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Abelian gauge theory

Consider the following Lagrangian
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Abelian gauge theory

Consider the following Lagrangian

LU(1) = −1

4
FµνF

µν + ψ(iγµDµ −m)ψ

The gauge field strength operator and covariant derivative are:

Fµν = ∂µAν − ∂νAµ , Dµ = ∂µ − igAµ .

Aµ(x) − gauge field, ψ(x) − fermionic field.

LU(1) is invariant under the U(1) guage transformations:

ψ(x) → ψ′(x) = e−iα(x)ψ(x)

Aµ(x) → A′
µ(x) = Aµ(x) −

1

g
∂µα(x)

Two important observations:

• Gauge invariance forbids mass term for gauge fields. M2
AA

µAµ term is not allowed

• But vector-like theories allows mass term for fermions because left handed fermions have
the same charge as hight handed fermions.
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Gauge invariance and Mass terms

• The mass term for gauge fields is given by

LmA =
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• Suppose the fermionic fields ψa have different U(1) charges given by Qa. Consider the
mass term:

Lmψ = −
∑

ab
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• Suppose the fermionic fields ψa have different U(1) charges given by Qa. Consider the
mass term:

Lmψ = −
∑

ab

mabψaψb

Under U(1):

ψa(x) → ψ′
a(x) = eiQ̂α(x)ψa(x)

with Q̂ being the charge operator such that Q̂ψa = Qaψa. This means that Lagrangian
Lmψ is invariant under U(1) gauge transformation only if Qa −Qb = 0.
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Gauge invariance and Mass terms

• The mass term for gauge fields is given by

LmA =
1

2
m2
AAµA

µ

Note that LmA is not invariant under U(1) gauge transformation:

AµA
µ → AµA

µ +
(

−2
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g2
∂µα∂µα

)

• Suppose the fermionic fields ψa have different U(1) charges given by Qa. Consider the
mass term:

Lmψ = −
∑

ab

mabψaψb

Under U(1):

ψa(x) → ψ′
a(x) = eiQ̂α(x)ψa(x)

with Q̂ being the charge operator such that Q̂ψa = Qaψa. This means that Lagrangian
Lmψ is invariant under U(1) gauge transformation only if Qa −Qb = 0.

• Gauge symmetry severely restricts mass terms for gauge field as well as fermionic fields.
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Higgs Phenomenon

• We do see massive vector bosons in Nature and gauge invariance is fundamental concept in
particle phsics.

• How to obtain mass terms for gauge and fermion fields in a gauge invariant way.
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Higgs phenomenon · · ·

If we make a special choice for µ2, that is µ2 > 0, then the potential term

V (Φ) = −µ2Φ†Φ + λ
(

Φ†Φ
)2

developes non vanishing minima (∂V (Φ)/∂Φ = 0) at
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Spontaneous Symmetry Breaking (SSB)

• If µ2 were negative, µ2 < 0, the vacuum expecation value v = 0, vacuum is
non-degenerate

• For µ2 > 0 the vacuum is infinitely degenerate.
• While the Lagrangian of the system is invariant under U(1) gauge symmetry, the vacuum is

no longer invariant. This is called Spontaneous Symmetry Breaking.

♣ It costs no energy for the system to move from one vaccuum to another vacuum in the
angular direction while radial direction requires energy.
♣ Fluctuations around the angular direction correspond to massless modes and those in the
radial direction correspond to massive modes.
♣ Massless modes are called Goldston bosons and the massive modes are called Higgs
bosons.
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Pleasant surprise: Mass term for gauge fields

LMA
= g2v2

2
AµAµ

The gauge boson now becomes massive with the mass MA = gv
րgauge coupling
ց vev
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LAφ = −gvAµ∂µφ′
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Nothing wrong!. But there must a better way to parameterise the scalar field to avoid this
peculiar term

Φ(x) = |Φ(x)| exp
(

iθ(x)
)

|Φ(x)| is the radial part and θ(x) the angular part of the complex scalar field Φ(x) Small
oscillations around the minima can be parameterised as

Φ(x) =
1√
2

(

v + h(x)
)

exp
(

iξ(x)/v
)

such that

< Ω|h(x)|Ω >= 0, < Ω|ξ(x)|Ω >= 0

For small fluctuations,

Φ(x) =
1√
2
(v + h(x) + iξ(x)) + O(h2, ξ2)

h(x) and ξ(x) will coincide with φ′
1(x) and φ′

2(x) respectively.
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Unitary gauge · · ·

