ECAL and HCAL inside solenoid
- Muon system
 embedded in iron
 return yoke

CTEQ

Typical detector acceptance

- Precision tracking and lepton reconstruction up to rap~2.5
 - p_T thresholds for tracks ~ 100 MeV, for leptons 10-20 GeV
- Jet and MET reconstruction: include detectors up to rap~4.5-5
 - p⊤ thresholds for jets ~30 GeV, if tracking-based jets ~15 GeV

$\mathbf{C} \ \mathbf{T} \ \mathbf{E} \ \mathbf{Q}$

Performance, Object reconstruction Φ ETH Institute for Particle Physics

- By now, Particle Flow algorithm has become a central tool (see next)
- non-showering electrons in barrel: resolution (reconstructed Z peak) close to 1 GeV
- Image: muon momentum resolution: 1% for p_T < 100 GeV, 7-8% at 1 TeV</p>
- ightarrow pions mis-ID as muons: <0.5% for p_T > 2 GeV
- Tau ID eff. > 65% for p_T > 20 GeV, with mis-ID eff. of hadronic jets < 3%
- **b**-jet tagging eff. of 70% for $p_T > 30$ GeV, with mis-ID eff. of light-quark jets < 3%

G. Dissertori : Results from CMS

Global Event Description (Pflow) Φ

Made possible by CMS granularity and high magnetic field

- Charged particles well separated in large tracker volume & 3.8T B field
- Excellent tracking, able to go to down to very low momenta (~100 MeV)
- Granular electromagnetic calorimeter with excellent energy resolution
- In multi-jet events, only 10% of the energy goes to neutral (stable) hadrons (~60% charged, ~30% neutral electromagnetic)
- Therefore: Use a global event description :
 - Optimal combination of information from all subdetectors
 - Returns a list of reconstructed particles (e,mu,photons,charged and neutral hadrons)
 - Used in the analysis as if it came from a list of generated particles
 - Used as building blocks for jets, taus, missing transverse energy, isolation and PU particle ID

Particle Flow performance

Considerable improvement in Jet Energy scale uncertainty and jet/MET resolution, as well as tau identification:

CTEQ

ETH Institute for Particle Physics

Integrated Luminosity

High lumi comes at a cost: in 2012 already exceeding detectors design capabilities for pile-up

2012: on average O(20) pile-up events 50 ns inter-bunch spacing

Very large Pile-Up: impact on trigger rates, computing/reconstruction time, reconstruction efficiencies (eg. isolation), jet energy reconstruction, ...

Again, Pflow helps...

CTEQ

CTEQ

Aug 12

pp-Interactions at the LHC

The hard scattering

$$d\sigma(h_1h_2 \to cd) = \int_0^1 dx_1 dx_2 \sum_{a,b} f_{a/h_1}(x_1, \mu_F^2) f_{b/h_2}(x_2, \mu_F^2) d\hat{\sigma}^{(ab \to cd)}(Q^2, \mu_F^2)$$

Hard Scattering = processes with large momentum transfer (Q^2)

Represent only a tiny fraction of the total inelastic pp cross section (~ 70 mb) eg. $\sigma(pp \rightarrow W+X) \sim 150 \text{ nb} \sim 2 \cdot 10^{-6} \sigma_{tot}(pp)$

CTEQ

As things appeared with time....

CTEQ

As things appeared with time....

Measurements of "soft" processes (low p_T)

- Understand particle production in minimum-bias pp collisions
- Test and improve phenomenological models of non-pert. QCD effects
- Tune parameters of model implementations in Monte Carlo generators
- Understand the underlying event, tune parameters

K. Jakobs

CTEQ

Minimum Bias Events

- Minimum bias is an experimental definition, defined by experimental trigger selection and analysis
- Relation to Physics:

 $\sigma_{\text{measured}} = f_{\text{sd}} \sigma_{\text{sd}} + f_{\text{dd}} \sigma_{\text{dd}} + f_{\text{nd-inelestic}} \sigma_{\text{nd-inelastic}}$

where f_i are the efficiencies for different physics processes determined by the trigger

NB: need to understand what is measured to allow comparison to previous results, often presented for non-single diffractive events

CHIPP PhD Winter School, Ascona, Jan. 2010

First results at LHC ...

