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Part I

Introduction to Herwig++

1 Preparation

The Herwig++ homepage is at http://projects.hepforge.org/herwig/. To speed up the

setup, we have pre-installed Herwig++ for the tutorials. To use it, you should create a working

directory, and copy the configuration files across (we’ll explain their role in section 3 below).

For this tutorial, substitute

HERWIGPATH=/opt/hep

in the following commands. $ mkdir hw-tutorial

$ cd hw-tutorial

$ cp [HERWIGPATH]/share/Herwig++/LHC.in .

For convenience, create a link to the executable:

$ ln -s [HERWIGPATH]/bin/Herwig++

Do not type the $ charakter!

2 Simple LHC events

As a first step, we will generate 100 LHC Drell-Yan events in the example setup that comes

with the distribution:

$ ./Herwig++ read LHC.in

$ ./Herwig++ run LHC.run -N100 -d1

We’ll explain the commands in the next section. The second step will take about a minute

on the machines here. Most of this time is taken up by the constant initialization time, with

the actual event generation lasting a few seconds.

Looking at the file LHC.log, you should see the detailed record of the first 10 events of this

run.

$ less LHC.log
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Each event is made up of individual steps that reflect the treatment of the event as it passes

through the various stages of the generator (hard subprocess, parton shower, hadronization

and decays).

Every particle in a step has an entry like

16 g 21 [13] (42,43) 14>>20 {+6,-5}

-1.040 -2.805 177.756 177.783 0.750

The first line contains 16, the particle’s label in this event; g 21, the particle’s name and

PDG code; [13], the label(s) of parent particle(s); (42,43) the label(s) of child particle(s);

and {+6,-5}, the colour structure: this particle is connected via colour lines 5 and 6 to the

particles with number 14 and 20. The second line shows px, py, pz, E and ±
√
|E2 − p2|.

Note that everybody has generated the exact same events (go and compare!), with exactly

the same momenta. Adding 10 of these runs together will not be equivalent to running 1000

events! To make statistically independent runs, you need to specify a random seed, either

with

$ ./Herwig++ run LHC.run -N100 -d1 -s 123456

or, as we’ll see now, in the LHC.in file.

3 Input files

Any ThePEG-based generator like Herwig++ is controlled mainly through input files (.in files).

They create a Repository of component objects (each one is a C++ class of its own) and their

parameter settings, assemble them into an event generator and run it. Herwig++ already

comes with a pre-prepared default setup1. As a user, you will only need to write a file with

a few lines (like LHC.in) for your own parameter modifications. The next few sections will go

through this.

The first command we ran (./Herwig++ read LHC.in) takes the default repository provided

with the installation, and reads in the additional instructions from LHC.in to modify the

repository accordingly. A complete setup for a generator run will now be saved to disk in a

.run file, for use with a command like ./Herwig++ run LHC.run -N100. The run can also be

started directly from the LHC.in file, which is especially useful for batch jobs or parameter

scans.

Writing new .in files is the main way of interacting with Herwig++. Have a look at the other

examples we have provided for LEP, Tevatron, or ILC (LEP.in, TVT.in and ILC.in) and see if

you can understand the differences:

$ cp -u /HERWIGPATH/share/Herwig++/???.in .

1in /HERWIGPATH/share/Herwig++/defaults
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The two most useful repository commands are create, which registers a C++ object with the

repository under a chosen name, and set, which is used to modify parameters of an object.

Note that all this can be done without recompiling any code!

Take your time to play with the options in the example files. Here are some suggestions for

things you can try:

1. Run 100 Tevatron events.

2. Start a run directly from the .in file. Be careful with the number of events you generate,

the default is 107, and we don’t have that much time today!

3. Compare the Drell-Yan cross sections for Tevatron and LHC. The cross sections are

written to TVT.out and LHC.out, respectively.