Make a unitary gauge choice through gauge transformation (Φ → ΦU ):

ΦU (x) = exp
(

− iξ(x)/v
)

Φ(x)

=
1√
2
(v + h(x))

AUµ (x) = Aµ(x) −
1

gv
∂µξ(x)

to remove ξ(x) field from the Lagrangian.
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where FUµν = ∂µAUν − ∂νAUµ ξ(x) has disappeared but will reappear soon!.
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Unitary gauge · · ·

LA,h =
1

2
∂µh∂

µh− 1

4
FUµνF

Uµν ⇐= K.E terms

−µ2h2(x) +
1

2
g2v2AUµA

Uµ ⇐= mass terms

+
1

2
g2AUµA

Uµh(x)(2v + h(x)) − λv2h3(x) − 1

4
λh4(x) ⇐= interaction terms
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Interaction vertices of h(x) and the gauge fieldAµ(x) are given by
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• Massless guage fields have two transverse degrees of freedom while massive ones have
two transverse and one longitudinal.
• The disappeared ξ(x) field reappears as longitudinal degrees of freedom of massive gauge
fields.
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Fermion mass

Consider the following Yukawa term:

LY = YabψaψbΦ + h.c

with φ is charged with QΦ = Qb −Qa. The above term is invariant under U(1) gauge
symmetry.
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Fermion mass

Consider the following Yukawa term:

LY = YabψaψbΦ + h.c

with φ is charged with QΦ = Qb −Qa. The above term is invariant under U(1) gauge
symmetry. In terms of h field, it becomes

LY = Yabψ
U

a ψ
U
b

(

h(x) + v√
2

)

+ h.c

=
Yabv√

2
ψ
U

a ψ
U
b +

Yab√
2
ψ
U

a ψ
U
b h(x) + h.c

Mass of the fermion field in the gauge basis becomes

mψ,ab = −Yabv√
2

The interaction of h and fermions gives

Vertex : h(x)ψaψb → i
Y√
2

= −imψ,ab

v
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Goldstone theorem

Consider a set of real fields Φi that transform according to some representation of the gauge
symmetry groupG that has n generators.

Φi → Uij(ζ(x))Φi(x), U(ζ(x)) = exp (iT · ζ(x)),

where U(ζ) is an element of the groupG and Ta (a = 1, · · ·, n) are its generators.
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Goldstone theorem

Consider a set of real fields Φi that transform according to some representation of the gauge
symmetry groupG that has n generators.
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If V develops minima at Φj = vj , second term vanishes
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∣

∣
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∣
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∣
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SupposeG has a subgroupG′ with n′ generators which leaves the vacuum invariant:

T bijvj = 0, for b = 1, .., n′ ⇐= unbroken generators

T cijvj 6= 0, for c = n′ + 1, ..., n ⇐= broken generators

• If Ta are linearly independent, it is clear thatM2 has n− n′ zero eigen values.
• Goldston theorem: spontaneous symmetry breaking implies existence of massless spinless

particle. The number of spontaneously broken generators = number of massless fields.
• These spinless,massless particles are called Goldstone bosons.
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Gauge fields in the Standard Model

SU(2)L × U(1)Y invariant gauge field Lagrangian:
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F iµνF

iµν − 1
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GµνG

µν
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• for SU(2)L,

U(θ) = exp(−i τ
2
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U(θ) = exp(−i Y θ(x)/2), with Y hyper charge
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Fermion fields in the Standard Model

The SU(2)L × U(1)Y gauge invariant fermion part of the Lagrangian:

L2 = ψiγµDµψ ψ :

{

L =

(

νL
eL

)

, eR, Q =

(

uL
dL

)

, uR, dR

}
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where the covariant derivative is given by

Dµψ =
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∂µ − igT̂ · Aµ − ig′
Ŷ

2
Bµ

)

ψ

Under SU(2)L × U(1)Y , the fermion field transforms as

ψ(x) → ψ′(x) = exp
(

− i
τ

2
· θ(x)

)

ψ(x)

ψ(x) → ψ′(x) = exp
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− i
Ŷθ′(x)
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)
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The spontaneous symmetry breaking

SU(2)L × U(1)Y → U(1)em
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where

