## Higgs

V. Ravindran

Harish-Chandra Research Institute, Allahabad

- Higgs Phenomenon
- Higgs in the Standard Model
- Bounds on Higgs mass from theory
- Unitarity
- Landau pole
- Perturbativity
- Bounds on Higgs mass from experiments
- Higgs Decays
- Higgs Production


## Abelian gauge theory

Consider the following Lagrangian

$$
\mathcal{L}_{U(1)}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi
$$

## Abelian gauge theory

Consider the following Lagrangian

$$
\mathcal{L}_{U(1)}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi
$$

The gauge field strength operator and covariant derivative are:

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad \mathcal{D}_{\mu}=\partial_{\mu}-i g A_{\mu}
$$

$$
A_{\mu}(x)-\text { gauge field, } \quad \psi(x)-\text { fermionic } \quad \text { field. }
$$

## Abelian gauge theory

Consider the following Lagrangian

$$
\mathcal{L}_{U(1)}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi
$$

The gauge field strength operator and covariant derivative are:

$$
\begin{gathered}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad \mathcal{D}_{\mu}=\partial_{\mu}-i g A_{\mu} \\
A_{\mu}(x)-\text { gauge field, } \quad \psi(x)-\text { fermionic field. }
\end{gathered}
$$

$\mathcal{L}_{U(1)}$ is invariant under the $\boldsymbol{U}(\mathbf{1})$ guage transformations:

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =e^{-i \alpha(x)} \psi(x) \\
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x) & =A_{\mu}(x)-\frac{1}{g} \partial_{\mu} \alpha(x)
\end{aligned}
$$

## Abelian gauge theory

Consider the following Lagrangian

$$
\mathcal{L}_{U(1)}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi
$$

The gauge field strength operator and covariant derivative are:

$$
\begin{gathered}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \quad \mathcal{D}_{\mu}=\partial_{\mu}-i g A_{\mu} \\
A_{\mu}(x)-\text { gauge field, } \quad \psi(x)-\text { fermionic field. }
\end{gathered}
$$

$\mathcal{L}_{U(1)}$ is invariant under the $\boldsymbol{U}(\mathbf{1})$ guage transformations:

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =e^{-i \alpha(x)} \psi(x) \\
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x) & =A_{\mu}(x)-\frac{1}{g} \partial_{\mu} \alpha(x)
\end{aligned}
$$

Two important observations:

- Gauge invariance forbids mass term for gauge fiel s. $M_{A}^{2} A^{\mu} A_{\mu}$ telm is not allowed
- But vector-like theories allows mass term for fermions because left handed fermions have the same charge as hight handed fermions.


## Gauge invariance and Mass terms

- The mass term for gauge fields is given by

$$
\mathcal{L}_{m_{A}}=\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu}
$$

## Gauge invariance and Mass terms

- The mass term for gauge fields is given by

$$
\mathcal{L}_{m_{A}}=\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu}
$$

Note that $\mathcal{L}_{m_{A}}$ is not invariant under $\boldsymbol{U}(\mathbf{1})$ gauge transformation:

$$
A_{\mu} A^{\mu} \rightarrow A_{\mu} A^{\mu}+\left(-\frac{2}{g} A^{\mu} \partial_{\mu} \alpha+\frac{1}{g^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right)
$$

## Gauge invariance and Mass terms

- The mass term for gauge fields is given by

$$
\mathcal{L}_{m_{A}}=\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu}
$$

Note that $\mathcal{L}_{m_{A}}$ is not invariant under $\boldsymbol{U}(\mathbf{1})$ gauge transformation:

$$
A_{\mu} A^{\mu} \rightarrow A_{\mu} A^{\mu}+\left(-\frac{2}{g} A^{\mu} \partial_{\mu} \alpha+\frac{1}{g^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right)
$$

- Suppose the fermionic fields $\psi_{a}$ have different $\boldsymbol{U}(\mathbf{1})$ charges given by $Q_{a}$. Consider the mass term:

$$
\mathcal{L}_{m_{\psi}}=-\sum_{a b} m_{a b} \bar{\psi}_{a} \psi_{b}
$$

## Gauge invariance and Mass terms

- The mass term for gauge fields is given by

$$
\mathcal{L}_{m_{A}}=\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu}
$$

Note that $\mathcal{L}_{m_{A}}$ is not invariant under $\boldsymbol{U}(1)$ gauge transformation:

$$
A_{\mu} A^{\mu} \rightarrow A_{\mu} A^{\mu}+\left(-\frac{2}{g} A^{\mu} \partial_{\mu} \alpha+\frac{1}{g^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right)
$$

- Suppose the fermionic fields $\psi_{a}$ have different $\boldsymbol{U}(1)$ charges given by $Q_{a}$. Consider the mass term:

$$
\mathcal{L}_{m_{\psi}}=-\sum_{a b} m_{a b} \bar{\psi}_{a} \psi_{b}
$$

Under $\boldsymbol{U}(1)$ :

$$
\psi_{a}(x) \rightarrow \psi_{a}^{\prime}(x)=e^{i \hat{Q} \alpha(x)} \psi_{a}(x)
$$

with $\hat{Q}$ being the charge operator such that $\hat{Q} \psi_{a}=Q_{a} \psi_{a}$. This means that Lagrangian $\mathcal{L}_{m_{\psi}}$ is invariant under $U(1)$ gauge transformation only if $Q_{a}-Q_{b}=0$.

## Gauge invariance and Mass terms

- The mass term for gauge fields is given by

$$
\mathcal{L}_{m_{A}}=\frac{1}{2} m_{A}^{2} A_{\mu} A^{\mu}
$$

Note that $\mathcal{L}_{m_{A}}$ is not invariant under $\boldsymbol{U}(\mathbf{1})$ gauge transformation:

$$
A_{\mu} A^{\mu} \rightarrow A_{\mu} A^{\mu}+\left(-\frac{2}{g} A^{\mu} \partial_{\mu} \alpha+\frac{1}{g^{2}} \partial_{\mu} \alpha \partial^{\mu} \alpha\right)
$$

- Suppose the fermionic fields $\psi_{a}$ have different $\boldsymbol{U}(\mathbf{1})$ charges given by $Q_{a}$. Consider the mass term:

$$
\mathcal{L}_{m_{\psi}}=-\sum_{a b} m_{a b} \bar{\psi}_{a} \psi_{b}
$$

Under $\boldsymbol{U}(\mathbf{1})$ :

$$
\psi_{a}(x) \rightarrow \psi_{a}^{\prime}(x)=e^{i \hat{Q} \alpha(x)} \psi_{a}(x)
$$

with $\hat{Q}$ being the charge operator such that $\hat{Q} \psi_{a}=Q_{a} \psi_{a}$. This means that Lagrangian $\mathcal{L}_{m_{\psi}}$ is invariant under $\boldsymbol{U}(1)$ gauge transformation only if $Q_{a}-Q_{b}=0$.

- Gauge symmetry severely restricts mass terms for gauge field as well as fermionic fields.


## Higgs Phenomenon

- We do see massive vector bosons in Nature and gauge invariance is fundamental concept in particle phsics.
- How to obtain mass terms for gauge and fermion fields in a gauge invariant way.



## Higgs Phenomenon

- We do see massive vector bosons in Nature and gauge invariance is fundamental concept in particle phsics.
- How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
- Introduce a complex scalar field $\boldsymbol{\Phi}(\boldsymbol{x})$ that is charged under the $\boldsymbol{U}(\mathbf{1})$ symmetry and has a non-zero vacuum expectation value in all space and time.
- This field is often called Higgs field.



## Higgs Phenomenon

- We do see massive vector bosons in Nature and gauge invariance is fundamental concept in particle phsics.
- How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
- Introduce a complex scalar field $\boldsymbol{\Phi}(\boldsymbol{x})$ that is charged under the $\boldsymbol{U}(\mathbf{1})$ symmetry and has a non-zero vacuum expectation value in all space and time.
- This field is often called Higgs field.

$$
\begin{array}{r}
\mathcal{L}_{U(1), \Phi}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi \\
+\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger}\left(\mathcal{D}^{\mu} \Phi\right)-V(\Phi)
\end{array}
$$

## Higgs Phenomenon

- We do see massive vector bosons in Nature and gauge invariance is fundamental concept in particle phsics.
- How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
- Introduce a complex scalar field $\Phi(\boldsymbol{x})$ that is charged under the $\boldsymbol{U}(\mathbf{1})$ symmetry and has a non-zero vacuum expectation value in all space and time.
- This field is often called Higgs field.

$$
\begin{array}{r}
\mathcal{L}_{U(1), \Phi}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi \\
+\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger}\left(\mathcal{D}^{\mu} \Phi\right)-V(\Phi)
\end{array}
$$

The potential term is given by

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

## Higgs Phenomenon

- We do see massive vector bosons in Nature and gauge invariance is fundamental concept in particle phsics.
- How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
- Introduce a complex scalar field $\Phi(\boldsymbol{x})$ that is charged under the $\boldsymbol{U}(\mathbf{1})$ symmetry and has a non-zero vacuum expectation value in all space and time.
- This field is often called Higgs field.

$$
\begin{array}{r}
\mathcal{L}_{U(1), \Phi}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}\left(i \gamma^{\mu} \mathcal{D}_{\mu}-m\right) \psi \\
+\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger}\left(\mathcal{D}^{\mu} \Phi\right)-V(\Phi)
\end{array}
$$

The potential term is given by

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

The Lagrangian $\mathcal{L}_{U(1), \Phi}$ is invariant under $\boldsymbol{U}(\mathbf{1})$ gauge transformation:

$$
\begin{aligned}
\Phi(x) \rightarrow \Phi^{\prime}(x) & =e^{-i \alpha(x)} \Phi(x) \\
A_{\mu}(x) \rightarrow A_{\mu}^{\prime}(x) & =A_{\mu}(x)-\frac{1}{g} \partial_{\mu} \alpha(x)
\end{aligned}
$$

## Higgs phenomenon...

If we make a special choice for $\mu^{2}$, that is $\mu^{2}>0$, then the potential term

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

developes non vanishing minima $(\partial V(\Phi) / \partial \Phi=0)$ at

## Higgs phenomenon...

If we make a special choice for $\mu^{2}$, that is $\mu^{2}>0$, then the potential term

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

developes non vanishing minima $(\partial V(\Phi) / \partial \Phi=0)$ at
$|<\Omega| \Phi|\Omega>|=\frac{1}{\sqrt{2}} \sqrt{\frac{\mu^{2}}{\lambda}} \equiv \frac{1}{\sqrt{2}} v, \quad v-$ vacuum expectation $\quad$ value vev

## Higgs phenomenon...

If we make a special choice for $\mu^{2}$, that is $\mu^{2}>0$, then the potential term

$$
V(\Phi)=-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
$$

developes non vanishing minima $(\partial V(\Phi) / \partial \Phi=0)$ at
$\left\lvert\,\langle\Omega| \Phi|\Omega>|=\frac{1}{\sqrt{2}} \sqrt{\frac{\mu^{2}}{\lambda}} \equiv \frac{1}{\sqrt{2}} v\right., \quad v$ - vacuum expectation value vev



## Spontaneous Symmetry Breaking (SSB)




- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate



## Spontaneous Symmetry Breaking (SSB)




- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate
- For $\boldsymbol{\mu}^{2}>0$ the vacuum is infinitely degenerate.


## Spontaneous Symmetry Breaking (SSB)



- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate
- For $\boldsymbol{\mu}^{2}>0$ the vacuum is infinitely degenerate.
- While the Lagrangian of the system is invariant under $\boldsymbol{U}(1)$ gauge symmetry, the vacuum is no longer invariant. This is called Spontaneous Symmetry Breaking.


## Spontaneous Symmetry Breaking (SSB)




- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate
- For $\boldsymbol{\mu}^{2}>0$ the vacuum is infinitely degenerate.
- While the Lagrangian of the system is invariant under $\boldsymbol{U}(1)$ gauge symmetry, the vacuum is no longer invariant. This is called Spontaneous Symmetry Breaking.
\&. It costs no energy for the system to move from one vaccuum to another vacuum in the angular direction while radial direction requires energy.



## Spontaneous Symmetry Breaking (SSB)




- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate
- For $\boldsymbol{\mu}^{2}>0$ the vacuum is infinitely degenerate.
- While the Lagrangian of the system is invariant under $\boldsymbol{U}(\mathbf{1})$ gauge symmetry, the vacuum is no longer invariant. This is called Spontaneous Symmetry Breaking.
\& It costs no energy for the system to move from one vaccuum to another vacuum in the angular direction while radial direction requires energy.
\& Fluctuations around the angular direction correspond to massless modes and those in the radial direction correspond to massive modes.