CMS PRL 105, 022002 (2010)

G. Dissertori : Results from CMS

СТЕQ

C T E Q

CTEQ

Aug 12

Energy Dependence

Phys. Rev. Lett. 105 (2010) 022002

In at 7 TeV:

- ✓ 6 x 5 (rapidity coverage of tracker) = 30 chg. particles in tracker acceptance
- with on average 500-600 MeV of trans. momentum

Chg. particle mult. and p_T distributions Φ ETH Institute for Particle Physics

- showed need to improve (tuning of) models
- urned out: in general higher mult. than
 expected, difficult or impossible to get
 excellent description of mult. and full p_T dist.
- and for simultaneously getting central and forward chg. particle production right

CTEQ

Underlying Event : Definition

The Underlying Event:

The products of beam-beam remnant multiple-parton interactions

i.e extra activity besides hard scattering

which cannot uniquely be separated from ISR, FSR

Issues / interesting questions /

Motivations:

- ♦ Note : UE != MB
- Tuning of MC models, an issue is the energy dependence
- needed to understand global observations on chg. particle production
- impact on selection efficiencies (isolation), jet energy, MET, low-p_T jets, ...

CTEQ

UE studies : Observables

Using Charged Jets (or leading charged track)

- Topological structure of p-p collision from charged tracks
- Jets found with massless charged tracks as input
- The leading Ch_jet1 defines a direction in the phi-plane
- The transverse region is particularly sensitive to the UE

From DY muon-pair production (using muon triggers)

- defined in all the phi-plane
- after removing the muon pairs, everything else is UE

Examples of Measurements

CMS JHEP 09 (2011) 109

Particle Production in the transverse region

Remarks / Issues

- again, found that most/all of the pre-LHC tunes failed to give good description for the whole phase space
- generally, stronger particle production in transverse region observed than expected
- special LHC tunes obtained, now used for the big MC productions

CMS PAS QCD-11-012

Aug 12

$\mathbf{JET production at hadron colliders} \Phi^{\mathbf{ETH Institute for Particle Physics}}$

Comparison between experimental data and theoretical predictions constitutes an important test of the theory.

→ Problem in the experiment ? Problem in the theory (QCD) ? New Physics, e.g. quark substructure ?

and we really "see" jets

Issues for Jet Observables

- Jet Triggers and Jet selection
 - Iturn-on curves, lower p⊤-thresholds, matching of samples from different triggers

Choice of Jet algorithm and jet size

- use of modern, IR- and collinear safe algorithms
- standard in CMS: anti-KT, R=0.5, 0.7

Jet Energy Scale

- absolute and relative (as function of rapidity)
- Jet cross section falls like power law, power =5 6
- ✤ fantastic progress made so far, already better than 3%, hoping to achieve 1%

Jet Energy resolution

- smearing of distributions
- Comparison with theory at the "hadron (or particle) level" : correction of pQCD prediction for non-pert. effects
- Often "ratio" observables used to reduce dependence on jet energy scale: di-jet ratio, angular (de-)correlations, event shapes, n-jet ratios, jet shapes,
 - however, the use of a p_T threshold above which jets are selected introduces a dependence !

Inclusive jet cross section

- \subseteq up to $p_T \sim 2 \text{ TeV}$!
- Earlier measurements
 extended to very low p_T
 thanks to Particle Flow
- JES uncertainties dominating exp. uncert.
- Corrected to particle level
- Inclusive jet p_T spectra are
 in good agreement with
 NLO QCD
- exp. precision starting to be interesting to constrain pdfs

ETH Institute for Particle Physics

More comparisons to PDFs...

More details: see CMS PAS QCD-11-004

CTEQ

Aug 12

ETH Institute for Particle Physics

Di-jet distributions

Requiring both a central and forward jet at the same time causes **disagreement for a number of models**.

n CMS

CTEQ

- ÎnÎn

CTEQ

Correlations in Azimuth

Independent of luminosity, weakly dependent on Jet Energy Scale

Production of Photons

Direct Photon Production

- Important issue
 - fragmentation contribution
 - can be strongly suppressed by isolation requirements
 - theoretically most interesting: Frixione isolation, but not exactly implementable in exp. analyses... many studies ongoing

Photon Identification

slide adapted from K. Kousouris

powerful at low E_T

powerful at high E_T

- Typical efficiencies: ~100% (trigger), ~85% (reco barrel), ~75% (reco endcap), ~60 – 90% (identification & isolation), Unfolding (bin migrations): ~95%
- Systematic uncertainties on the order of 15% or below

Inclusive Production: Results

PRD 84 (2011) 052011

Overall, pretty good agreement with NLO QCD Slight overprediction at $E_T < 50$ GeV ?