DµΦ =

(

∂µ − i

2
gτ ·Aµ − i

2
g′Bµ

)

Φ

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2

• The SU(2)L × U(1)Y invariant Yukawa interaction Lagrangian is given by

L4 = YeLΦeR + YuQLΦ̃uR + YdQLΦdR + h.c

where Φ̃ = iτ2Φ∗ with Y (Φ̃) = −1
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Spontaneous Symmetry Breaking in the SM

For µ2 > 0, the vacuum of this theory is spontaneously broken and the complex scalar field
acquires vacuum expectation value:

| < Ω|Φ|Ω > | =
(

0
v√
2

)

v =

√

µ2

λ
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• ζi(x) are called Goldstone bosons (massless,spinless)
• h(x) is called the Higgs boson.
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Fermion and Gauge fields in the Unitary gauge

The fermion fields in the unitary gauge are given by

LU = U(ζ)L, eUR = eR

QUL = U(ζ)QL, uUR = uR, dUR = dR
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Kinetic terms of gauge fields become

F iµνF
iµν = FUiµν F

Uiµν

GµνG
µν = GUµνG

Uµν

where FUiµν = ∂µA
Ui
ν − ∂νA

Ui
µ + gǫijkAUjµ AUkν
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U
ν − ∂νB
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Masses of the Higgs boson and the fermions

Consider the scalar field part of the Lagrangian

L3 = (DµΦ)†DµΦ − V (Φ)
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V (Φ) = µ2h2 + λvh3 +
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The mass of the h field (Higgs boson) is given by

m2
h

= 2µ2 = 2λv2

The Yukawa part of the Lagrangian in the Unitary gauge is given by

L4 =
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h(x) + v√
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)(
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The mass of the h field (Higgs boson) is given by

m2
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= 2µ2 = 2λv2

The Yukawa part of the Lagrangian in the Unitary gauge is given by

L4 =

(

h(x) + v√
2

)(

Ye e
U
Le

U
R + Yu u

U
Lu

U
R + Yd d

U
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U
R

)
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The fermions masses and their interaction with h(x)

mi =
Yiv√

2
, i = e, u, d, h(x)QQ =⇒ i

mQ

v
Q = τ, b, t
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Masses of W
± bosons

|DµΦ|2 =⇒ v2

2

(

1 +
h(x)

v

)2

χ†
(

g

2
τ ·AUµ +

g′

2
BUµ

)(

g

2
τ ·AUµ +

g′

2
BUµ

)

χ

=
v2

8

(

1 +
h(x)

v

)2
(

g2
[

(AU1
µ )2 + (AU2

µ )2
]

+
[

gAU3
µ − g′BUµ )2

]

)
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where the mass of W± boson is given by

g2v2

4
≡ M2

W

The vertices are

h(x)W+
µ W

−µ =⇒ 2i
M2
W

v
gµν , h(x)h(x)W+

µ W
−µ =⇒ 2i

M2
W

v2
gµν
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Masses of Z boson and photon

v2

8

(

1 +
h(x)

v

)2

(gAU3
µ − g′BUµ )2 =

v2

8

(

1 +
h(x)

v

)2
(

AU3
µ BUµ

)

(

g2 −gg′
−gg′ g2

)(

AU3µ

BUµ

)

=
1

2

(

Zµ Aµ
)

(

M2
Z 0

0 0
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Counting number of degrees of freedom

• SU(2)L × U(1)Y gives 4 massless gauge fields (Aiµ, Bµ, i = 1, 2, 3).

• Couplex scalar doublet had four real scalar fields (ζi, h(x), i = 1, 2, 3).

• After SSB and unitary gauge transformation, ζi become massless modes and h(x) has
become massive mode.

• The three massless modes ζi become longitudinal components to Aiµ, Bµ, transforming

them to massive vector bosonsW±, Z and one massless vector boson γ.

Aiµ, Bµ, ζi → W+,W−, Z, γ
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them to massive vector bosonsW±, Z and one massless vector boson γ.