## Spontaneous Symmetry Breaking (SSB)



- If $\boldsymbol{\mu}^{2}$ were negative, $\boldsymbol{\mu}^{2}<0$, the vacuum expecation value $\boldsymbol{v}=0$, vacuum is non-degenerate
- For $\boldsymbol{\mu}^{2}>0$ the vacuum is infinitely degenerate.
- While the Lagrangian of the system is invariant under $\boldsymbol{U}(\mathbf{1})$ gauge symmetry, the vacuum is no longer invariant. This is called Spontaneous Symmetry Breaking.
\&. It costs no energy for the system to move from one vaccuum to another vacuum in the angular direction while radial direction requires energy.
$\%$ Fluctuations around the angular direction correspond to massless modes and those in the radial direction correspond to massive modes.
$\%$ Massless modes are called Goldston bosons and the massive modes are called Higgs


## Higgs phenomenon

Parameterise the complex scalar $\Phi$ by two real scalars $\phi_{i}, i=1,2$ :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

## Higgs phenomenon

Parameterise the complex scalar $\Phi$ by two real scalars $\phi_{i}, i=1,2$ :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

Make a choice

$$
<\Omega\left|\phi_{1}\right| \Omega>=v, \quad<\Omega\left|\phi_{2}\right| \Omega>=0
$$

## Higgs phenomenon

Parameterise the complex scalar $\Phi$ by two real scalars $\phi_{i}, i=1,2$ :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

Make a choice

$$
<\Omega\left|\phi_{1}\right| \Omega>=v, \quad<\Omega\left|\phi_{2}\right| \Omega>=0
$$

Look at the small oscillations near $v$ denoted by $\Phi^{\prime}$ :

$$
\phi_{1}^{\prime}=\phi_{1}-v, \quad \phi_{2}^{\prime}=\phi_{2} \quad \Longrightarrow \quad<\Omega\left|\Phi^{\prime}\right| \Omega>=0
$$

## Higgs phenomenon

Parameterise the complex scalar $\Phi$ by two real scalars $\phi_{i}, i=1,2$ :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

Make a choice

$$
<\Omega\left|\phi_{1}\right| \Omega>=v, \quad<\Omega\left|\phi_{2}\right| \Omega>=0
$$

Look at the small oscillations near $v$ denoted by $\Phi^{\prime}$ :

$$
\phi_{1}^{\prime}=\phi_{1}-v, \quad \phi_{2}^{\prime}=\phi_{2} \quad \Longrightarrow \quad<\Omega\left|\Phi^{\prime}\right| \Omega>=0
$$

The kinetic term of the scalar field becomes

$$
\begin{aligned}
\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger}\left(\mathcal{D}^{\mu} \Phi\right)= & \frac{1}{2}\left(\partial_{\mu} \phi_{1}^{\prime}+g A_{\mu} \phi_{2}^{\prime}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}^{\prime}-g A_{\mu} \phi_{1}^{\prime}\right)^{2} \\
& -g v A^{\mu}\left(\partial_{\mu} \phi_{2}^{\prime}+g A_{\mu} \phi_{1}^{\prime}\right)+\frac{g^{2} v^{2}}{2} A_{\mu} A^{\mu}
\end{aligned}
$$

## Higgs phenomenon

Parameterise the complex scalar $\Phi$ by two real scalars $\phi_{i}, i=1,2$ :

$$
\Phi=\frac{1}{\sqrt{2}}\left(\phi_{1}+i \phi_{2}\right)
$$

Make a choice

$$
<\Omega\left|\phi_{1}\right| \Omega>=v, \quad<\Omega\left|\phi_{2}\right| \Omega>=0
$$

Look at the small oscillations near $v$ denoted by $\Phi^{\prime}$ :

$$
\phi_{1}^{\prime}=\phi_{1}-v, \quad \phi_{2}^{\prime}=\phi_{2} \quad \Longrightarrow \quad<\Omega\left|\Phi^{\prime}\right| \Omega>=0
$$

The kinetic term of the scalar field becomes

$$
\begin{aligned}
\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger}\left(\mathcal{D}^{\mu} \Phi\right)= & \frac{1}{2}\left(\partial_{\mu} \phi_{1}^{\prime}+g A_{\mu} \phi_{2}^{\prime}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \phi_{2}^{\prime}-g A_{\mu} \phi_{1}^{\prime}\right)^{2} \\
& -g v A^{\mu}\left(\partial_{\mu} \phi_{2}^{\prime}+g A_{\mu} \phi_{1}^{\prime}\right)+\frac{g^{2} v^{2}}{2} A_{\mu} A^{\mu}
\end{aligned}
$$

Pleasant surprise: Mass term for gauge fields

$$
\mathcal{L}_{M_{A}}=\frac{g^{2} v^{2}}{2} A_{\mu} A^{\mu}
$$



## Unitary gauge

Peculiar term: $\phi_{2}$ interacts with $\boldsymbol{A}_{\boldsymbol{\mu}}$ in a peculiar way

$$
\mathcal{L}_{A \phi}=-g v A_{\mu} \partial^{\mu} \phi_{2}^{\prime}
$$

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this peculiar term


## Unitary gauge

Peculiar term: $\phi_{2}$ interacts with $\boldsymbol{A}_{\mu}$ in a peculiar way

$$
\mathcal{L}_{A \phi}=-g v A_{\mu} \partial^{\mu} \phi_{2}^{\prime}
$$

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this peculiar term

$$
\Phi(x)=|\Phi(x)| \exp (i \theta(x))
$$

$|\Phi(x)|$ is the radial part and $\theta(x)$ the angular part of the complex scalar field $\boldsymbol{\Phi}(\boldsymbol{x})$

## Unitary gauge

Peculiar term: $\phi_{2}$ interacts with $\boldsymbol{A}_{\boldsymbol{\mu}}$ in a peculiar way

$$
\mathcal{L}_{A \phi}=-g v A_{\mu} \partial^{\mu} \phi_{2}^{\prime}
$$

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this peculiar term

$$
\Phi(x)=|\Phi(x)| \exp (i \theta(x))
$$

$|\Phi(x)|$ is the radial part and $\theta(x)$ the angular part of the complex scalar field $\Phi(x)$ Small oscillations around the minima can be parameterised as

$$
\Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)) \exp (i \xi(x) / v)
$$

such that

$$
<\Omega|h(x)| \Omega>=0, \quad<\Omega|\xi(x)| \Omega>=0
$$

## Unitary gauge

Peculiar term: $\phi_{2}$ interacts with $\boldsymbol{A}_{\boldsymbol{\mu}}$ in a peculiar way

$$
\mathcal{L}_{A \phi}=-g v A_{\mu} \partial^{\mu} \phi_{2}^{\prime}
$$

Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this peculiar term

$$
\Phi(x)=|\Phi(x)| \exp (i \theta(x))
$$

$|\boldsymbol{\Phi}(\boldsymbol{x})|$ is the radial part and $\boldsymbol{\theta}(\boldsymbol{x})$ the angular part of the complex scalar field $\boldsymbol{\Phi}(\boldsymbol{x})$ Small oscillations around the minima can be parameterised as

$$
\Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)) \exp (i \xi(x) / v)
$$

such that

$$
<\Omega|h(x)| \Omega>=0, \quad<\Omega|\xi(x)| \Omega>=0
$$

For small fluctuations,

$$
\Phi(x)=\frac{1}{\sqrt{2}}(v+h(x)+i \xi(x))+\mathcal{O}\left(h^{2}, \xi^{2}\right)
$$

$h(x)$ and $\xi(x)$ will coincide with $\phi_{1}^{\prime}(x)$ and $\phi_{2}^{\prime}(x)$ respectively.

## Unitary gauge ...

Make a unitary gauge choice through gauge transformation $\left(\Phi \rightarrow \Phi^{U}\right)$ :

$$
\begin{aligned}
\Phi^{U}(x) & =\exp (-i \xi(x) / v) \Phi(x) \\
& =\frac{1}{\sqrt{2}}(v+h(x)) \\
A_{\mu}^{U}(x) & =A_{\mu}(x)-\frac{1}{g v} \partial_{\mu} \xi(x)
\end{aligned}
$$

to remove $\boldsymbol{\xi}(\boldsymbol{x})$ field from the Lagrangian.

## Unitary gauge . . .

Make a unitary gauge choice through gauge transformation $\left(\Phi \rightarrow \Phi^{U}\right)$ :

$$
\begin{aligned}
\Phi^{U}(x) & =\exp (-i \xi(x) / v) \Phi(x) \\
& =\frac{1}{\sqrt{2}}(v+h(x)) \\
A_{\mu}^{U}(x) & =A_{\mu}(x)-\frac{1}{g v} \partial_{\mu} \xi(x)
\end{aligned}
$$

to remove $\xi(x)$ field from the Lagrangian. The covariant derivative becomes

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =\exp (-i \xi(x) / v)\left(\partial_{\mu} \Phi^{U}-i g A_{\mu}^{U} \Phi^{U}\right) \\
& =\exp (-i \xi(x) / v) \frac{1}{\sqrt{2}}\left(\partial_{\mu} h(x)-i g A_{\mu}^{U}(v+h(x))\right)
\end{aligned}
$$

## Unitary gauge . . .

Make a unitary gauge choice through gauge transformation $\left(\Phi \rightarrow \Phi^{U}\right)$ :

$$
\begin{aligned}
\Phi^{U}(x) & =\exp (-i \xi(x) / v) \Phi(x) \\
& =\frac{1}{\sqrt{2}}(v+h(x)) \\
A_{\mu}^{U}(x) & =A_{\mu}(x)-\frac{1}{g v} \partial_{\mu} \xi(x)
\end{aligned}
$$

to remove $\boldsymbol{\xi}(x)$ field from the Lagrangian. The covariant derivative becomes

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =\exp (-i \xi(x) / v)\left(\partial_{\mu} \Phi^{U}-i g A_{\mu}^{U} \Phi^{U}\right) \\
& =\exp (-i \xi(x) / v) \frac{1}{\sqrt{2}}\left(\partial_{\mu} h(x)-i g A_{\mu}^{U}(v+h(x))\right)
\end{aligned}
$$

Kinetic terms of $\boldsymbol{\Phi}$ and $\boldsymbol{A}_{\mu}$ become

$$
\begin{aligned}
\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi & =\frac{1}{2}\left(\partial_{\mu} h(x)-i g A_{\mu}^{U}(v+h(x))\right)^{2} \\
\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} & =\boldsymbol{F}_{\mu \nu}^{U} \boldsymbol{F}^{U \mu \nu}
\end{aligned}
$$

${ }^{\text {where }} F_{\mu \nu}^{U}=\partial_{\mu} A_{\nu}^{U}-\partial_{\nu} A_{\mu}^{U}$

## Unitary gauge . . .

Make a unitary gauge choice through gauge transformation $\left(\Phi \rightarrow \Phi^{U}\right)$ :

$$
\begin{aligned}
\Phi^{U}(x) & =\exp (-i \xi(x) / v) \Phi(x) \\
& =\frac{1}{\sqrt{2}}(v+h(x)) \\
A_{\mu}^{U}(x) & =A_{\mu}(x)-\frac{1}{g v} \partial_{\mu} \xi(x)
\end{aligned}
$$

to remove $\boldsymbol{\xi}(x)$ field from the Lagrangian. The covariant derivative becomes

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =\exp (-i \xi(x) / v)\left(\partial_{\mu} \Phi^{U}-i g A_{\mu}^{U} \Phi^{U}\right) \\
& =\exp (-i \xi(x) / v) \frac{1}{\sqrt{2}}\left(\partial_{\mu} h(x)-i g A_{\mu}^{U}(v+h(x))\right)
\end{aligned}
$$

Kinetic terms of $\boldsymbol{\Phi}$ and $\boldsymbol{A}_{\mu}$ become

$$
\begin{aligned}
\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi & =\frac{1}{2}\left(\partial_{\mu} h(x)-i g A_{\mu}^{U}(v+h(x))\right)^{2} \\
\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} & =\boldsymbol{F}_{\mu \nu}^{U} \boldsymbol{F}^{U \mu \nu}
\end{aligned}
$$

where $\boldsymbol{F}_{\mu \nu}^{U}=\partial_{\mu} A_{\nu}^{U}-\partial_{\nu} A_{\mu}^{U} \quad \xi(x)$ has disappeared but will reappear soon!.