ETH Institute for Particle Physics

Di-Photon Production

slide adapted from K. Kousouris

Irreducible background for the H→yy search

JHEP 01 (2012) 083

Big discrepancy at small angles???

- But note: at very small angles, the NLO calculation is actually a "LO" calculation
- se plot on the right)

Predictions known up to NNLO in pert. QCD!

Ζ

Produce more W+ than W- (prevalence of u quarks over d quarks).

 $E, \mathbf{p_T}, p_z$

Using FEWZ and MSTW2008, at 7 TeV:

 $\sigma_{W^+ \to \ell^+ \nu}^{NNLO} = 6.16 \text{ nb}$ $\sigma_{W^- \to \ell^- \bar{\nu}}^{NNLO} = 4.30 \text{ nb}$ $\sigma_{Z/\gamma^* \to \ell \ell}^{NNLO} = 0.96 \text{ nb}$

ETH Institute for Particle Physics

G. Dissertori : Results from CMS

CTEQ Aug 12

Experimental signature

Z: pair of charged leptons

- high-p⊤ (> 20 GeV)
- isolated
- opposite charge
- ~60 < m_{ll}< ~120 GeV

Example: electron reconstruction

- isolated cluster in EM calorimeter
- p_T > 20 GeV
- shower shape consistent with expectation from electrons
- matching charged track

W: single charged leptons

- high-p⊤ (> 20 GeV)
- isolated
- E_{T,miss} (from neutrino)

transverse mass: $M_W^T = \sqrt{2 \cdot P_T^l \cdot P_T^\nu \cdot (1 - \cos \Delta \phi^{l,\nu})}$

G. Dissertori : Results from CMS

. A A z

Signatures

Inclusive W and Z production

CTEQ

- Z important tool : data-driven methods for controlling lepton eff, scale, resolution, E_{Tmiss} (hadronic recoil).
- In general excellent data-MC agreement

ETH Institute for Particle Physics

Inclusive W and Z production

♀ Very recently: also first results at 8 TeV, using special low pile-up runs

CTEQ

ETH Institute for Particle Physics

W properties, constraining PDFs Φ ETH Institute for Particle Physics

CTEO

Aug 12

$$\mathcal{A}(\eta) = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \mathrm{e}^+\nu) - \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \mathrm{e}^-\bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^+ \to \mathrm{e}^+\nu) + \mathrm{d}\sigma/\mathrm{d}\eta(\mathrm{W}^- \to \mathrm{e}^-\bar{\nu})}$$

- First results seen from NNPDF group when including such data
- looking forward to further global fits based on LHC data.....

45

Many differential measurements... $\Phi^{\text{ETH Institute for Particle Physics}}$

Vector Bosons + jets

CTEQ

CTEQ

Aug 12

- important processes for testing pQCD and backgrounds to very many searches!
- in CMS, for W+jets: simultaneous extraction of W 9 signal and top background
- final distributions: unfolded to particle level 9
- 9 presented for experimental lepton and jet acceptance, eg. p_{Tiet} > 30 GeV

An additional jets "costs" ~1 alphas Excellent agreement with ME+PS matched Monte Carlo model.

G. Dissertori : Results from CMS

ETH Institute for Particle Physics

CMS

Z+jets: more differential

CMS-PAS-EWK-11-021

- Solution New: high-stat. measurements of Z+jets production, in particular testing angular correlations and event shapes,
- \subseteq for different regions of phase space (in p_T^Z) : useful for testing phase space relevant for searches

CTEQ

V plus heavy flavour

W+c and Z+b most relevant to constrain PDFs, relevant for later high-precision W mass measurement.

So far, no major discrepancies seen compared to NLO (in contrast to W+b prod....)

Z+ bb-jets prod.