Aiµ, Bµ, ζi → W+,W−, Z, γ

• Charged and neutral current interactions gives:

GF√
2

=
g2

8M2
W

=⇒ v = 2− 1

4G
− 1

2

F ≈ 246 GeV

e = g sin θW

• Neutrino neutral current processes give sin2 θW ≈ 0.224 ± 0.015,implies:

MW =
1

2

(

e2√
2GF

)

1

2 1

sin θW
=

37.3 GeV

sin θW

MZ =
1

2

(

e2√
2GF

)
1

2 1

sin 2θW
=

74.6 GeV

sin 2θW

• {g, g′, µ2, λ, Ye, Yu, Yd} =⇒ {e, sin θW ,MW , mh ,me,mu,md}
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Bound on Higgs mass from Unitarity

• ConsiderW+
L W

−
L → W

+
L W

−
L scattering process. The amplidute of the process in terms

of spin-l partial wave is

M =
∞
∑

l=0

Ml, where Ml = 16π(2l+ 1)Pl(cos θ)al



- p. 23/31

Bound on Higgs mass from Unitarity

• ConsiderW+
L W

−
L → W

+
L W

−
L scattering process. The amplidute of the process in terms

of spin-l partial wave is

M =
∞
∑

l=0

Ml, where Ml = 16π(2l+ 1)Pl(cos θ)al

• The cross section at c.m energy
√
s is given by

σ =
∑

l

σl, where σl =
16π

s
(2l+ 1)|al|2



- p. 23/31

Bound on Higgs mass from Unitarity

• ConsiderW+
L W

−
L → W

+
L W

−
L scattering process. The amplidute of the process in terms

of spin-l partial wave is

M =
∞
∑

l=0

Ml, where Ml = 16π(2l+ 1)Pl(cos θ)al

• The cross section at c.m energy
√
s is given by

σ =
∑

l

σl, where σl =
16π

s
(2l+ 1)|al|2

• Conservation of probability gives perturbativity rule:

|Re(al)| ≤
1

2

• When s ≫ M2
W ,m

2
h, a0 → −m2

h/(8πv
2)

∣

∣

∣

∣

∣

− m2
h

8πv2

∣

∣

∣

∣

∣

≤ 1

2
=⇒ mh < 2v

√
π = 870GeV



- p. 23/31

Bound on Higgs mass from Unitarity

• ConsiderW+
L W

−
L → W

+
L W

−
L scattering process. The amplidute of the process in terms

of spin-l partial wave is

M =
∞
∑

l=0

Ml, where Ml = 16π(2l+ 1)Pl(cos θ)al

• The cross section at c.m energy
√
s is given by

σ =
∑

l

σl, where σl =
16π

s
(2l+ 1)|al|2

• Conservation of probability gives perturbativity rule:

|Re(al)| ≤
1

2

• When s ≫ M2
W ,m

2
h, a0 → −m2

h/(8πv
2)

∣

∣

∣

∣

∣

− m2
h

8πv2

∣

∣

∣

∣

∣

≤ 1

2
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• Combined analysis with similar longitudinal scattering processes gives the upper bound on
higgs mass mh < 710 GeV.
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Bound on Higgs mass from Landau pole

• Finiteness of λ coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

µ2
R

d

dµ2
R

λ(µ2
R) =

3

4π2
λ(µ2

R)



- p. 24/31

Bound on Higgs mass from Landau pole

• Finiteness of λ coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

µ2
R

d

dµ2
R

λ(µ2
R) =

3

4π2
λ(µ2

R)

The solution

λ(Q2) =
λ(Q2

0)

1 − 3
4π2

λ(Q2
0) log

Q2

Q2

0



- p. 24/31

Bound on Higgs mass from Landau pole

• Finiteness of λ coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

µ2
R

d

dµ2
R

λ(µ2
R) =

3

4π2
λ(µ2

R)

The solution

λ(Q2) =
λ(Q2

0)

1 − 3
4π2

λ(Q2
0) log

Q2

Q2

0

• The Landau pole gives the scale ΛP given by (chooseQ = ΛP , Q0 = v)

ΛP = v exp

(

2π2

3λ(v2)

)

= v exp

(

4π2v2

3m2
h

)



- p. 24/31

Bound on Higgs mass from Landau pole

• Finiteness of λ coupling upto a cut off scale of the theory can give useful information on
higgs mass through Renormalisation group equation. Droping gauge and Yukawa
contributions,

µ2
R

d

dµ2
R

λ(µ2
R) =

3

4π2
λ(µ2

R)

The solution

λ(Q2) =
λ(Q2

0)

1 − 3
4π2

λ(Q2
0) log

Q2

Q2

0

• The Landau pole gives the scale ΛP given by (chooseQ = ΛP , Q0 = v)