## Unitary gauge . . .

$$
\begin{aligned}
\mathcal{L}_{A, h}= & \frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{1}{4} F_{\mu \nu}^{U} F^{U \mu \nu} \Longleftarrow \mathrm{~K} . \mathrm{E} \text { terms } \\
& -\mu^{2} h^{2}(x)+\frac{1}{2} g^{2} v^{2} A_{\mu}^{U} A^{U \mu} \Longleftarrow \text { mass terms } \\
& +\frac{1}{2} g^{2} A_{\mu}^{U} A^{U \mu} h(x)(2 v+h(x))-\lambda v^{2} h^{3}(x)-\frac{1}{4} \lambda h^{4}(x) \Longleftarrow \text { interaction term }
\end{aligned}
$$

## Unitary gauge . . .

$$
\begin{aligned}
\mathcal{L}_{A, h}= & \frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{1}{4} F_{\mu \nu}^{U} F^{U \mu \nu} \Longleftarrow \mathrm{~K} . \mathrm{E} \text { terms } \\
& -\mu^{2} h^{2}(x)+\frac{1}{2} g^{2} v^{2} A_{\mu}^{U} A^{U \mu} \Longleftarrow \text { mass terms } \\
& +\frac{1}{2} g^{2} A_{\mu}^{U} A^{U \mu} h(x)(2 v+h(x))-\lambda v^{2} h^{3}(x)-\frac{1}{4} \lambda h^{4}(x) \Longleftarrow \text { interaction term }
\end{aligned}
$$

Masses of gauge field and the scalar field:

$$
m_{A}^{2}=g^{2} v^{2}, \quad m_{h}^{2}=\mu^{2}=2 \lambda v
$$

## Unitary gauge . . .

$$
\begin{aligned}
\mathcal{L}_{A, h}= & \frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{1}{4} F_{\mu \nu}^{U} F^{U \mu \nu} \Longleftarrow \mathrm{~K} . \mathrm{E} \text { terms } \\
& -\mu^{2} h^{2}(x)+\frac{1}{2} g^{2} v^{2} A_{\mu}^{U} A^{U \mu} \Longleftarrow \text { mass terms } \\
& +\frac{1}{2} g^{2} A_{\mu}^{U} A^{U \mu} h(x)(2 v+h(x))-\lambda v^{2} h^{3}(x)-\frac{1}{4} \lambda h^{4}(x) \Longleftarrow \text { interaction term }
\end{aligned}
$$

Masses of gauge field and the scalar field:

$$
m_{A}^{2}=g^{2} v^{2}, \quad m_{h}^{2}=\mu^{2}=2 \lambda v
$$

Interaction vertices of $\boldsymbol{h}(\boldsymbol{x})$ and the gauge field $\boldsymbol{A}_{\boldsymbol{\mu}}(\boldsymbol{x})$ are given by
Vertex : $\quad h A_{\mu} A_{\nu} \quad \Longrightarrow \quad 2 i g^{2} v g_{\mu \nu}=i \frac{2 m_{A}^{2}}{v} g_{\mu \nu}$
Vertex : $\quad h h A_{\mu} A_{\nu} \Longrightarrow \quad 2 i g^{2} g_{\mu \nu}=i \frac{2 m_{A}^{2}}{v^{2}} g_{\mu \nu}$

## Unitary gauge . . .

$$
\begin{aligned}
\mathcal{L}_{A, h}= & \frac{1}{2} \partial_{\mu} h \partial^{\mu} h-\frac{1}{4} F_{\mu \nu}^{U} F^{U \mu \nu} \Longleftarrow \mathrm{~K} . \mathrm{E} \text { terms } \\
& -\mu^{2} h^{2}(x)+\frac{1}{2} g^{2} v^{2} A_{\mu}^{U} A^{U \mu} \Longleftarrow \text { mass terms } \\
& +\frac{1}{2} g^{2} A_{\mu}^{U} A^{U \mu} h(x)(2 v+h(x))-\lambda v^{2} h^{3}(x)-\frac{1}{4} \lambda h^{4}(x) \Longleftarrow \text { interaction term }
\end{aligned}
$$

Masses of gauge field and the scalar field:

$$
m_{A}^{2}=g^{2} v^{2}, \quad m_{h}^{2}=\mu^{2}=2 \lambda v
$$

Interaction vertices of $h(x)$ and the gauge field $\boldsymbol{A}_{\mu}(x)$ are given by

$$
\begin{array}{ll}
\text { Vertex : } & h A_{\mu} A_{\nu} \quad \Longrightarrow \quad 2 i g^{2} v g_{\mu \nu}=i \frac{2 m_{A}^{2}}{v} g_{\mu \nu} \\
\text { Vertex : } & h h A_{\mu} A_{\nu} \quad \Longrightarrow \quad 2 i g^{2} g_{\mu \nu}=i \frac{2 m_{A}^{2}}{v^{2}} g_{\mu \nu}
\end{array}
$$

- Massless guage fields have two transverse degrees of freedom while massive ones have two transverse and one longitudinal.
- The disappeared $\xi(x)$ field reappears as longitudinal degrees of freedom of massive gauge fields.


## Fermion mass

Consider the following Yukawa term:

$$
\mathcal{L}_{Y}=Y_{a b} \bar{\psi}_{a} \psi_{b} \Phi+h . c
$$

with $\phi$ is charged with $Q_{\Phi}=Q_{b}-Q_{a}$. The above term is invariant under $U(\mathbf{1})$ gauge symmetry.

## Fermion mass

Consider the following Yukawa term:

$$
\mathcal{L}_{Y}=Y_{a b} \bar{\psi}_{a} \psi_{b} \Phi+h . c
$$

with $\phi$ is charged with $Q_{\Phi}=Q_{b}-Q_{a}$. The above term is invariant under $U(1)$ gauge symmetry. In terms of $h$ field, it becomes

$$
\begin{aligned}
\mathcal{L}_{Y} & =Y_{a b} \bar{\psi}_{a}^{U} \psi_{b}^{U}\left(\frac{h(x)+v}{\sqrt{2}}\right)+h . c \\
& =\frac{Y_{a b} v}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U}+\frac{Y_{a b}}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U} h(x)+h . c
\end{aligned}
$$

## Fermion mass

Consider the following Yukawa term:

$$
\mathcal{L}_{Y}=Y_{a b} \bar{\psi}_{a} \psi_{b} \Phi+h . c
$$

with $\phi$ is charged with $Q_{\Phi}=Q_{b}-Q_{a}$. The above term is invariant under $\boldsymbol{U}(1)$ gauge symmetry. In terms of $h$ field, it becomes

$$
\begin{aligned}
\mathcal{L}_{Y} & =Y_{a b} \bar{\psi}_{a}^{U} \psi_{b}^{U}\left(\frac{h(x)+v}{\sqrt{2}}\right)+h . c \\
& =\frac{Y_{a b} v}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U}+\frac{Y_{a b}}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U} h(x)+h . c
\end{aligned}
$$

Mass of the fermion field in the gauge basis becomes

$$
m_{\psi, a b}=-\frac{Y_{a b} v}{\sqrt{2}}
$$

## Fermion mass

Consider the following Yukawa term:

$$
\mathcal{L}_{Y}=Y_{a b} \bar{\psi}_{a} \psi_{b} \Phi+h . c
$$

with $\phi$ is charged with $Q_{\Phi}=Q_{b}-Q_{a}$. The above term is invariant under $\boldsymbol{U}(1)$ gauge symmetry. In terms of $\boldsymbol{h}$ field, it becomes

$$
\begin{aligned}
\mathcal{L}_{Y} & =Y_{a b} \bar{\psi}_{a}^{U} \psi_{b}^{U}\left(\frac{h(x)+v}{\sqrt{2}}\right)+h . c \\
& =\frac{Y_{a b} v}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U}+\frac{Y_{a b}}{\sqrt{2}} \bar{\psi}_{a}^{U} \psi_{b}^{U} h(x)+h . c
\end{aligned}
$$

Mass of the fermion field in the gauge basis becomes

$$
m_{\psi, a b}=-\frac{Y_{a b} v}{\sqrt{2}}
$$

The interaction of $h$ and fermions gives

$$
\text { Vertex : } \quad h(x) \bar{\psi}_{a} \psi_{b} \quad \rightarrow \quad i \frac{Y}{\sqrt{2}}=-i \frac{m_{\psi, a b}}{v}
$$

## Goldstone theorem

Consider a set of real fields $\boldsymbol{\Phi}_{\boldsymbol{i}}$ that transform according to some representation of the gauge symmetry group $G$ that has $n$ generators.

$$
\Phi_{i} \rightarrow U_{i j}(\zeta(x)) \Phi_{i}(x), \quad U(\zeta(x))=\exp (i T \cdot \zeta(\mathrm{x}))
$$

where $\boldsymbol{U}(\zeta)$ is an element of the group $G$ and $T^{a} \quad(a=1, \cdots, n)$ are its generators.

## Goldstone theorem

Consider a set of real fields $\boldsymbol{\Phi}_{i}$ that transform according to some representation of the gauge symmetry group $G$ that has $n$ generators.

$$
\Phi_{i} \rightarrow U_{i j}(\zeta(x)) \Phi_{i}(x), \quad U(\zeta(x))=\exp (i \mathrm{~T} \cdot \zeta(\mathrm{x}))
$$

where $\boldsymbol{U}(\zeta)$ is an element of the group $G$ and $T^{a} \quad(a=1, \cdots, n)$ are its generators. For infinitesimal transformation $\zeta=\epsilon \ll \mathbf{1}$,

$$
\Phi_{i} \rightarrow \Phi_{i}+i \epsilon^{a} T_{i j}^{a} \Phi_{j}, \quad a=1, \ldots, n
$$

## Goldstone theorem

Consider a set of real fields $\boldsymbol{\Phi}_{i}$ that transform according to some representation of the gauge symmetry group $G$ that has $n$ generators.

$$
\Phi_{i} \rightarrow U_{i j}(\zeta(x)) \Phi_{i}(x), \quad U(\zeta(x))=\exp (i \mathrm{~T} \cdot \zeta(\mathrm{x}))
$$

where $U(\zeta)$ is an element of the group $G$ and $T^{a} \quad(a=1, \cdots, n)$ are its generators. For infinitesimal transformation $\zeta=\epsilon \ll 1$,

$$
\Phi_{i} \rightarrow \Phi_{i}+i \epsilon^{a} \boldsymbol{T}_{i j}^{a} \Phi_{j}, \quad a=1, \ldots, n
$$

If the potential $V\left(\Phi_{i}\right)$ is invariant under $G$,

$$
\delta V=\frac{\partial V}{\partial \Phi_{i}} \delta \Phi_{i}=i \epsilon^{a} \frac{\partial V}{\partial \Phi_{i}} T_{i j}^{a} \Phi_{j}=0
$$

Since $\epsilon$ are arbitrary,

$$
\frac{\partial V}{\partial \Phi_{i}} T_{i j}^{a} \Phi_{j}=0, \quad a=1, \ldots, n
$$

## Goldstone theorem

Consider a set of real fields $\boldsymbol{\Phi}_{i}$ that transform according to some representation of the gauge symmetry group $G$ that has $n$ generators.

$$
\Phi_{i} \rightarrow U_{i j}(\zeta(x)) \Phi_{i}(x), \quad U(\zeta(x))=\exp (i \mathrm{~T} \cdot \zeta(\mathrm{x}))
$$

where $U(\zeta)$ is an element of the group $G$ and $T^{a} \quad(a=1, \cdots, n)$ are its generators. For infinitesimal transformation $\zeta=\epsilon \ll 1$,

$$
\Phi_{i} \rightarrow \Phi_{i}+i \epsilon^{a} \boldsymbol{T}_{i j}^{a} \Phi_{j}, \quad a=1, \ldots, n
$$

If the potential $V\left(\boldsymbol{\Phi}_{i}\right)$ is invariant under $G$,

$$
\delta V=\frac{\partial V}{\partial \Phi_{i}} \delta \Phi_{i}=i \epsilon^{a} \frac{\partial V}{\partial \Phi_{i}} T_{i j}^{a} \Phi_{j}=0
$$

Since $\epsilon$ are arbitrary,

$$
\frac{\partial V}{\partial \Phi_{i}} T_{i j}^{a} \Phi_{j}=0, \quad a=1, \ldots, n
$$

Defferenting with respect to $\boldsymbol{\Phi}_{\boldsymbol{k}}$

$$
\frac{\partial^{2} V}{\partial \Phi_{k} \partial \Phi_{i}} T_{i j}^{a} \Phi_{j}+\frac{\partial V}{\partial \Phi_{i}} T_{i k}^{a}=0
$$



## Goldstone theorem

If $\boldsymbol{V}$ develops minima at $\Phi_{j}=\boldsymbol{v}_{\boldsymbol{j}}$, second term vanishes

$$
\left.\frac{\partial^{2} V}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}} T_{i j}^{a} v_{j}=0
$$

## Goldstone theorem

If $\boldsymbol{V}$ develops minima at $\Phi_{j}=\boldsymbol{v}_{\boldsymbol{j}}$, second term vanishes

$$
\left.\frac{\partial^{2} V}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}} T_{i j}^{a} v_{j}=0
$$

Expanding the potential around $\boldsymbol{\Phi}_{j}=v_{j}$,

$$
V(\Phi)=V\left(v_{j}\right)+\left.\frac{1}{2} \frac{\partial^{2} V(\Phi)}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}}\left(\Phi_{k}-v_{j}\right)\left(\Phi_{i}-v_{j}\right)+\cdots
$$

The mass square matrix $\mathbf{M}_{\boldsymbol{k i}}^{2}$ :

$$
\left.\frac{\partial^{2} V(\Phi)}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}}=\mathrm{M}_{k i}^{2} \Longrightarrow \mathrm{M}_{k i}^{2}\left(T_{i j}^{a} v_{j}\right)=0
$$

## Goldstone theorem

If $\boldsymbol{V}$ develops minima at $\Phi_{j}=\boldsymbol{v}_{\boldsymbol{j}}$, second term vanishes

$$
\left.\frac{\partial^{2} V}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}} T_{i j}^{a} v_{j}=0
$$

Expanding the potential around $\Phi_{j}=\boldsymbol{v}_{j}$,

$$
V(\Phi)=V\left(v_{j}\right)+\left.\frac{1}{2} \frac{\partial^{2} V(\Phi)}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}}\left(\Phi_{k}-v_{j}\right)\left(\Phi_{i}-v_{j}\right)+\cdots
$$

The mass square matrix $\mathrm{M}_{\boldsymbol{k i}}^{2}$ :

$$
\left.\frac{\partial^{2} V(\Phi)}{\partial \Phi_{k} \partial \Phi_{i}}\right|_{\Phi_{j}=v_{j}}=\mathrm{M}_{k i}^{2} \Longrightarrow \mathrm{M}_{k i}^{2}\left(T_{i j}^{a} v_{j}\right)=0
$$

Suppose $G$ has a subgroup $G^{\prime}$ with $n^{\prime}$ generators which leaves the vacuum invariant:

$$
\begin{array}{ll}
T_{i j}^{b} v_{j}=0, & \text { for } b=1, \ldots, n^{\prime} \\
T_{i j}^{c} v_{j} \neq 0, & \text { for } c=n^{\prime}+1, \ldots, n \Longleftarrow \text { unbroken generators } \\
\text { broken generators }
\end{array}
$$

- If $T^{a}$ are linearly independent, it is clear that $M^{2}$ has $n-n^{\prime}$ zero eigen values.
- Goldston theorem: spontaneous symmetry breaking implies existence of massless spinless particle. The number of spontaneously broken generators = number of massless fields.
- These spinless,massless particles are called Goldstone bosons.