Di-Boson Production

- Critical test of the gauge structure of the SM
 - Allows to search for anomalous Triple Gauge Couplings (TGC)
- Mandatory preliminary study for Higgs searches: irreducible background for Higgs searches in WW and ZZ modes
- Probe for new physics
 Resonances with diboson final states

WW and ZZ: see next slide

Θ Wy and Zy

- Gervarian Gervarian Sections measured for E_{Tγ} > 10 GeV and dR(lept,γ) > 0.7
- cross sections in agreement with SM predictions
- first limits on WWγ,ZZγ,Zγγ TGC at 7 TeV

CTEQ

WW and ZZ production

CTEQ

Production of "heavy" quarks:

J/Ψ production

$s \rightarrow c$ (Quarkonia) $\rightarrow b \rightarrow top$

5.35 5.4 5.45

5.35

b/B: differential cross sections Φ Particle Physics

b-jet production

FEX, GS are higher order effects but dominate at LHC

b-tagging: Secondary vertices, impact parameter, muons from heavy flavour decays

CTEQ

b-jet production: Results

- Some discrepancies seen with MC@NLO
- ratio to inclusive jet cross section helps to eliminate some systematics (eg. lumi)
- this ratio better described by Pythia, in particular for forward jets!

CTEQ

Top Quark Physics

CTEQ

Top Production

00000

o approx. NNLO

ETH Institute for Particle Physics

C T E Q

Cross section: Di-Lepton channel

slide adapted from FP. Schilling

ETH Institute for

Particle Physics

CTEQ

Cross section: semi-leptonic channel

Lepton+jets, b-tagged

- divide sample into distinct categories:
 Nr. jets, Nr. of b-tags,
 electrons, muons
- fit the secondary vertex mass distribution, using templates, simultaneously in all categories
- let also data/MC scale factors (JES, b-tag eff, W+j Q²-scale) float in the fit
- Result:
 - top cross section, with syst. uncert. at the 7% level !
 - scale factors consistent with 1, within the fit error

A fantastic proof of the excellent understanding of all relevant physics objects, and of their outstanding MC description

Source	Muon	Electron	Combined
	Analysis	Analysis	Analysis
Quantity	Uncertainty (%)		
Lepton ID/reco/trigger	3.4	3	3.4
	< 1	< 1	< 1
$t\bar{t}$ +jets Q^2 scale	2	2	2
ISR/FSR	2	2	2
ME to PS matching	2	2	2
Pile-up	2.5	2.6	2.6
PDF	3.4	3.4	3.4
Profile Likelihood Parameter	Uncertainty (%)		
Jet energy scale and resolution	4.2	4.2	3.1
b-tag efficiency	3.3	3.4	2.4
W +jets Q^2 scale	0.9	0.8	0.7
Combined	7.8	7.8	7.3

ETH Institute for

Particle Physics

Top cross section

- exp. uncertainty reached 6-7% (!) level, \sim or smaller than theory uncertainty.
- overall impressive agreement with pQCD pred.
- top pair xsec useful to constrain pdfs?

CTEQ

CTEQ

CTEQ

Aug 12

Top cross section

Single top production

CMS preliminary, 1.14/1.51 fb⁻¹, Muons/Electrons, $\sqrt{s} = 7$ TeV Events 06 t-channel tW-channel 80 s-channel 70 tt 60 W+light W+bb 50 W+cc 40 Z+Jets Diboson 30 20 10 0 = -1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 0 cosθ

angle between lepton and light jet, in t rest frame

An example of finding **tiny** signals with leptons, MET, b-tag & jets

Showing the readiness for challenging searches such as low-mass Higgs

CTEQ

CMS TOP-11-021 ETH Institute for Particle Physics

TOP mass

Tevatron is leading,

with LHC catching up....

In this Moriond result not yet included: Systematics due to colour rec, UE

Systematics dominated by JES

Mass determination

Direct m_{top} reconstruction

From cross section dependence on m_{top} interesting, independent alternative; extract well defined mass parameter, eg. in MSbar scheme. But: theory uncertainties enter.

Approx. NNLO × MSTW08NNLO	m_t^{pole} / GeV	$m_t^{\overline{\text{MS}}}$ / GeV
Langenfeld et al. [7]	170.3+7.3	$163.1^{+6.8}_{-6.1}$
Kidonakis [8]	$170.0^{+7.6}_{-7.1}$	-
Ahrens et al. [9]	$167.6^{+7.6}_{-7.1}$	$159.8^{+7.3}_{-6.8}$

CTEQ Aug 12

CTEQ

Then: going more differential.....