4 Analysis handlers

There is an easier way to analyse the generated events than looking at the .log file. ThePEG

provides the option to attach multiple analysis handlers to a generator object. Every analysis

handler initializes itself before a run (e.g. to book histograms), analyses each event in turn (fill

histograms) and then runs some finalization code at the end of the run (output histograms).

The Rivet system, which youll get to know later, provides an alternative method for analysing

events that is independent of the generator framework.

As part of the default setup, one analysis handler has always been running already. The

BasicConsistency handler does what its name promises: checking for charge and momentum

conservation.

5 Changing default settings

Take a look at the default settings in /HERWIGPATH/share/Herwig++/defaults, we have com-

mented them extensively. Ask the tutors to explain parameters. Can you identify which four

lines in HerwigDefaults.in control the hard subprocess, the parton shower, the hadronization

and the decays?

5.1 Switching on or off simulation steps

So far, we did look at completely generated events including parton showers, hadroniza-

tion, decays of hadrons and multiple parton interactions. The first three of these steps may

be switched off by setting the corresponding step handler interfaces of an event handler to

NULL. Multiple parton interactions are switched off by setting the MPIHandler interface of the

ShowerHandler to NULL.
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Add repository commands to your local LHC.in switching on or off successive steps and look

at the effects by generating few events. The default settings are provided in HerwigDefaults.in

and Shower.in. Take care of the directory-like prefixes, in which the different objects reside.

5.2 Changing the hard process

The default hard process for LHC is Drell-Yan vector boson production with leptonic de-

cays. Edit LHC.in to replace the matrix element for vector boson production by the one for

top-quark pair production for LHCGenerator’s default SubProcessHandler. The relevant ma-

trix element is contained in the default repository, /Herwig/MatrixElements/MEHeavyQuark.

Generate few events as for the default settings.

Try to keep track of the top quarks in LHC.log. Can you identify, if there has been gluon

radiation off the top quarks prior to decay?

5.3 Changing particle properties

The properties of a particle are contained in a ParticleData object. All of these objects are

stored in the default repository in /Herwig/Particles.

The top quark’s properties are contained in /Herwig/Particles/t, the anti-top’s proper-

ties are set automatically. You can change the mass and width of the top quark using the

NominalMass and Width interfaces.

Particles can be set stable explicitly. For the top quark to be stable, add

set /Herwig/Particles/t:Stable Stable to LHC.in (the default value for the top quark

is of course Unstable). You will also need to switch off the hadronization. Why may this be

necessary?

5.4 Matrix element options

There are often also switches for the selection of a particular subprocess given with a matrix

element. For W production, the relevant switch for e.g. the leptonic W–channel is

set MEqq2W2ff:Process Leptons.

6 Graphviz plot

Let’s briefly look at a useful handler that allows us to visualize the internal structure of an

event within Herwig++. Enable the GraphvizPlot analysis for LHC (the line in LHC.in which

mentions /Herwig/Analysis/Plot) and run one LHC event. Plot should have produced a file

LHC-Plot-1.dot, which contains the description of a directed graph for the generated event.

The graphviz package will plot the graph for us:
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$ dot -Tpng LHC-Plot-1.dot > LHC-plot.png

Have a look with $ eog LHC-plot.png or any other image viewer2

1. Identify the Drell-Yan process. Has there been initial state radition?

2. Keep track of the incoming protons and proton remnants. Did only one 2→ 2 scattering

take place?

It is important to note that these plots only reflect the internal event structure in the gener-

ator. Many internal lines do not have a physical significance!

That’s it!

Thanks for trying Herwig++! If you have any questions later on, please email us at

herwig@projects.hepforge.org or have a look at

http://projects.hepforge.org/herwig/, where many how-tos can be found, and we’ll add

more on request. For detailed documentation refer to our manual, arxiv:0803.0883.

2dot can output other image formats, too; choose them with the -T flag.
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1 Introduction

The objective of this exercise is to teach you the basics of how to use the Pythia 8.1 event
generator to study multi-jet backgrounds. As you become more familiar you will better
understand the tools at your disposal, and can develop your own style to use them. Within
this first exercise it is not possible to describe the physics models used in the program;
for this we refer to the Pythia 8.1 brief introduction [1], to the full Pythia 6.4 physics
description [2] (and all the further references found in them), and [5, 6, 7] concerning
matrix element merging.