## Gauge fields in the Standard Model

$S U(2)_{L} \times U(1)_{Y}$ invariant gauge field Lagrangian:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}
$$

## Gauge fields in the Standard Model

$S U(2)_{L} \times U(1)_{Y}$ invariant gauge field Lagrangian:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}
$$

where the field strength tensors for $S \boldsymbol{U}(2)_{L}$ gauge field $\boldsymbol{A}_{\mu}^{i}$ and $\boldsymbol{U}(1)_{Y}$ gauge field $B_{\mu}$ are

$$
\begin{aligned}
F_{\mu \nu}^{i} & =\partial_{\mu} A_{\nu}^{i}-\partial_{\nu} A_{\mu}^{i}+g \epsilon^{i j k} A_{\mu}^{j} A_{\nu}^{k}, \quad i=1,2,3 \\
G_{\mu \nu} & =\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
\end{aligned}
$$

## Gauge fields in the Standard Model

$S U(2)_{L} \times U(1)_{Y}$ invariant gauge field Lagrangian:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}
$$

where the field strength tensors for $S \boldsymbol{U}(2)_{L}$ gauge field $\boldsymbol{A}_{\mu}^{i}$ and $\boldsymbol{U}(1)_{Y}$ gauge field $B_{\mu}$ are

$$
\begin{aligned}
F_{\mu \nu}^{i} & =\partial_{\mu} A_{\nu}^{i}-\partial_{\nu} A_{\mu}^{i}+g \epsilon^{i j k} A_{\mu}^{j} A_{\nu}^{k}, \quad i=1,2,3 \\
G_{\mu \nu} & =\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
\end{aligned}
$$

The $\boldsymbol{S} \boldsymbol{U}(2)_{L} \times \boldsymbol{U}(1)_{Y}$ gauge transformations are given by

$$
\begin{aligned}
\frac{\tau \cdot \mathbf{A}_{\mu}}{2} & \rightarrow \quad U(\theta)\left(\frac{\tau \cdot \mathbf{A}_{\mu}}{2}\right) U^{-1}(\theta)-\frac{i}{g}\left(\partial_{\mu} U(\theta)\right) U^{-1}(\theta) \\
B_{\mu} & \rightarrow \quad B_{\mu}-\frac{i}{g^{\prime}}\left(\partial_{\mu} U(\theta)\right) U^{-1}(\theta)
\end{aligned}
$$

## Gauge fields in the Standard Model

$S U(2)_{L} \times U(1)_{Y}$ invariant gauge field Lagrangian:

$$
\mathcal{L}_{1}=-\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}-\frac{1}{4} G_{\mu \nu} G^{\mu \nu}
$$

where the field strength tensors for $\boldsymbol{S U ( 2 ) _ { L }}$ gauge field $\boldsymbol{A}_{\mu}^{i}$ and $\boldsymbol{U}(\mathbf{1})_{Y}$ gauge field $B_{\mu}$ are

$$
\begin{aligned}
F_{\mu \nu}^{i} & =\partial_{\mu} A_{\nu}^{i}-\partial_{\nu} A_{\mu}^{i}+g \epsilon^{i j k} A_{\mu}^{j} A_{\nu}^{k}, \quad i=1,2,3 \\
G_{\mu \nu} & =\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu}
\end{aligned}
$$

The $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})_{L} \times \boldsymbol{U}(\mathbf{1})_{Y}$ gauge transformations are given by

$$
\begin{aligned}
\frac{\tau \cdot \mathbf{A}_{\mu}}{2} & \rightarrow \quad U(\theta)\left(\frac{\tau \cdot \mathbf{A}_{\mu}}{2}\right) U^{-1}(\theta)-\frac{i}{g}\left(\partial_{\mu} U(\theta)\right) U^{-1}(\theta) \\
B_{\mu} & \rightarrow \quad B_{\mu}-\frac{i}{g^{\prime}}\left(\partial_{\mu} U(\theta)\right) U^{-1}(\theta)
\end{aligned}
$$

- for $S U(2)_{L}$,

$$
U(\theta)=\exp \left(-i \frac{\tau}{2} \cdot \theta(\mathrm{x})\right) \quad \text { with } \quad \tau^{i}(i=1,2,3) \quad \text { are pauli matrices }
$$

- for $U(1)_{Y}$,

$$
U(\theta)=\exp (-i \mathrm{Y} \theta(\mathrm{x}) / 2), \quad \text { with } \quad \mathrm{Y} \quad \text { hyper } \quad \text { charge }
$$

## Fermion fields in the Standard Model

The $\boldsymbol{S U ( 2 )})_{L} \times \boldsymbol{U}(1)_{Y}$ gauge invariant fermion part of the Lagrangian:

$$
\mathcal{L}_{2}=\bar{\psi} i \gamma_{\mu} \mathcal{D}^{\mu} \psi \quad \psi:\left\{L=\binom{\nu_{L}}{e_{L}}, e_{R}, Q=\binom{u_{L}}{d_{L}}, u_{R}, d_{R}\right\}
$$

## Fermion fields in the Standard Model

The $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})_{L} \times \boldsymbol{U}(\mathbf{1})_{Y}$ gauge invariant fermion part of the Lagrangian:

$$
\mathcal{L}_{2}=\bar{\psi} i \gamma_{\mu} \mathcal{D}^{\mu} \psi \quad \psi:\left\{L=\binom{\nu_{L}}{e_{L}}, e_{R}, Q=\binom{u_{L}}{d_{L}}, u_{R}, d_{R}\right\}
$$

where the covariant derivative is given by

$$
\mathcal{D}_{\mu} \psi=\left(\partial_{\mu}-i g \hat{\mathbf{T}} \cdot \mathbf{A}_{\mu}-i g^{\prime} \frac{\hat{\mathbf{Y}}}{2} B_{\mu}\right) \psi
$$

## Fermion fields in the Standard Model

The $\boldsymbol{S U}(\mathbf{2})_{L} \times \boldsymbol{U}(\mathbf{1})_{Y}$ gauge invariant fermion part of the Lagrangian:

$$
\mathcal{L}_{2}=\bar{\psi} i \gamma_{\mu} \mathcal{D}^{\mu} \psi \quad \psi:\left\{L=\binom{\nu_{L}}{e_{L}}, e_{R}, Q=\binom{u_{L}}{d_{L}}, u_{R}, d_{R}\right\}
$$

where the covariant derivative is given by

$$
\mathcal{D}_{\mu} \psi=\left(\partial_{\mu}-i g \hat{\mathbf{T}} \cdot \mathbf{A}_{\mu}-i g^{\prime} \frac{\hat{\mathbf{Y}}}{2} B_{\mu}\right) \psi
$$

Under $\boldsymbol{S U}(\mathbf{2})_{L} \times \boldsymbol{U}(\mathbf{1})_{Y}$, the fermion field transforms as

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =\exp \left(-i \frac{\tau}{2} \cdot \theta(\mathrm{x})\right) \psi(x) \\
\psi(x) \rightarrow \psi^{\prime}(x) & =\exp \left(-i \frac{\hat{\mathrm{Y}} \theta^{\prime}(\mathrm{x})}{2}\right) \psi(x)
\end{aligned}
$$

## Fermion fields in the Standard Model

The $\boldsymbol{S} \boldsymbol{U}(\mathbf{2})_{L} \times \boldsymbol{U}(1)_{Y}$ gauge invariant fermion part of the Lagrangian:

$$
\mathcal{L}_{2}=\bar{\psi} i \gamma_{\mu} \mathcal{D}^{\mu} \psi \quad \psi:\left\{L=\binom{\nu_{L}}{e_{L}}, e_{R}, Q=\binom{u_{L}}{d_{L}}, u_{R}, d_{R}\right\}
$$

where the covariant derivative is given by

$$
\mathcal{D}_{\mu} \psi=\left(\partial_{\mu}-i g \hat{\mathrm{~T}} \cdot \mathbf{A}_{\mu}-i g^{\prime} \frac{\hat{\mathbf{Y}}}{2} B_{\mu}\right) \psi
$$

Under $\boldsymbol{S U}(\mathbf{2})_{L} \times \boldsymbol{U}(\mathbf{1})_{Y}$, the fermion field transforms as

$$
\begin{aligned}
\psi(x) \rightarrow \psi^{\prime}(x) & =\exp \left(-i \frac{\tau}{2} \cdot \theta(\mathrm{x})\right) \psi(x) \\
\psi(x) \rightarrow \psi^{\prime}(x) & =\exp \left(-i \frac{\hat{\mathrm{Y}} \theta^{\prime}(\mathrm{x})}{2}\right) \psi(x)
\end{aligned}
$$

Since $\hat{\mathbf{T}} L=\frac{\tau}{2} L, \quad \frac{\hat{\mathbf{Y}}}{2} L=-\frac{1}{2} L, \quad \hat{\mathrm{~T}} e_{R}=0, \quad \frac{\hat{\mathbf{Y}}}{2} e_{R}=-e_{R}$,

$$
\begin{aligned}
\mathcal{D}_{\mu} L & =\left(\partial_{\mu}-i \frac{g}{2} \tau \cdot \mathbf{A}_{\mu}+i \frac{g^{\prime}}{2} B_{\mu}\right) L \\
\mathcal{D}_{\mu} e_{R} & =\left(\partial_{\mu}+i g^{\prime} B_{\mu}\right) e_{R}
\end{aligned}
$$

## Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}
$$

## Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}
$$

It is done through the introduction of complex scalar field

$$
\Phi=\binom{\Phi^{+}}{\Phi^{0}}, \quad S U(2) \quad \text { doublet, } \quad Y(\Phi)=1
$$

## Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}
$$

It is done through the introduction of complex scalar field

$$
\Phi=\binom{\Phi^{+}}{\Phi^{0}}, \quad S U(2) \quad \text { doublet, } \quad Y(\Phi)=1
$$

- The $S U(2)_{L} \times U(1)_{Y}$ gauge invariant Lagrangian is given by

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

## Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}
$$

It is done through the introduction of complex scalar field

$$
\Phi=\binom{\Phi^{+}}{\Phi^{0}}, \quad S U(2) \quad \text { doublet, } \quad Y(\Phi)=1
$$

- The $S U(2)_{L} \times U(1)_{Y}$ gauge invariant Lagrangian is given by

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

where

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =\left(\partial_{\mu}-\frac{i}{2} g \tau \cdot A_{\mu}-\frac{i}{2} g^{\prime} B_{\mu}\right) \Phi \\
V(\Phi) & =-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
\end{aligned}
$$

## Scalar field and Yukawa sectors in the SM

The spontaneous symmetry breaking

$$
S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{e m}
$$

It is done through the introduction of complex scalar field

$$
\Phi=\binom{\Phi^{+}}{\Phi^{0}}, \quad S U(2) \quad \text { doublet, } \quad Y(\Phi)=1
$$

- The $S U(2)_{L} \times U(1)_{Y}$ gauge invariant Lagrangian is given by

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

where

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =\left(\partial_{\mu}-\frac{i}{2} g \tau \cdot A_{\mu}-\frac{i}{2} g^{\prime} B_{\mu}\right) \Phi \\
V(\Phi) & =-\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}
\end{aligned}
$$

- The $\boldsymbol{S U ( 2 )})_{L} \times U(1)_{Y}$ invariant Yukawa interaction Lagrangian is given by

$$
\mathcal{L}_{4}=Y_{e} \bar{L} \Phi e_{R}+Y_{u} \bar{Q}_{L} \tilde{\Phi} u_{R}+Y_{d} \bar{Q}_{L} \Phi d_{R}+\text { h.c }
$$

where $\tilde{\Phi}=i \tau_{2} \Phi^{*}$ with $Y(\tilde{\Phi})=-1$

## Spontaneous Symmetry Breaking in the SM

For $\boldsymbol{\mu}^{\mathbf{2}}>\mathbf{0}$, the vacuum of this theory is spontaneously broken and the complex scalar field acquires vacuum expectation value:

$$
|<\Omega| \Phi|\Omega>|=\binom{0}{\frac{v}{\sqrt{2}}} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$



## Spontaneous Symmetry Breaking in the SM

For $\boldsymbol{\mu}^{\mathbf{2}}>0$, the vacuum of this theory is spontaneously broken and the complex scalar field acquires vacuum expectation value:

$$
|<\Omega| \Phi|\Omega>|=\binom{0}{\frac{v}{\sqrt{2}}} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$