Many many properties and differential distributions measured

CTEQ

CTEQ

Aug 12

- spin correlations, W helicity/pol., V_{tb}, m_t-m_{tbar}, top charge, top polarization, charge asymmetry, FCNC, high-mass ttbar pairs (resonances)
 CMS-TOP-12-016
- No anomalies seen so far. Here some examples:

CTEQ A first: TTbar + V production ETH Institute for Particle Physics slide adapted from P. Meridiani Starting to observe associated production of top pairs with W or Z W+ CMS-TOP-12-014 $\frac{\sigma(t\bar{t})}{\sigma(t\bar{t}+V)} \approx 500$ **CMS** Preliminary L = 4.98 fb ' at \s = 7 TeV No theory error available Trilepton channel: $\sigma(ti Z \rightarrow l + jets + (Z \rightarrow ll))$ for ttZ Trilepton Channel Same-sign dilepton channel: $\sigma(IIV \rightarrow I + jets + (W \rightarrow Iv) \text{ or } (Z \rightarrow II))$ (scaled from and)

First measurement of ttV:

Dilepton Channel

NLO Calculation

tt+V Cross Section [pb]

Combination

0.2

0.4

0.6

0.8

(direct measurement)

Summary of Part 1

Summary Part 1

If this is not a success of the SM (and all the theo. and exp. work invested),

then what????

СТЕQ

Bonus Material (for free!)

The Machine

The LHC : design parameters $\Phi^{\text{ETH Institute for Particle Physics}}$

1232 superconducting dipoles 15m long at 1.9 K, B=8.33 T Inner coil diameter = 56 mm

max. beam-energy design Luminosity Bunch spacing Particles/bunch Stored E/beam

7 TeV (7x TEVATRON) 10³⁴ cm⁻²s⁻¹ (>100x TEVATRON) 24.95 ns 1.1 10¹¹ 362 MJ

Also : Lead Ions operation Energy/nucleon 2.76 TeV / u Total initial lumi 10²⁷ cm⁻² s⁻¹

Unprecedented complexity:

10k magnets powered in 1700 electrical circuits
The LHC Start-Up in 2009

- Nov.20: Start of 2009 beam circulation
- Nov. 23: First collisions at 900 GeV
- Nov. 26: First results shown publicly at CERN!
- Dec.6: First physics fills
- Dec.8: Acceleration
 - both beams ramped to 1.18 TeV each
- Dec.11: Higher proton intensities (7E10)
 - Starting to accumulate luminosity at 900 GeV
- Dec.14, Collisions at 2.36 TeV !

First CMS Collision Event

First collisions in CMS at 7 TeV Φ ETH Institute for Particle Physics

within seconds: registered, reconstructed and displayed on screens

CTEQ

LHC : Performance Limitations

Parameter/Effects	Limitations	Now	Legend:
Beam energy limited by maximum dipole field. Industrially available technology.	7 TeV	3.5 -> 4 TeV	 N : particles/bunch n : nr. of bunches I : current / beam ε_n=εγ, ε : emittance β* : β at IP Beam size σ²=βε Q : tune (number of trans. oscil./turn)
Bunch and total beam intensity beam-beam effect (tune spread), small allowed space in Q-space, collimators (impedance, collective instabilities), electron cloud, radiation	N < $1.7 \ 10^{11}$ N _{nom} = $1.15 \ 10^{11}$ I < $0.85 \ A$	N ~ 1.5 10 ¹¹	
Normalized emittance Limited by injectors and main dipole aperture	ε _n <3.75 μm	1.9 - 2.4 μm	
Beam size at IP (β^*) Limited by (triplet) quadrupole aperture	0.55 m < β* < 1 m σ ~ 17 μm	0.6 m σ ~ 20 μm	
Crossing angle Limited by (triplet) quadrupole aperture	300 μ rad	290 μrad	
Number of (colliding) bunches Limited by stored beam energy, electron cloud eff.	2808	1368	
Luminosity	1 10 ³⁴	~6 x 10 ³³	

CTEQ LHC : Performance Limitations

CTEQ

Performance in 2011

Fournier, HCP2011

Typical efficiency of experiments:

ETH Institute for Particle Physics

data taking eff $>\sim 90\%$

fraction of good quality data ~ 85-90 %

==> ATLAS and CMS have about 4.7 fb⁻¹ of good data in hand

(was ~36 pb⁻¹ in 2010)

Factor ~20 gain in peak luminosity w.r.t. 2010, mainly thanks to : number of bunches, beta*, emittance

The experiments: Expectations, requirements, performance

proton - proton collisions are complex....