Pythia 8 is, by today’s standards, a small package. As such, it should be noted that
Pythia8 includes a selection 2 → 1 and 2 → 2 processes, as well as a limited variety of
2→ 3 processes, but does not contain a general matrix element generator. New processes,
particularly for two or more additional jets, can be made available in form of Les Houches
Event (LHE) files. This means that to estimate backgrounds with many jets, you can use
a matrix element generator like e.g. Madgraph/Madevent to improve the Pythia8
description of well-separated jets.

2 Getting started: Installing Pythia 8

If you would like to install Pythia 8 on your private machine, and you have a C++
compiler, here is how to install the latest Pythia 8 version on a Linux/Unix/MacOSX
system as a standalone package.

For this tutorial, most installation steps have already been taken. You can find the
Pythia 8 source code under

PYTHIADIR=/opt/hep/share/Pythia8
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on your virtual machine. Pythia 8 has been installed so that you can directly change
into one of the tutorial dirctories

INTRODIR=~/tutorials/intro/pythia

HIGGSDIR=~/tutorials/higgs/pythia

BOOSTDIR=~/tutorials/boost/pythia

and start directly with Step 6 below. Alternatively, the following steps allow you to install
Pythia 8 from the source code.

While Pythia can be run standalone, it can also be interfaced with a set of other libraries.
One example is HepMC, which is the standard format used by experimentalists to store
generated events. Since the the location of external libraries is naturally installation-
dependent, it is not possible to give a fool-proof linking procedure, but some hints are
given below.

1. In a browser, go to

http://www.thep.lu.se/∼torbjorn/Pythia.html

2. Download the (current) program package

pythia81xx.tgz

to a directory of your choice (e.g. by right-clicking on the link).

3. In a terminal window, cd to where pythia81xx.tgz was downloaded, and type

tar xvfz pythia81xx.tgz

This will create a new (sub)directory pythia81xx where all the Pythia 8 source files
are now ready and unpacked. From now on, we will call this directory1 PYTHIADIR.

4. Move to this directory (cd $PYTHIADIR). If you are only interested in directly pro-
ducing plots from Pythia event records, you can directly go to the next step. If
you want to produce and store HepMC event output, configure the program in
preparation for the compilation by typing

./configure --with-hepmc=$HEPMC_PATH

where the directory-tree $HEPMC PATH would depend on your local HepMC instal-
lation. Should configure not recognise the version number you can supply that
with an optional argument, like

./configure --with-hepmc=$HEPMC_PATH--with-hepmcversion=2.06.06

For this tutorial, we will use a trick to keep the size of inputs small: We will allow
Pythia to read compressed Les Houches event files. For this, configure Pythia
with the options

1On your virtual machine, you can find the Pythia 8 source files under /opt/hep/share/Pythia8.

2

./configure --enable-gzip --with-boost=$BOOST_PATH \

--with-zlib=$ZLIB_PATH --with-hepmc=$HEPMC_PATH \

--with-hepmcversion=2.06.06

in order to link to the gzip and boost libraries. For this school, you can use

BOOST_PATH=/usr

ZLIB_PATH=/usr/lib/i386-linux-gnu

HEPMC_PATH=/opt-hep

5. Do a make. This will take 2–3 minutes (computer-dependent). The Pythia 8
libraries are now compiled and ready for physics.