If we parametrize $\Phi(x)$ in terms of four real fields $\left(\Phi(x): h(x), \zeta^{1}(x), \zeta^{2}(x), \zeta^{3}(x)\right)$ as

$$
\Phi(x)=U^{-1}(\zeta)\binom{0}{\frac{v+h(x)}{\sqrt{2}}}, \quad U(\zeta)=\exp (-i \zeta(x) \cdot \tau / v)
$$

## Spontaneous Symmetry Breaking in the SM

For $\mu^{2}>0$, the vacuum of this theory is spontaneously broken and the complex scalar field acquires vacuum expectation value:

$$
|<\Omega| \Phi|\Omega>|=\binom{0}{\frac{v}{\sqrt{2}}} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$

If we parametrize $\Phi(x)$ in terms of four real fields $\left(\Phi(x): h(x), \zeta^{1}(x), \zeta^{2}(x), \zeta^{3}(x)\right)$ as

$$
\Phi(x)=U^{-1}(\zeta)\binom{0}{\frac{v+h(x)}{\sqrt{2}}}, \quad U(\zeta)=\exp (-i \zeta(x) \cdot \tau / v)
$$

such that

$$
<\Omega\left|\zeta_{i}\right| \Omega>=<\Omega|h| \Omega>=0
$$

## Spontaneous Symmetry Breaking in the SM

For $\boldsymbol{\mu}^{\mathbf{2}}>0$, the vacuum of this theory is spontaneously broken and the complex scalar field acquires vacuum expectation value:

$$
|<\Omega| \Phi|\Omega>|=\binom{0}{\frac{v}{\sqrt{2}}} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$

If we parametrize $\Phi(x)$ in terms of four real fields $\left(\Phi(x): h(x), \zeta^{1}(x), \zeta^{2}(x), \zeta^{3}(x)\right)$ as

$$
\Phi(x)=U^{-1}(\zeta)\binom{0}{\frac{v+h(x)}{\sqrt{2}}}, \quad U(\zeta)=\exp (-i \zeta(x) \cdot \tau / v)
$$

such that

$$
<\Omega\left|\zeta_{i}\right| \Omega>=<\Omega|h| \Omega>=0
$$

The $\zeta_{i}(x)$ fields can be gauged away by the unitary gauge transformations

$$
\Phi^{U}=U(\zeta) \Phi=\binom{0}{\frac{v+h(x)}{\sqrt{2}}}=\frac{v+h(x)}{\sqrt{2}} \quad \chi \quad \chi=\binom{0}{1}
$$

## Spontaneous Symmetry Breaking in the SM

For $\boldsymbol{\mu}^{\mathbf{2}}>0$, the vacuum of this theory is spontaneously broken and the complex scalar field acquires vacuum expectation value:

$$
|<\Omega| \Phi|\Omega>|=\binom{0}{\frac{v}{\sqrt{2}}} \quad v=\sqrt{\frac{\mu^{2}}{\lambda}}
$$

If we parametrize $\Phi(x)$ in terms of four real fields $\left(\Phi(x): h(x), \zeta^{1}(x), \zeta^{2}(x), \zeta^{3}(x)\right)$ as

$$
\Phi(x)=U^{-1}(\zeta)\binom{0}{\frac{v+h(x)}{\sqrt{2}}}, \quad U(\zeta)=\exp (-i \zeta(x) \cdot \tau / v)
$$

such that

$$
<\Omega\left|\zeta_{i}\right| \Omega>=<\Omega|h| \Omega>=0
$$

The $\zeta_{i}(x)$ fields can be gauged away by the unitary gauge transformations

$$
\Phi^{U}=U(\zeta) \Phi=\binom{0}{\frac{v+h(x)}{\sqrt{2}}}=\frac{v+h(x)}{\sqrt{2}} \quad \chi \quad \chi=\binom{0}{1}
$$

- $\boldsymbol{\zeta}_{\boldsymbol{i}}(\boldsymbol{x})$ are called Goldstone bosons (massless,spinless)
- $\boldsymbol{h}(\boldsymbol{x})$ is called the Higgs boson.


## Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

$$
\begin{aligned}
L^{U} & =U(\zeta) L, \quad e_{R}^{U}=e_{R} \\
Q_{L}^{U} & =U(\zeta) Q_{L}, \quad u_{R}^{U}=u_{R}, \quad d_{R}^{U}=d_{R}
\end{aligned}
$$

## Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

$$
\begin{aligned}
L^{U} & =U(\zeta) L, \quad e_{R}^{U}=e_{R} \\
Q_{L}^{U} & =U(\zeta) Q_{L}, \quad u_{R}^{U}=u_{R}, \quad d_{R}^{U}=d_{R}
\end{aligned}
$$

The gauge fields in the unitary gauge are given by

$$
\begin{aligned}
\frac{\tau \cdot \mathbf{A}_{\mu}^{U}}{2} & =U(\zeta)\left(\frac{\tau \cdot \mathbf{A}_{\mu}}{2}\right) U^{-1}(\zeta)-\frac{i}{g}\left(\partial_{\mu} U(\zeta)\right) U^{-1}(\zeta) \\
B_{\mu}^{U} & =B_{\mu}
\end{aligned}
$$

## Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

$$
\begin{aligned}
L^{U} & =U(\zeta) L, \quad e_{R}^{U}=e_{R} \\
Q_{L}^{U} & =U(\zeta) Q_{L}, \quad u_{R}^{U}=u_{R}, \quad d_{R}^{U}=d_{R}
\end{aligned}
$$

The gauge fields in the unitary gauge are given by

$$
\begin{aligned}
\frac{\tau \cdot \mathbf{A}_{\mu}^{U}}{2} & =U(\zeta)\left(\frac{\tau \cdot \mathbf{A}_{\mu}}{2}\right) U^{-1}(\zeta)-\frac{i}{g}\left(\partial_{\mu} U(\zeta)\right) U^{-1}(\zeta) \\
B_{\mu}^{U} & =B_{\mu}
\end{aligned}
$$

Kinetic terms of gauge fields become

$$
\begin{aligned}
F_{\mu \nu}^{i} F^{i \mu \nu} & =\boldsymbol{F}_{\mu \nu}^{U i} \boldsymbol{F}^{U i \mu \nu} \\
G_{\mu \nu} G^{\mu \nu} & =G_{\mu \nu}^{U} G^{U \mu \nu}
\end{aligned}
$$

## Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

$$
\begin{aligned}
L^{U} & =U(\zeta) L, \quad e_{R}^{U}=e_{R} \\
Q_{L}^{U} & =U(\zeta) Q_{L}, \quad u_{R}^{U}=u_{R}, \quad d_{R}^{U}=d_{R}
\end{aligned}
$$

The gauge fields in the unitary gauge are given by

$$
\begin{aligned}
\frac{\tau \cdot \mathbf{A}_{\mu}^{U}}{2} & =U(\zeta)\left(\frac{\tau \cdot \mathbf{A}_{\mu}}{2}\right) U^{-1}(\zeta)-\frac{i}{g}\left(\partial_{\mu} U(\zeta)\right) U^{-1}(\zeta) \\
B_{\mu}^{U} & =B_{\mu}
\end{aligned}
$$

Kinetic terms of gauge fields become
where

$$
\begin{aligned}
\boldsymbol{F}_{\mu \nu}^{i} \boldsymbol{F}^{i \mu \nu} & =\boldsymbol{F}_{\mu \nu}^{U i} \boldsymbol{F}^{U i \mu \nu} \\
G_{\mu \nu} G^{\mu \nu} & =G_{\mu \nu}^{U} G^{U \mu \nu}
\end{aligned}
$$

$$
\begin{aligned}
F_{\mu \nu}^{U i} & =\partial_{\mu} A_{\nu}^{U i}-\partial_{\nu} A_{\mu}^{U i}+g \epsilon^{i j k} A_{\mu}^{U j} A_{\nu}^{U k} \\
G_{\mu \nu}^{U} & =\partial_{\mu} B_{\nu}^{U}-\partial_{\nu} B_{\mu}^{U}
\end{aligned}
$$

```
Masses of the Higgs boson and the fermions
```

Consider the scalar field part of the Lagrangian

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

## Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

In the unitary gauge

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =U^{-1}(\zeta)\left(\partial_{\mu}-i \frac{g}{2} \tau \cdot A_{\mu}^{U}-i \frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{v+h(x)}{\sqrt{2}}\right) \chi \\
V(\Phi) & =\mu^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4}
\end{aligned}
$$

## Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

In the unitary gauge

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =U^{-1}(\zeta)\left(\partial_{\mu}-i \frac{g}{2} \tau \cdot A_{\mu}^{U}-i \frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{v+h(x)}{\sqrt{2}}\right) \chi \\
V(\Phi) & =\mu^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4}
\end{aligned}
$$

The mass of the $h$ field (Higgs boson) is given by

$$
m_{h}^{2}=2 \mu^{2}=2 \lambda v^{2}
$$

## Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

In the unitary gauge

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =U^{-1}(\zeta)\left(\partial_{\mu}-i \frac{g}{2} \tau \cdot A_{\mu}^{U}-i \frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{v+h(x)}{\sqrt{2}}\right) \chi \\
V(\Phi) & =\mu^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4}
\end{aligned}
$$

The mass of the $\boldsymbol{h}$ field (Higgs boson) is given by

$$
m_{h}^{2}=2 \mu^{2}=2 \lambda v^{2}
$$

The Yukawa part of the Lagrangian in the Unitary gauge is given by

$$
\mathcal{L}_{4}=\left(\frac{h(x)+v}{\sqrt{2}}\right)\left(Y_{e} \bar{e}_{L}^{U} e_{R}^{U}+Y_{u} \bar{u}_{L}^{U} u_{R}^{U}+Y_{d} \bar{d}_{L}^{U} d_{R}^{U}\right)+h . c
$$

## Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

$$
\mathcal{L}_{3}=\left(\mathcal{D}_{\mu} \Phi\right)^{\dagger} \mathcal{D}^{\mu} \Phi-V(\Phi)
$$

In the unitary gauge

$$
\begin{aligned}
\mathcal{D}_{\mu} \Phi & =U^{-1}(\zeta)\left(\partial_{\mu}-i \frac{g}{2} \tau \cdot A_{\mu}^{U}-i \frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{v+h(x)}{\sqrt{2}}\right) \chi \\
V(\Phi) & =\mu^{2} h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4}
\end{aligned}
$$

The mass of the $\boldsymbol{h}$ field (Higgs boson) is given by

$$
m_{h}^{2}=2 \mu^{2}=2 \lambda v^{2}
$$

The Yukawa part of the Lagrangian in the Unitary gauge is given by

$$
\mathcal{L}_{4}=\left(\frac{h(x)+v}{\sqrt{2}}\right)\left(Y_{e} \bar{e}_{L}^{U} e_{R}^{U}+Y_{u} \bar{u}_{L}^{U} u_{R}^{U}+Y_{d} \bar{d}_{L}^{U} d_{R}^{U}\right)+h . c
$$

The fermions masses and their interaction with $\boldsymbol{h}(\boldsymbol{x})$

$$
m_{i}=\frac{Y_{i} v}{\sqrt{2}}, \quad i=e, u, d, \quad h(x) \bar{Q} Q \Longrightarrow i \frac{m_{Q}}{v} \quad Q=\tau, b, t
$$

## Masses of $W^{ \pm}$bosons

$$
\begin{aligned}
\left|\mathcal{D}_{\mu} \Phi\right|^{2} & \Longrightarrow \frac{v^{2}}{2}\left(1+\frac{h(x)}{v}\right)^{2} \chi^{\dagger}\left(\frac{g}{2} \tau \cdot A_{\mu}^{U}+\frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{g}{2} \tau \cdot A^{U \mu}+\frac{g^{\prime}}{2} B^{U \mu}\right) \chi \\
& \left.=\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g^{2}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]+\left[g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2}\right]\right)
\end{aligned}
$$

## Masses of $W^{ \pm}$bosons

$$
\begin{aligned}
\left|\mathcal{D}_{\mu} \Phi\right|^{2} & \Longrightarrow \frac{v^{2}}{2}\left(1+\frac{h(x)}{v}\right)^{2} \chi^{\dagger}\left(\frac{g}{2} \tau \cdot A_{\mu}^{U}+\frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{g}{2} \tau \cdot A^{U \mu}+\frac{g^{\prime}}{2} B^{U \mu}\right) \chi \\
& \left.=\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g^{2}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]+\left[g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2}\right]\right)
\end{aligned}
$$

Defining

$$
W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{U 1} \mp i A_{\mu}^{U 2}\right)
$$

## Masses of $W^{ \pm}$bosons

$$
\begin{aligned}
\left|\mathcal{D}_{\mu} \Phi\right|^{2} & \Longrightarrow \frac{v^{2}}{2}\left(1+\frac{h(x)}{v}\right)^{2} \chi^{\dagger}\left(\frac{g}{2} \tau \cdot A_{\mu}^{U}+\frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{g}{2} \tau \cdot A^{U \mu}+\frac{g^{\prime}}{2} B^{U \mu}\right) \chi \\
& \left.=\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g^{2}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]+\left[g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2}\right]\right)
\end{aligned}
$$

Defining

$$
W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{U 1} \mp i A_{\mu}^{U 2}\right)
$$

the $\boldsymbol{h}(\boldsymbol{x})$ independent term gives

$$
\frac{g^{2} v^{2}}{8}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]\left(1+\frac{h(x)}{v}\right)^{2} \Longrightarrow \frac{g^{2} v^{2}}{8} W_{\mu}^{+} W^{-\mu}\left(1+\frac{h(x)}{v}\right)^{2}
$$