C T E Q

Variables used in pp collisions $\Phi^{\text{ETH Institute for Particle Physics}}$

Transverse momentum

(in the plane perpendicular to the beam)

Rapidity
$$y = \frac{1}{2} \ln \left(\frac{E + p_L}{E - p_L} \right)$$

(Pseudo)-Rapidity $\eta = -\ln \tan \frac{\theta}{2}$ $\eta = 0.0$ $\eta = -1.0$ $\theta = -1.0$ $\eta = -2.4$ $\theta = -2.5$ $\eta = -2.4$

Expected Physics : 1

Inelastic low-p⊤ pp collisions

- Most processes are due to soft and semi-soft interactions between incoming protons
 - particles in the final state have large longitudinal, but small transverse momentum -> small momentum transfer:
 - several hundreds of MeV

Low-p_T inelastic pp-collisions: "Minimum Bias events" Parameters (multiplicity etc) poorly known! Important for tuning MC simulations, and understanding of Pile-Up effects

- particle density:
 ~ 4 6 charged particles (pions) plus ~ 2 3 neutrals (π⁰) per unit of pseudorapidity in the central detector region (and ~flat in rap)
- uniformly distributed in ϕ
- average $p_T \sim$ few hundreds of MeV

Expected Physics : 2

- Going fast beyond the TEVATRON reach

· early sensitivity to compositiness

- requires good understanding of jets (algorithms, production, jet energy scale), PDFs, pile-up, underlying event, ...
- Thus : good calorimetry!!

CTEQ

Expected Physics : 3

The Electroweak Sector

- test (re-establish the SM) and then go beyond
- most SM cross sections are significantly higher than at the TEVATRON
 - eg. 100x larger top-pair production cross section
 - the LHC is a top, b, W, Z, ..., Higgs, ... factory

Important: Concentrate on final states with high-p_T and isolated Ieptons and photons (+ jets)

Otherwise overwhelmed by QCD jet background!!

Benchmarks

- Some benchmark processes of the early days, which influenced certain design parameters:
 - Basic processes relevant for studying electro-weak symmetry breaking (as seen in early days):

$$p p \to W^+ W^- \to \mu^+ \nu_\mu \mu^- \bar{\nu}_\mu$$
$$p p \to H \to ZZ \to \mu^+ \mu^- \mu^+ \mu^-$$
$$p p \to H \to ZZ \to \mu^+ \mu^- \nu_\mu \bar{\nu}_\mu$$
$$p p \to H \to \gamma \gamma$$
$$p p \to H \text{ jet jet (VBF)}$$
$$p p \to Z' \to \mu^+ \mu^-$$

All cross sections (times BR) of order 1 - 100 fb : determines needed luminosities for sizable statistics

CTEQ Aug 12

So, some numbers to remember $\Phi^{\text{ETH Institute for Particle Physics}}$

- For some nominal numbers, eg. a bunch spacing of 25 ns:
 - relevant cross sections for testing of EWK symmetry breaking of order 1 100 fb⁻¹
 - Running time per year T ~ 10⁷ secs (don't forget efficiency factors....)

for
$$\mathcal{L} = 10^{34} / \text{cm/sec} = 10^{-5} \, \text{fb}^{-1} / \text{sec}$$

 $N = (\mathcal{L} \cdot T) \sigma \Rightarrow 100 \text{ events per year for } \sigma = 1 \text{ fb}$

- Fotal rate of inelastic events $R = \sigma_{\text{inel}} \mathcal{L} \approx (100 \,\text{mb}) (10^7 \,\text{mb}^{-1}/\text{sec}) = 10^9 \,\text{events/sec}$
- Number of inelast. events per bunch crossing = 10⁹/sec * 25 10⁻⁹ sec = 25 (pile-up)!
- Number of chg. particles per bunch x-ing : 25 * N(pions)/rap * (2 y_{max}) ~ 2000 !!
- Thus have an issue with radiation levels! (and pile up ...)