ΛP = v exp

(

2π2
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)

= v exp

(

4π2v2

3m2
h

)

• If ΛP = 1019 GeV, the higgs has to be lightmh ≤ 145 GeV.
• If ΛP = 103 GeV, the higgs has to be heavymh ≤ 750 GeV.
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Bound on the Higgs mass from Perturbativity

• Including gauge and Yukawa couplings, the RG equation for λ is given by
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16π2

(

12λ2 + 12
m2
t

v2
λ−12

m4
t

v4
− 3

2
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3
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(2g

′4 + (g
′2 + g2)2)

)
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• ChoosingQ = ΛS ,

ΛS ≈ 103GeV =⇒ mh ≥ 70GeV

ΛS ≈ 1016GeV =⇒ mh ≥ 130GeV
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Bounds on the mass of Higgs boson

• The upper curve results from demanding perturbativity of the coupling λ upto the scale Λ

• The lower curve comes from demanding positive value for coupling upto the scale Λ
(potential has to be bounded from below giving vacuum stability)

Spread in the lines is due to theory uncertainities.
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Higgs Mass [Summer 2004, LEPEWWG]

Direct:

e+

e−

Z

h

mh > 114.4 GeV

Z∗

Direct:

• LEP is a e+e− collider with√
s = 209 GeV

• Primary search mode e+e− → hZ

• On-shell higgs can be produced if the
mass of the higgs is greater than√
s−MZ = 118 GeV

• Low statistics and insufficient energy
available gives the lower bound
mh > 114.4 GeV
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Indirect:

• Higgs can contribute to many
electroweak observables that are
measured at LEP

• They can enter inW and Z self
energies at one loop level.

• The mass of the higgs appears
through its propagator and
kinematics

• The effects manisfest as
log(mh/mew) terms

• Precision electroweak fit can give
allowed Higgs mass range.
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W
± mass and sin

2
θW

• Precise meausurement of mass of the W boson
• sin2 θW from Forward back asymmetry and charge asymmetries
• Lower boundmh < 260 GeV ( 95% CL)
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Higgs Mass [Summer 2004, LEPEWWG]

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01646

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1039

AfbA0,c 0.0707 ± 0.0035 0.0743

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.378

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.27

July 2011
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• mh, x are the parameters of the
standard model

• Minimise

χ2 =
∑

i

(Oth
i

(mh, x) − Oexpt
i

)2

(∆Oexpti )2

• χ2/d.o.f ≈ 1 implies that SM is
compatible with data.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01646

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1482

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1722

AfbA0,b 0.0992 ± 0.0016 0.1039

AfbA0,c 0.0707 ± 0.0035 0.0743

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1482

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.399 ± 0.023 80.378

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.27

July 2011

• mh, x are the parameters of the
standard model

• Minimise

χ2 =
∑

i

(Oth
i

(mh, x) − Oexpt
i

)2

(∆Oexpti )2

• χ2/d.o.f ≈ 1 implies that SM is
compatible with data.
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Indirect:

e+

e−

µ−

µ+

mh < 260 GeV ( 95% CL)

h

∆χ2(mh, x) = χ2(mh, x) − χ2
min

• ∆χ2 < (1.96)2 gives 95% CL
allowed mass range for higgs mass
mh.

• The lower limitmh is much smaller
than direct limit and the upper limit is
mh ≥ 200 GeV.
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Indirect:

e+

e−

µ−

µ+

mh < 260 GeV ( 95% CL)

h

∆χ2(mh, x) = χ2(mh, x) − χ2
min

• ∆χ2 < (1.96)2 gives 95% CL
allowed mass range for higgs mass
mh.

• The lower limitmh is much smaller
than direct limit and the upper limit is
mh ≥ 200 GeV.
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Indirect:

e+

e−

µ−

µ+

mh < 260 GeV ( 95% CL)

h

∆χ2(mh, x) = χ2(mh, x) − χ2
min

• ∆χ2 < (1.96)2 gives 95% CL
allowed mass range for higgs mass
mh.

• The lower limitmh is much smaller
than direct limit and the upper limit is
mh ≥ 200 GeV.
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LHC
excluded

∆αhad =∆α(5)

0.02750±0.00033

0.02749±0.00010

incl. low Q2 data

Theory uncertainty
March 2012 mLimit = 152 GeV

114.4 < mh < 260 GeV at 95% CL.
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