## Masses of $W^{ \pm}$bosons

$$
\begin{aligned}
\left|\mathcal{D}_{\mu} \Phi\right|^{2} & \Longrightarrow \frac{v^{2}}{2}\left(1+\frac{h(x)}{v}\right)^{2} \chi^{\dagger}\left(\frac{g}{2} \tau \cdot A_{\mu}^{U}+\frac{g^{\prime}}{2} B_{\mu}^{U}\right)\left(\frac{g}{2} \tau \cdot A^{U \mu}+\frac{g^{\prime}}{2} B^{U \mu}\right) \chi \\
& \left.=\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g^{2}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]+\left[g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2}\right]\right)
\end{aligned}
$$

Defining

$$
W_{\mu}^{ \pm}=\frac{1}{\sqrt{2}}\left(A_{\mu}^{U 1} \mp i A_{\mu}^{U 2}\right)
$$

the $\boldsymbol{h}(\boldsymbol{x})$ independent term gives

$$
\frac{g^{2} v^{2}}{8}\left[\left(A_{\mu}^{U 1}\right)^{2}+\left(A_{\mu}^{U 2}\right)^{2}\right]\left(1+\frac{h(x)}{v}\right)^{2} \Longrightarrow \frac{g^{2} v^{2}}{8} W_{\mu}^{+} W^{-\mu}\left(1+\frac{h(x)}{v}\right)^{2}
$$

where the mass of $W^{ \pm}$boson is given by

$$
\frac{g^{2} v^{2}}{4} \equiv M_{W}^{2}
$$

The vertices are
$h(x) W_{\mu}^{+} W^{-\mu} \Longrightarrow 2 i \frac{M_{W}^{2}}{v} g_{\mu \nu}, \quad h(x) h(x) W_{\mu}^{+} W^{-\mu} \Longrightarrow 2 i \frac{M_{W}^{2}}{v^{2}} g_{\mu \nu}$

## Masses of $Z$ boson and photon

$$
\begin{aligned}
\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} & =\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(\begin{array}{ll}
A_{\mu}^{U 3} & B_{\mu}^{U}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{2}
\end{array}\right)\binom{A^{U 3 \mu}}{B^{U \mu}} \\
& =\frac{1}{2}\left(\begin{array}{lll}
Z_{\mu} & A_{\mu}
\end{array}\right)\left(\begin{array}{cc}
M_{Z}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{Z^{\mu}}{A^{\mu}}
\end{aligned}
$$

## Masses of $Z$ boson and photon

$$
\begin{aligned}
\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} & =\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(\begin{array}{ll}
A_{\mu}^{U 3} & B_{\mu}^{U}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{2}
\end{array}\right)\binom{A^{U 3 \mu}}{B^{U \mu}} \\
& =\frac{1}{2}\left(\begin{array}{lll}
Z_{\mu} & A_{\mu}
\end{array}\right)\left(\begin{array}{cc}
M_{Z}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{Z^{\mu}}{A^{\mu}}
\end{aligned}
$$

where we have redefined the fields as

$$
\begin{array}{rlr}
Z_{\mu}=\cos \theta_{W} A_{\mu}^{U 3}-\sin \theta_{W} B_{\mu}^{U} & \theta_{W}-\text { Weinberg angle } \\
A_{\mu}=\sin \theta_{W} A_{\mu}^{U 3}+\cos \theta_{W} B_{\mu}^{U}, & \tan \theta_{W}=\frac{g^{\prime}}{g}
\end{array}
$$

## Masses of $Z$ boson and photon

$$
\begin{aligned}
\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} & =\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(\begin{array}{ll}
A_{\mu}^{U 3} & B_{\mu}^{U}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{2}
\end{array}\right)\binom{A^{U 3 \mu}}{B^{U \mu}} \\
& =\frac{1}{2}\left(\begin{array}{lll}
Z_{\mu} & A_{\mu}
\end{array}\right)\left(\begin{array}{cc}
M_{Z}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{Z^{\mu}}{A^{\mu}}
\end{aligned}
$$

where we have redefined the fields as

$$
\begin{array}{rlr}
Z_{\mu}=\cos \theta_{W} A_{\mu}^{U 3}-\sin \theta_{W} B_{\mu}^{U} & \theta_{W}-\text { Weinberg angle } \\
A_{\mu}=\sin \theta_{W} A_{\mu}^{U 3}+\cos \theta_{W} B_{\mu}^{U}, & \tan \theta_{W}=\frac{g^{\prime}}{g}
\end{array}
$$

In terms of new fields $\boldsymbol{Z}_{\mu}$ and $\boldsymbol{A}_{\boldsymbol{\mu}}$, we find

$$
\frac{v^{2}}{8}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} \equiv \frac{1}{2} M_{Z}^{2} Z^{\mu} Z_{\mu}+\frac{1}{2} \quad " 0 " \quad A_{\mu} A^{\mu}
$$

## Masses of $Z$ boson and photon

$$
\begin{aligned}
\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} & =\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(\begin{array}{ll}
A_{\mu}^{U 3} & B_{\mu}^{U}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{2}
\end{array}\right)\binom{A^{U 3 \mu}}{B^{U \mu}} \\
& =\frac{1}{2}\left(\begin{array}{lll}
Z_{\mu} & A_{\mu}
\end{array}\right)\left(\begin{array}{cc}
M_{Z}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{Z^{\mu}}{A^{\mu}}
\end{aligned}
$$

where we have redefined the fields as

$$
\begin{array}{ll}
Z_{\mu}=\cos \theta_{W} A_{\mu}^{U 3}-\sin \theta_{W} B_{\mu}^{U} & \theta_{W}-\text { Weinberg angle } \\
A_{\mu}=\sin \theta_{W} A_{\mu}^{U 3}+\cos \theta_{W} B_{\mu}^{U}, & \tan \theta_{W}=\frac{g^{\prime}}{g}
\end{array}
$$

In terms of new fields $\boldsymbol{Z}_{\mu}$ and $\boldsymbol{A}_{\mu}$, we find

$$
\frac{v^{2}}{8}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} \equiv \frac{1}{2} M_{Z}^{2} Z^{\mu} Z_{\mu}+\frac{1}{2} \quad{ }^{" 0} " \quad A_{\mu} A^{\mu}
$$

where the masses of the $Z$ boson and the photon $\boldsymbol{A}_{\mu}$ are given by

$$
M_{Z}^{2}=\frac{v^{2}}{4}\left(g^{2}+g^{\prime 2}\right), \quad M_{A}=0
$$

## Masses of $Z$ boson and photon

$$
\begin{aligned}
\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} & =\frac{v^{2}}{8}\left(1+\frac{h(x)}{v}\right)^{2}\left(\begin{array}{ll}
A_{\mu}^{U 3} & B_{\mu}^{U}
\end{array}\right)\left(\begin{array}{cc}
g^{2} & -g g^{\prime} \\
-g g^{\prime} & g^{2}
\end{array}\right)\binom{A^{U 3 \mu}}{B^{U \mu}} \\
& =\frac{1}{2}\left(\begin{array}{lll}
Z_{\mu} & A_{\mu}
\end{array}\right)\left(\begin{array}{cc}
M_{Z}^{2} & 0 \\
0 & 0
\end{array}\right)\binom{Z^{\mu}}{A^{\mu}}
\end{aligned}
$$

where we have redefined the fields as

$$
\begin{array}{ll}
Z_{\mu}=\cos \theta_{W} A_{\mu}^{U 3}-\sin \theta_{W} B_{\mu}^{U} & \theta_{W}-\text { Weinberg angle } \\
A_{\mu}=\sin \theta_{W} A_{\mu}^{U 3}+\cos \theta_{W} B_{\mu}^{U}, & \tan \theta_{W}=\frac{g^{\prime}}{g}
\end{array}
$$

In terms of new fields $\boldsymbol{Z}_{\mu}$ and $\boldsymbol{A}_{\boldsymbol{\mu}}$, we find

$$
\frac{v^{2}}{8}\left(g A_{\mu}^{U 3}-g^{\prime} B_{\mu}^{U}\right)^{2} \equiv \frac{1}{2} M_{Z}^{2} Z^{\mu} Z_{\mu}+\frac{1}{2} \quad " 0 " \quad A_{\mu} A^{\mu}
$$

where the masses of the $Z$ boson and the photon $\boldsymbol{A}_{\mu}$ are given by

$$
M_{Z}^{2}=\frac{v^{2}}{4}\left(g^{2}+g^{\prime 2}\right), \quad M_{A}=0
$$

$$
h(x) Z_{\mu} Z^{\mu} \Longrightarrow 2 i \frac{M_{Z}^{2}}{v} g_{\mu \nu}, \quad h(x) h(x) Z_{\mu} Z^{\mu} \Longrightarrow 2 i \frac{M_{Z}^{2}}{v^{2}} g_{\mu \nu}
$$

## Counting number of degrees of freedom

- $\boldsymbol{S U}(\mathbf{U})_{L} \times \boldsymbol{U}(1)_{Y}$ gives 4 massless gauge fields $\left(A_{\mu}^{i}, B_{\mu}, \quad i=1,2,3\right)$.
- Couplex scalar doublet had four real scalar fields ( $\left.\zeta^{i}, h(x), i=1,2,3\right)$.
- After SSB and unitary gauge transformation, $\zeta^{i}$ become massless modes and $\boldsymbol{h}(\boldsymbol{x})$ has become massive mode.
- The three massless modes $\zeta^{i}$ become longitudinal components to $\boldsymbol{A}_{\mu}^{i}, \boldsymbol{B}_{\boldsymbol{\mu}}$, transforming them to massive vector bosons $\boldsymbol{W}^{ \pm}, \boldsymbol{Z}$ and one massless vector boson $\gamma$.

$$
A_{\mu}^{i}, \quad B_{\mu}, \quad \zeta^{i} \rightarrow W^{+}, W^{-}, Z, \gamma
$$

## Counting number of degrees of freedom

- $\boldsymbol{S U}(\mathbf{U})_{L} \times \boldsymbol{U}(1)_{Y}$ gives 4 massless gauge fields $\left(A_{\mu}^{i}, B_{\mu}, \quad i=1,2,3\right)$.
- Couplex scalar doublet had four real scalar fields ( $\left.\zeta^{i}, h(x), i=1,2,3\right)$.
- After SSB and unitary gauge transformation, $\zeta^{i}$ become massless modes and $\boldsymbol{h}(\boldsymbol{x})$ has become massive mode.
- The three massless modes $\zeta^{i}$ become longitudinal components to $\boldsymbol{A}_{\mu}^{i}, B_{\mu}$, transforming them to massive vector bosons $\boldsymbol{W}^{ \pm}, \boldsymbol{Z}$ and one massless vector boson $\gamma$.

$$
A_{\mu}^{i}, \quad B_{\mu}, \quad \zeta^{i} \rightarrow W^{+}, W^{-}, Z, \gamma
$$

- Charged and neutral current interactions gives:

$$
\begin{aligned}
\frac{G_{F}}{\sqrt{2}} & =\frac{g^{2}}{8 M_{W}^{2}} \Longrightarrow v=2^{-\frac{1}{4}} G_{F}^{-\frac{1}{2}} \approx 246 \mathrm{GeV} \\
e & =g \sin \theta_{W}
\end{aligned}
$$

- Neutrino neutral current processes give $\sin ^{2} \theta_{W} \approx 0.224 \pm 0.015$,implies:

$$
\begin{aligned}
M_{W} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin \theta_{W}}=\frac{37.3 G e V}{\sin \theta_{W}} \\
M_{Z} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin 2 \theta_{W}}=\frac{74.6 \quad G e V}{\sin 2 \theta_{W}}
\end{aligned}
$$

- $\left\{g, g^{\prime}, \mu^{2}, \lambda, Y_{e}, Y_{u}, Y_{d}\right\} \Longrightarrow\left\{e, \sin \theta_{W}, M_{W}, m_{h}, m_{e}, m_{u}, m_{d}\right\}$


## Counting number of degrees of freedom

- $\boldsymbol{S U}(\mathbf{U})_{L} \times \boldsymbol{U}(1)_{Y}$ gives 4 massless gauge fields $\left(A_{\mu}^{i}, B_{\mu}, \quad i=1,2,3\right)$.
- Couplex scalar doublet had four real scalar fields ( $\left.\zeta^{i}, h(x), i=1,2,3\right)$.
- After SSB and unitary gauge transformation, $\zeta^{i}$ become massless modes and $\boldsymbol{h}(\boldsymbol{x})$ has become massive mode.
- The three massless modes $\zeta^{i}$ become longitudinal components to $\boldsymbol{A}_{\mu}^{i}, B_{\mu}$, transforming them to massive vector bosons $\boldsymbol{W}^{ \pm}, \boldsymbol{Z}$ and one massless vector boson $\gamma$.

$$
A_{\mu}^{i}, \quad B_{\mu}, \quad \zeta^{i} \rightarrow W^{+}, W^{-}, Z, \gamma
$$

- Charged and neutral current interactions gives:

$$
\begin{aligned}
\frac{G_{F}}{\sqrt{2}} & =\frac{g^{2}}{8 M_{W}^{2}} \Longrightarrow v=2^{-\frac{1}{4}} G_{F}^{-\frac{1}{2}} \approx 246 \mathrm{GeV} \\
e & =g \sin \theta_{W}
\end{aligned}
$$