Production of heavy states

- Heavy particles are produced "more centrally"
 - example: single heavy resonance (eg. Z') of mass M, Energy E, rapidity y :

$$\hat{s} = x_1 x_2 s = M^2 \qquad x_1 \approx x_2 \to x_{1,2} = \frac{M}{\sqrt{s}}$$

$$E = \frac{\sqrt{s}}{2}(x_1 + x_2) \qquad p_L = \frac{\sqrt{s}}{2}(x_1 - x_2)$$

$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} \Rightarrow e^y = \sqrt{\frac{x_1}{x_2}} \Rightarrow y \to 0 \text{ for } x_1 \approx x_2$$

$$x_{1,2} = \frac{M}{\sqrt{s}} e^{\pm y}$$

 Thus important to concentrate on precision tracking/calorimetry in area of approx. |y| < 2.5

CTEQ

Aug 12

Examples of detector performance requirements $\Psi^{\text{ETH Institute for Particle Physics}}$

86

Tools and Methods

Our Master Equation

Efficiencies and Acceptance

$$\sigma_{\rm meas} = \frac{N_{\rm obs} - N_{\rm bkg}}{\varepsilon}$$

Efficiencies and acceptances

ETH Institute for Particle Physics

Acceptance, Example

- Acceptance for J/Psi, in CMS at 7 TeV
- as a function of the p_T and rapidity of the J/Psi
- this is a convolution of the acceptances for the two muons, coming from the J/Psi decay
- Muon acceptance strongly determined by detector
 geometry and magnetic
 field, as well as muon
 penetration power (iron
 thickness vs. momentum)

Issue of acceptance...

- Again, is a convolution of the acceptances for the leptons
- Do we really want to correct for acceptance?

Pros:

- The cross section measurement can be directly compared to other (corrected) measurements, from other exps
- The measurement can be compared to theory predictions which cannot be obtained for arbitrary acceptance

Cons:

- The measurement becomes model dependent
- we introduce a systematic error, eg.
 because of uncertain extrapolation to full acceptance

CTEQ

Issue of acceptance...

Example: W or Z production

<text>

⇒ avoid extrapolation errors

eg. from extrapolation to large y_W where uncertainties from pdfs are large!

... fortunately, nowadays more and more fully differential calculations are available.... thus it becomes possible to calculate "EXACTLY" what is measured....

Trigger efficiencies

- Usual recipe: try to have a "more inclusive" trigger, where you "know" that it is "100% efficient", and calculate rate w.r.t. this one
- Solution Example: trigger rate for a Jet Trigger with $E_T > 15$ GeV:

- Minimum Bias Trigger: a minimal set of selection criteria are applied, eg. a few hits in the beam scintillation counters
- compare, eg. to Zero Bias Trigger
- Then, the efficiency of a higher Jet ET trigger, eg. 30 GeV, can be found from:

 ϵ_{TRIG}

N(Jet15 Trigger)

Typically, apply selection cuts only above a p_T where your trigger is >99% efficient!

The Tag & Probe Method

- Useful to measure efficiencies from data
 - trigger eff, reconstruction eff., identification eff.
 - eg. single muon trigger eff.: what is the fraction of reconstructed muons, which would also have been triggered on?
 - eg. electron ID eff: what is the fraction of reconstructed electron candidates, which also pass a tight isolation criterium?

N(all tags)

 $\epsilon_{\rm ID}$

CTEQ

Aug 12

Probe Object: "loosely" selected: now apply further criteria

Tag Criterium: eg. di-lepton system close to invariant mass of Z or J/Psi; or a very pure W candidate: one isolated lepton, large MET, no further activity in the event, transverse mass > X

Tag Object: "tight" selection applied:

G. Dissertori : Results from CMS

defined the tag together with the additional criterium above

Tag & Probe....

Careful:

- make sure no background left, or subtract it
- make sure no correlations introduced
- Apply same method in data and MC. In MC: compare to "True Eff." and if necessary apply (hopefully small) additional correction factors, if some bias is observed

see eg. https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsMUO

Backgrounds

see also later some applications.....

General observations

 $N_{\rm obs}$

- Apply selection which optimizes
 - either: sum of stat + syst error
 - or : best S/B S=N(Signal), B=N(Background
 - ø or : best S/sqrt(B) or :
- How to find optimum, especially if S/B <<1, complicated signatures, many variables involved?
 - modern approach : "Multi-Variate Approaches"

If you have

- S/B >> 1 : don't have to worry much about syst. uncertainty of B, in case of searches it won't affect much the significance or your signal or your exclusion limit
- S/B < 1 : you should worry!</p>