- Neutrino neutral current processes give $\sin ^{2} \theta_{W} \approx 0.224 \pm 0.015$,implies:

$$
\begin{aligned}
M_{W} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin \theta_{W}}=\frac{37.3 G e V}{\sin \theta_{W}} \\
M_{Z} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin 2 \theta_{W}}=\frac{74.6 \quad G e V}{\sin 2 \theta_{W}}
\end{aligned}
$$

- $\left\{g, g^{\prime}, \mu^{2}, \lambda, Y_{e}, Y_{u}, Y_{d}\right\} \Longrightarrow\left\{e, \sin \theta_{W}, M_{W}, m_{h}, m_{e}, m_{u}, m_{d}\right\}$


## Counting number of degrees of freedom

- $\boldsymbol{S U}(\mathbf{U})_{L} \times \boldsymbol{U}(1)_{Y}$ gives 4 massless gauge fields $\left(A_{\mu}^{i}, B_{\mu}, \quad i=1,2,3\right)$.
- Couplex scalar doublet had four real scalar fields ( $\left.\zeta^{i}, h(x), i=1,2,3\right)$.
- After SSB and unitary gauge transformation, $\zeta^{i}$ become massless modes and $\boldsymbol{h}(\boldsymbol{x})$ has become massive mode.
- The three massless modes $\zeta^{i}$ become longitudinal components to $\boldsymbol{A}_{\mu}^{i}, B_{\mu}$, transforming them to massive vector bosons $\boldsymbol{W}^{ \pm}, \boldsymbol{Z}$ and one massless vector boson $\gamma$.

$$
A_{\mu}^{i}, \quad B_{\mu}, \quad \zeta^{i} \rightarrow W^{+}, W^{-}, Z, \gamma
$$

- Charged and neutral current interactions gives:

$$
\begin{aligned}
\frac{G_{F}}{\sqrt{2}} & =\frac{g^{2}}{8 M_{W}^{2}} \Longrightarrow v=2^{-\frac{1}{4}} G_{F}^{-\frac{1}{2}} \approx 246 \mathrm{GeV} \\
e & =g \sin \theta_{W}
\end{aligned}
$$

- Neutrino neutral current processes give $\sin ^{2} \theta_{W} \approx 0.224 \pm 0.015$,implies:

$$
\begin{aligned}
M_{W} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin \theta_{W}}=\frac{37.3 G e V}{\sin \theta_{W}} \\
M_{Z} & =\frac{1}{2}\left(\frac{e^{2}}{\sqrt{2} G_{F}}\right)^{\frac{1}{2}} \frac{1}{\sin 2 \theta_{W}}=\frac{74.6 \quad G e V}{\sin 2 \theta_{W}}
\end{aligned}
$$

- $\left\{g, g^{\prime}, \mu^{2}, \lambda, Y_{e}, Y_{u}, Y_{d}\right\} \Longrightarrow\left\{e, \sin \theta_{W}, M_{W}, m_{h}, m_{e}, m_{u}, m_{d}\right\}$


## Bound on Higgs mass from Unitarity

- Consider $W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}$scattering process. The amplidute of the process in terms of spin-l partial wave is

$$
\mathcal{M}=\sum_{l=0}^{\infty} \mathcal{M}_{l}, \quad \text { where } \quad \mathcal{M}_{l}=16 \pi(2 l+1) P_{l}(\cos \theta) a_{l}
$$

## Bound on Higgs mass from Unitarity

- Consider $W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}$scattering process. The amplidute of the process in terms of spin-l partial wave is

$$
\mathcal{M}=\sum_{l=0}^{\infty} \mathcal{M}_{l}, \quad \text { where } \quad \mathcal{M}_{l}=16 \pi(2 l+1) P_{l}(\cos \theta) a_{l}
$$

- The cross section at c.m energy $\sqrt{s}$ is given by

$$
\sigma=\sum_{l} \sigma_{l}, \quad \text { where } \quad \sigma_{l}=\frac{16 \pi}{s}(2 l+1)\left|a_{l}\right|^{2}
$$

## Bound on Higgs mass from Unitarity

- Consider $W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}$scattering process. The amplidute of the process in terms of spin-l partial wave is

$$
\mathcal{M}=\sum_{l=0}^{\infty} \mathcal{M}_{l}, \quad \text { where } \quad \mathcal{M}_{l}=16 \pi(2 l+1) P_{l}(\cos \theta) a_{l}
$$

- The cross section at c.m energy $\sqrt{s}$ is given by

$$
\sigma=\sum_{l} \sigma_{l}, \quad \text { where } \quad \sigma_{l}=\frac{16 \pi}{s}(2 l+1)\left|a_{l}\right|^{2}
$$

- Conservation of probability gives perturbativity rule:

$$
\left|\boldsymbol{R e}\left(a_{l}\right)\right| \leq \frac{1}{2}
$$

- When $s \gg M_{W}^{2}, m_{h}^{2}, \quad a_{0} \rightarrow-m_{h}^{2} /\left(8 \pi v^{2}\right)$

$$
\left|-\frac{m_{h}^{2}}{8 \pi v^{2}}\right| \leq \frac{1}{2} \quad \Longrightarrow \quad m_{h}<2 v \sqrt{\pi}=870 G e V
$$

## Bound on Higgs mass from Unitarity

- Consider $W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-}$scattering process. The amplidute of the process in terms of spin-l partial wave is

$$
\mathcal{M}=\sum_{l=0}^{\infty} \mathcal{M}_{l}, \quad \text { where } \quad \mathcal{M}_{l}=16 \pi(2 l+1) P_{l}(\cos \theta) a_{l}
$$

- The cross section at c.m energy $\sqrt{s}$ is given by

$$
\sigma=\sum_{l} \sigma_{l}, \quad \text { where } \quad \sigma_{l}=\frac{16 \pi}{s}(2 l+1)\left|a_{l}\right|^{2}
$$

- Conservation of probability gives perturbativity rule:

$$
\left|\boldsymbol{R e}\left(a_{l}\right)\right| \leq \frac{1}{2}
$$

- When $s \gg M_{W}^{2}, m_{h}^{2}, \quad a_{0} \rightarrow-m_{h}^{2} /\left(8 \pi v^{2}\right)$

$$
\left|-\frac{m_{h}^{2}}{8 \pi v^{2}}\right| \leq \frac{1}{2} \quad \Longrightarrow \quad m_{h}<2 v \sqrt{\pi}=870 G e V
$$

- Combined analysis with similar longitudinal scattering processes gives the upper bound on higgs mass $m_{h}<710 \mathrm{GeV}$.


## Bound on Higgs mass from Landau pole

- Finiteness of $\boldsymbol{\lambda}$ coupling upto a cut off scale of the theory can give useful information on higgs mass through Renormalisation group equation. Droping gauge and Yukawa contributions,

$$
\mu_{R}^{2} \frac{d}{d \mu_{R}^{2}} \lambda\left(\mu_{R}^{2}\right)=\frac{3}{4 \pi^{2}} \lambda\left(\mu_{R}^{2}\right)
$$

## Bound on Higgs mass from Landau pole

- Finiteness of $\boldsymbol{\lambda}$ coupling upto a cut off scale of the theory can give useful information on higgs mass through Renormalisation group equation. Droping gauge and Yukawa contributions,

$$
\mu_{R}^{2} \frac{d}{d \mu_{R}^{2}} \lambda\left(\mu_{R}^{2}\right)=\frac{3}{4 \pi^{2}} \lambda\left(\mu_{R}^{2}\right)
$$

The solution

$$
\lambda\left(Q^{2}\right)=\frac{\lambda\left(Q_{0}^{2}\right)}{1-\frac{3}{4 \pi^{2}} \lambda\left(Q_{0}^{2}\right) \log \frac{Q^{2}}{Q_{0}^{2}}}
$$

## Bound on Higgs mass from Landau pole

- Finiteness of $\boldsymbol{\lambda}$ coupling upto a cut off scale of the theory can give useful information on higgs mass through Renormalisation group equation. Droping gauge and Yukawa contributions,

$$
\mu_{R}^{2} \frac{d}{d \mu_{R}^{2}} \lambda\left(\mu_{R}^{2}\right)=\frac{3}{4 \pi^{2}} \lambda\left(\mu_{R}^{2}\right)
$$

The solution

$$
\lambda\left(Q^{2}\right)=\frac{\lambda\left(Q_{0}^{2}\right)}{1-\frac{3}{4 \pi^{2}} \lambda\left(Q_{0}^{2}\right) \log \frac{Q^{2}}{Q_{0}^{2}}}
$$

- The Landau pole gives the scale $\Lambda_{P}$ given by (choose $Q=\Lambda_{P}, Q_{0}=v$ )

$$
\Lambda_{P}=v \exp \left(\frac{2 \pi^{2}}{3 \lambda\left(v^{2}\right)}\right)=v \exp \left(\frac{4 \pi^{2} v^{2}}{3 m_{h}^{2}}\right)
$$

## Bound on Higgs mass from Landau pole

- Finiteness of $\boldsymbol{\lambda}$ coupling upto a cut off scale of the theory can give useful information on higgs mass through Renormalisation group equation. Droping gauge and Yukawa contributions,

$$
\mu_{R}^{2} \frac{d}{d \mu_{R}^{2}} \lambda\left(\mu_{R}^{2}\right)=\frac{3}{4 \pi^{2}} \lambda\left(\mu_{R}^{2}\right)
$$

The solution

$$
\lambda\left(Q^{2}\right)=\frac{\lambda\left(Q_{0}^{2}\right)}{1-\frac{3}{4 \pi^{2}} \lambda\left(Q_{0}^{2}\right) \log \frac{Q^{2}}{Q_{0}^{2}}}
$$

- The Landau pole gives the scale $\Lambda_{P}$ given by (choose $Q=\Lambda_{P}, Q_{0}=v$ )

$$
\Lambda_{P}=v \exp \left(\frac{2 \pi^{2}}{3 \lambda\left(v^{2}\right)}\right)=v \exp \left(\frac{4 \pi^{2} v^{2}}{3 m_{h}^{2}}\right)
$$

- If $\Lambda_{P}=10^{19} \mathrm{GeV}$, the higgs has to be light $m_{h} \leq 145 \mathrm{GeV}$.
- If $\Lambda_{P}=10^{3} \mathrm{GeV}$, the higgs has to be heavy $m_{h} \leq 750 \mathrm{GeV}$.


## Bound on the Higgs mass from Perturbativity

- Including gauge and Yukawa couplings, the RG equation for $\boldsymbol{\lambda}$ is given by

$$
\mu_{R}^{2} \frac{d \lambda}{d \mu_{R}^{2}}=\frac{1}{16 \pi^{2}}\left(12 \lambda^{2}+12 \frac{m_{t}^{2}}{v^{2}} \lambda-12 \frac{m_{t}^{4}}{v^{4}}-\frac{3}{2} \lambda\left(3 g^{\prime 2}+g^{2}\right)+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right)
$$

## Bound on the Higgs mass from Perturbativity

- Including gauge and Yukawa couplings, the RG equation for $\boldsymbol{\lambda}$ is given by

$$
\mu_{R}^{2} \frac{d \lambda}{d \mu_{R}^{2}}=\frac{1}{16 \pi^{2}}\left(12 \lambda^{2}+12 \frac{m_{t}^{2}}{v^{2}} \lambda-12 \frac{m_{t}^{4}}{v^{4}}-\frac{3}{2} \lambda\left(3 g^{\prime 2}+g^{2}\right)+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right)
$$

- In the limit $\lambda \ll m_{t} / v, g_{1}, g_{2}$, we find

$$
\lambda\left(Q^{2}\right)=\lambda\left(v^{2}\right)+\frac{1}{16 \pi^{2}}\left(-12 \frac{m_{t}^{4}}{v^{4}}+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right) \log \frac{Q^{2}}{v^{2}}
$$

## Bound on the Higgs mass from Perturbativity

- Including gauge and Yukawa couplings, the RG equation for $\boldsymbol{\lambda}$ is given by

$$
\mu_{R}^{2} \frac{d \lambda}{d \mu_{R}^{2}}=\frac{1}{16 \pi^{2}}\left(12 \lambda^{2}+12 \frac{m_{t}^{2}}{v^{2}} \lambda-12 \frac{m_{t}^{4}}{v^{4}}-\frac{3}{2} \lambda\left(3 g^{\prime 2}+g^{2}\right)+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right)
$$

- In the limit $\lambda \ll m_{t} / v, g_{1}, g_{2}$, we find

$$
\lambda\left(Q^{2}\right)=\lambda\left(v^{2}\right)+\frac{1}{16 \pi^{2}}\left(-12 \frac{m_{t}^{4}}{v^{4}}+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right) \log \frac{Q^{2}}{v^{2}}
$$

- Bounded vaccuum requires $\boldsymbol{\lambda}>0$, which implies $\left(m_{h}^{2}=2 \boldsymbol{\lambda} v^{2}\right)$

$$
m_{h}^{2}>\frac{v^{2}}{8 \pi^{2}}\left(-12 \frac{m_{t}^{4}}{v^{4}}+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right) \log \frac{Q^{2}}{v^{2}}
$$