C T E Q

Aug 12

Data-Driven Background Estimates Φ ETH Institute for Particle Physics

The "trivial" case : Sidebands

ETH Institute for Particle Physics

CTEQ

CTEQ

Aug 12

A less trivial case : W selection Φ Particle Physics

W: decay to charged leptons

- high-p⊤
- isolated
- E_{T,miss} (from neutrino)

transverse mass:
$$M_T = \sqrt{2p_T(\mu) E_T(1 - \cos(\Delta \phi_{\mu, E_T}))}$$

after cut on important selection variable, the relative isolation:

$$I_{\text{comb}}^{\text{rel}} = \left\{ \sum (p_T(tracks) + E_T(em) + E_T(had)) \right\} / p_T(\mu)$$

in cone
$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2} < 0.3$$
 around the muon

A less trivial case : W selection Φ Particle Physics

CMS PAS EWK-10-002

CTEQ

QCD bkg: mostly b-decays

take this shape for fit to M_T distribution

The "ABCD" method

- find two variables, which characterize the events of interest
- A=signal region, B,C,D: background regions
- hypothesis of un-correlated variables: background shape in AD sector is the same as in BC sector

If this hypothesis is true, and **no** signal contamination in B,C,D:

estimate for background in signal region is

from the counted number of events N(B,C,D) in the background regions.

Fake rates

- What is probability that eg. a jet is mis-identified as an "isolated" lepton?
 - Important to know for leptonic analyses, especially in case of search for rare "multilepton" signatures
 - even if tight isolation requirements are applied, the probability of faking is not zero, and a small number, multiplied with the huge cross section of multi-jet production, can still lead to a sizable background
 - difficult (impossible?) to trust the simulation on this faking probability, rather try to get it from data
- "Standard Method":

"Fakeable Object method", or "Tight-To-Loose Ratio"

- Idea : define two selection steps, one with LOOSE criteria, and one with TIGHT criteria (eg. on isolation)
- determine the "fake ratio", or "probability for a jet to fake a lepton" from the ratio of tightly to loosely selected objects, in a control sample that should not have any prompt leptons (eg. multi-jet sample)
- Idetermine this number as function of basic kinematics (p_T, rapidity)
- apply it to a MC background simulation, or at a preselection level, to determine this fake background on the final selection level

Fake ratio

- $N_{\rho} =$ number of prompt leptons,
- \bigcirc N_f = number of fake leptons
- \bigcirc N_{Tp} = Number of objects passing the tight selection
- \bigcirc N_{Tf} = Number of objects failing the tight selection
- P = probab. of prompt lepton to pass tight selection, typically ~ 1
- \bigcirc f = probab. of jet, to pass tight selection

$$N_L = N_p + N_f = N_{Tp} + N_{Tf}$$
$$N_{Tp} = p N_P + f N_f \approx N_p + f N_f$$
$$\rightarrow f = \frac{N_{Tp} - N_p}{N_f}$$

on a control sample (pure background):
 (eg. jet-triggered sample)

$$\Rightarrow f = \frac{N_{Tp}}{N_L}$$

 $N_p \to 0$ $N_f = N_L - N_p \to N_L$

G. Dissertori : Results from CMS

Fake ratio

- use MC to correct for remaining signal contamination in control sample, or for p<1</p>
- Extendable to more than one lepton
- Example: di-lepton SUSY search

Intrinsic to the physics process

from PhD thesis, P. Milenovic

Issues when measuring steeply falling spectra

Problem 1 : Absolute scale

- Question : how well do we know the calibration of the variable on the x-axis, eg. jet energy?
- A general problem for a very steeply falling spectrum!

→ an uncertainty of 30% (!) on the measured cross section

108

ETH Institute for Particle Physics
Problem 2 : Resolution

- The finite resolution can distort the spectrum
- Again : Critical because of very steeply falling spectrum!

The Luminosity

Two possible approaches

Needs a very precisely calculable process, eg. W and Z production, as well as low exp. uncertainties

Have to measure:

- beam currents
- effective beam size --> Van der Meer scan !
- then, after absolute calibration:

take stable process to measure evolution in time, eg. number of counts in forward calorimeters

Van der Meer scans

 Move the beams relative to each other and monitor the rate of some basic process, eg. MinBias triggers

Source	Uncertainty (%)
Stability across pixel detector regions	0.3
Pixel gains and pedestals	0.5
Dynamic inefficiencies	0.4
Length-scale correction	0.5
Beam width evolution	0.6
Beam intensity - DCCT	0.3
Beam intensity - FBCT	0.5
Beam intensity - Ghosts	0.2
Scan-to-scan variations	1.5
Afterglow	1.0
Total	2.2

CTEQ

ETH Institute for Particle Physics