## Bound on the Higgs mass from Perturbativity

- Including gauge and Yukawa couplings, the RG equation for $\boldsymbol{\lambda}$ is given by

$$
\mu_{R}^{2} \frac{d \lambda}{d \mu_{R}^{2}}=\frac{1}{16 \pi^{2}}\left(12 \lambda^{2}+12 \frac{m_{t}^{2}}{v^{2}} \lambda-12 \frac{m_{t}^{4}}{v^{4}}-\frac{3}{2} \lambda\left(3 g^{\prime 2}+g^{2}\right)+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right)
$$

- In the limit $\lambda \ll m_{t} / v, g_{1}, g_{2}$, we find

$$
\lambda\left(Q^{2}\right)=\lambda\left(v^{2}\right)+\frac{1}{16 \pi^{2}}\left(-12 \frac{m_{t}^{4}}{v^{4}}+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right) \log \frac{Q^{2}}{v^{2}}
$$

- Bounded vaccuum requires $\boldsymbol{\lambda}>0$, which implies $\left(m_{h}^{2}=2 \boldsymbol{\lambda} v^{2}\right)$

$$
m_{h}^{2}>\frac{v^{2}}{8 \pi^{2}}\left(-12 \frac{m_{t}^{4}}{v^{4}}+\frac{3}{16}\left(2 g^{\prime 4}+\left(g^{\prime 2}+g^{2}\right)^{2}\right)\right) \log \frac{Q^{2}}{v^{2}}
$$

- Choosing $Q=\Lambda_{S}$,

$$
\begin{array}{ll}
\Lambda_{S} \approx 10^{3} \mathrm{GeV} & \Longrightarrow \quad m_{h} \geq 70 \mathrm{GeV} \\
\Lambda_{S} \approx 10^{16} \mathrm{GeV} & \Longrightarrow \quad m_{h} \geq 130 G e V
\end{array}
$$

## Bounds on the mass of Higgs boson



## Bounds on the mass of Higgs boson



- The upper curve results from demanding perturbativity of the coupling $\boldsymbol{\lambda}$ upto the scale $\boldsymbol{\Lambda}$


## Bounds on the mass of Higgs boson



- The upper curve results from demanding perturbativity of the coupling $\boldsymbol{\lambda}$ upto the scale $\boldsymbol{\Lambda}$
- The lower curve comes from demanding positive value for coupling upto the scale $\boldsymbol{\Lambda}$ (potential has to be bounded from below giving vacuum stability)


## Bounds on the mass of Higgs boson



- The upper curve results from demanding perturbativity of the coupling $\boldsymbol{\lambda}$ upto the scale $\boldsymbol{\Lambda}$
- The lower curve comes from demanding positive value for coupling upto the scale $\boldsymbol{\Lambda}$ (potential has to be bounded from below giving vacuum stability)

Spread in the lines is due to theory uncertainities.

[Summer 2004, LEPEWWG]
[Summer 2004, LEPEWWG]

Direct:


十口
[Summer 2004, LEPEWWG]

Direct:


十口

## Direct:

Direct:

$m_{h}>114.4 G e V$

- LEP is a $e^{+} e^{-}$collider with $\sqrt{s}=209 \mathrm{GeV}$
- Primary search mode $e^{+} e^{-} \rightarrow \boldsymbol{h} Z$
- On-shell higgs can be produced if the mass of the higgs is greater than $\sqrt{s}-M_{Z}=118 \mathrm{GeV}$
- Low statistics and insufficient energy available gives the lower bound $m_{h}>114.4 \mathrm{GeV}$
[Summer 2004, LEPEWWG]

Indirect:

$\square$

Indirect:

Indirect:


- Higgs can contribute to many electroweak observables that are measured at LEP
- They can enter in $W$ and $Z$ self energies at one loop level.
- The mass of the higgs appears through its propagator and kinematics
- The effects manisfest as $\log \left(m_{h} / m_{e w}\right)$ terms
- Precision electroweak fit can give allowed Higgs mass range.

Indirect:

Indirect:


- Higgs can contribute to many electroweak observables that are measured at LEP
- They can enter in $W$ and $Z$ self energies at one loop level.
- The mass of the higgs appears through its propagator and kinematics
- The effects manisfest as $\log \left(m_{h} / m_{e w}\right)$ terms
- Precision electroweak fit can give allowed Higgs mass range.





## $W^{ \pm}$mass and $\sin ^{2} \theta_{W}$



- Precise meausurement of mass of the $\boldsymbol{W}$ boson
- $\sin ^{2} \theta_{W}$ from Forward back asymmetry and charge asymmetries
- Lower bound $m_{h}<260 \mathrm{GeV}(\mathbf{9 5 \%} \boldsymbol{C L})$
$\square$
[Summer 2004, LEPEWWG]

Higgs Mass
[Summer 2004, LEPEWWG]

|  | Measurement | Fit | $\begin{aligned} & \mathrm{O}^{\text {meas }} \\ & 0 \end{aligned}$ | $\begin{aligned} & { }^{\mathrm{it}} \mid / \sigma^{\text {meas }} \\ & 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\Delta \alpha_{\text {had }}^{(5)}\left(m_{z}\right)$ | $0.02750 \pm 0.00033$ | 0.02759 | $\square$ |  |
| $\mathrm{m}_{\mathrm{z}}[\mathrm{GeV}]$ | $91.1875 \pm 0.0021$ | 91.1874 |  |  |
| $\Gamma_{\mathrm{Z}}[\mathrm{GeV}]$ | $2.4952 \pm 0.0023$ | 2.4959 | $\square$ |  |
| $\sigma_{\text {had }}^{0}[\mathrm{nb}]$ | $41.540 \pm 0.037$ | 41.478 |  |  |
| $\mathrm{R}_{1}$ | $20.767 \pm 0.025$ | 20.742 |  |  |
| $\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{l}}$ | $0.01714 \pm 0.00095$ | 0.01646 |  |  |
| $\mathrm{A}_{\mathrm{l}}\left(\mathrm{P}_{\tau}\right)$ | $0.1465 \pm 0.0032$ | 0.1482 |  |  |
| $\mathrm{R}_{\mathrm{b}}$ | $0.21629 \pm 0.00066$ | 0.21579 |  |  |
| $\mathrm{R}_{\mathrm{c}}$ | $0.1721 \pm 0.0030$ | 0.1722 |  |  |
| $\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{~b}}$ | $0.0992 \pm 0.0016$ | 0.1039 |  |  |
| $A_{f b}^{0, \mathrm{c}}$ | $0.0707 \pm 0.0035$ | 0.0743 |  |  |
| $\mathrm{A}_{\mathrm{b}}$ | $0.923 \pm 0.020$ | 0.935 |  |  |
| $\mathrm{A}_{\mathrm{c}}$ | $0.670 \pm 0.027$ | 0.668 |  |  |
| $\mathrm{A}_{\text {( }}(\mathrm{SLD})$ | $0.1513 \pm 0.0021$ | 0.1482 |  |  |
| $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}\left(Q_{\text {fb }}\right)$ | $0.2324 \pm 0.0012$ | 0.2314 |  |  |
| $\mathrm{m}_{\mathrm{W}}[\mathrm{GeV}]$ | $80.399 \pm 0.023$ | 80.378 |  |  |
| $\Gamma_{\mathrm{W}}[\mathrm{GeV}]$ | $2.085 \pm 0.042$ | 2.092 | $\square$ |  |
| $\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$ | $173.20 \pm 0.90$ | 173.27 | 1 |  |
| July 2011 |  |  | 01 | 23 |



Higgs Mass
[Summer 2004, LEPEWWG]

|  | Measurement | Fit | $\begin{aligned} & \mathrm{O}^{\text {meas }} \\ & 0 \end{aligned}$ | $\begin{aligned} & { }^{\mathrm{it}} \mid / \sigma^{\text {meas }} \\ & 2 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\Delta \alpha_{\text {had }}^{(5)}\left(m_{z}\right)$ | $0.02750 \pm 0.00033$ | 0.02759 | $\square$ |  |
| $\mathrm{m}_{\mathrm{z}}[\mathrm{GeV}]$ | $91.1875 \pm 0.0021$ | 91.1874 |  |  |
| $\Gamma_{\mathrm{Z}}[\mathrm{GeV}]$ | $2.4952 \pm 0.0023$ | 2.4959 | $\square$ |  |
| $\sigma_{\text {had }}^{0}[\mathrm{nb}]$ | $41.540 \pm 0.037$ | 41.478 |  |  |
| $\mathrm{R}_{1}$ | $20.767 \pm 0.025$ | 20.742 |  |  |
| $\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{l}}$ | $0.01714 \pm 0.00095$ | 0.01646 |  |  |
| $\mathrm{A}_{\mathrm{l}}\left(\mathrm{P}_{\tau}\right)$ | $0.1465 \pm 0.0032$ | 0.1482 |  |  |
| $\mathrm{R}_{\mathrm{b}}$ | $0.21629 \pm 0.00066$ | 0.21579 |  |  |
| $\mathrm{R}_{\mathrm{c}}$ | $0.1721 \pm 0.0030$ | 0.1722 |  |  |
| $\mathrm{A}_{\mathrm{fb}}^{0, \mathrm{~b}}$ | $0.0992 \pm 0.0016$ | 0.1039 |  |  |
| $A_{f b}^{0, \mathrm{c}}$ | $0.0707 \pm 0.0035$ | 0.0743 |  |  |
| $\mathrm{A}_{\mathrm{b}}$ | $0.923 \pm 0.020$ | 0.935 |  |  |
| $\mathrm{A}_{\mathrm{c}}$ | $0.670 \pm 0.027$ | 0.668 |  |  |
| $\mathrm{A}_{\text {( }}(\mathrm{SLD})$ | $0.1513 \pm 0.0021$ | 0.1482 |  |  |
| $\sin ^{2} \theta_{\text {eff }}^{\text {lept }}\left(Q_{\text {fb }}\right)$ | $0.2324 \pm 0.0012$ | 0.2314 |  |  |
| $\mathrm{m}_{\mathrm{W}}[\mathrm{GeV}]$ | $80.399 \pm 0.023$ | 80.378 |  |  |
| $\Gamma_{\mathrm{W}}[\mathrm{GeV}]$ | $2.085 \pm 0.042$ | 2.092 | $\square$ |  |
| $\mathrm{m}_{\mathrm{t}}[\mathrm{GeV}]$ | $173.20 \pm 0.90$ | 173.27 | 1 |  |
| July 2011 |  |  | 01 | 23 |



Higgs Mass
[Summer 2004, LEPEWWG]


- $m_{h}, \boldsymbol{x}$ are the parameters of the standard model
- Minimise

$$
\chi^{2}=\sum_{i} \frac{\left(\mathcal{O}_{i}^{t h}\left(m_{h}, x\right)-\mathcal{O}_{i}^{e x p t}\right)^{2}}{\left(\Delta \mathcal{O}_{i}^{e x p t}\right)^{2}}
$$

- $\chi^{2} /$ d.o. $f \approx 1$ implies that $S M$ is compatible with data.

Higgs Mass
[Summer 2004, LEPEWWG]


- $m_{h}, \boldsymbol{x}$ are the parameters of the standard model
- Minimise

$$
\chi^{2}=\sum_{i} \frac{\left(\mathcal{O}_{i}^{t h}\left(m_{h}, x\right)-\mathcal{O}_{i}^{e x p t}\right)^{2}}{\left(\Delta \mathcal{O}_{i}^{e x p t}\right)^{2}}
$$

- $\chi^{2} /$ d.o. $f \approx 1$ implies that $S M$ is compatible with data.
[Summer 2004, LEPEWWG]
[Summer 2004, LEPEWWG]


## Higgs Mass

Indirect:


$$
m_{h}<260 G e V(95 \% C L)
$$

$$
\Delta \chi^{2}\left(m_{h}, x\right)=\chi^{2}\left(m_{h}, x\right)-\chi_{m i n}^{2}
$$

- $\Delta \chi^{2}<(1.96)^{2}$ gives $95 \%$ CL allowed mass range for higgs mass $m_{h}$.
- The lower limit $\boldsymbol{m}_{\boldsymbol{h}}$ is much smaller than direct limit and the upper limit is $m_{h} \geq 200 \mathrm{GeV}$.


## Higgs Mass

Indirect:


$$
m_{h}<260 \mathrm{GeV}(95 \% C L)
$$

$\Delta \chi^{2}\left(m_{h}, x\right)=\chi^{2}\left(m_{h}, x\right)-\chi_{m i n}^{2}$

- $\Delta \chi^{2}<(1.96)^{2}$ gives $95 \%$ CL allowed mass range for higgs mass $m_{h}$.
- The lower limit $m_{h}$ is much smaller than direct limit and the upper limit is $m_{h} \geq 200 \mathrm{GeV}$.


## Higgs Mass

Indirect:


$$
m_{h}<260 \mathrm{GeV}(95 \% C L)
$$

$\Delta \chi^{2}\left(m_{h}, x\right)=\chi^{2}\left(m_{h}, x\right)-\chi_{m i n}^{2}$

- $\Delta \chi^{2}<(1.96)^{2}$ gives $95 \%$ CL allowed mass range for higgs mass $m_{h}$.
- The lower limit $m_{h}$ is much smaller than direct limit and the upper limit is $m_{h} \geq 200 \mathrm{GeV}$.

$114.4<m_{h}<260 \mathrm{GeV}$ at $95 \% \mathrm{CL}$.