6. For test runs, cd to the examples/ subdirectory, or one of the tutorial directories.
An ls reveals a list of programs, mainNN, with NN from 01 through 90. These
example programs each illustrate an aspect of Pythia 8. For a list of what they
do, see the README file in the same directory or look at the online documentation.
Initially only compile one or two of them to check that the installation works. Once
you have worked your way though the introductory exercises in the next sections
you can return and study the programs and their output in more detail.
If you want to produce HepMC output when installing Pythia 8 for the source
code, do either of

source config.csh

source config.sh

the former when you use the csh or tcsh shells, otherwise the latter. (Use echo

$SHELL if uncertain.). If you are not interested in HepMC, this step can be skipped.
To execute one of the test programs, do

make mainNN

./mainNN.exe

The output is now just written to the terminal, stdout. To save the output to a
file instead, do ./mainNN.exe > mainNN.out, after which you can study the test
output at leisure by opening mainNN.out. See Appendix A for an explanation of
the event record that is listed in several of the runs.

7. If you open the file

$PYTHIADIR/htmldoc/Welcome.html

you will gain access to the online manual, where all available methods and param-
eters are described. Use the left-column index to navigate among the topics, which
are then displayed in the larger right-hand field.

To produce a matrix-element improved prediction with Pythia 8, you will also need to
supply Les Houches Event (LHE) files as input. You will have to generate these yourself,
with your own cuts, and your preferred matrix element generator. For the sake of this
introductory tutorial, we supplied sample LHE files under
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INTRODIR=~/tutorials/intro/pythia

You can use these as input for the programs you will develop in this tutorial. The names
of the files reflect the process and the generation settings2

ggh cc tree 0.lhe.gz: pp→ H (leading order, µf = mH, µr = mH)
ggh ll tree 0.lhe.gz: pp→ H (leading order, µf = 1

2
mH, µr = 1

2
mH)

ggh cc tree 1.lhe.gz: pp→ H + 1 parton (leading order, µf = mH, µr = mH)
ggh hh tree 1.lhe.gz: pp→ H + 1 parton (leading order, µf = 2mH, µr = 2mH)
. . .

These files come with no guarantees and should only be used for this tutorial. for the
first part of the tutorial, you can stick to the input events generated with µf = mH and
µr = mH, i.e. the ”ggh cc”-files.

3 Pythia 8 standalone

When using Pythia, you are expected to write the main program yourself, for maximal
flexibility and power. Several examples of such main programs are included with the code,
to illustrate common tasks and help getting started. You will also see how the parameters
of a run can be read in from a file, so that the main program can be kept fixed. Many of
the provided main programs therefore allow you to create executables that can be used
for different physics studies without recompilation, but potentially at the cost of some
flexibility.

3.1 Simple LHC Events

The focus of the next sessions will be on extracting signals from Standard Model back-
grounds. So, to get to know the Pythia 8 syntax, we will generate one pp → H + jets
event at the LHC, using Pythia standalone to produce all jets.

Open a new file mymain.cc in the INTRODIR subdirectory with a text editor, e.g. Emacs.
Then type the following lines (here with explanatory comments added)3:

// Headers and Namespaces.

#include "Pythia.h" // Include Pythia headers.

using namespace Pythia8; // Let Pythia8:: be implicit.

int main() { // Begin main program.

// Set up generation.

// Declare Pythia object

Pythia pythia;

2The usage of the different input files will be explained in the text.
3Experienced Pythia 8 users might be surprised by the initialisation on a Les Houches reader object.

Using this slightly more complicated initialisation, gzip-compressed files will become readable.
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// Declare Les Houches event file reader.

LHAupLHEF lhareader("./ggh_cc_tree_0.lhe.gz");

// Initialise pythia on LHE file for qqbar-> W

pythia.init(&lhareader);

// Generate event(s).

// Generate an(other) event. Fill event record.

pythia.next();

// End main program with error-free return.

return 0;

}

Next you need to edit the Makefile (the one in the INTRODIR subdirectory) so it knows
what to do with mymain.cc. The line

# Create an executable for one of the normal test programs

main00 main01 main02 main03 ... main09 main10 main10 \

together with the following three lines enumerate the main programs that do not need
any external libraries. Edit the last of these lines to include also mymain:

main40 mymain: \

Now you can compile and run your main program by typing

make mymain

./mymain.exe > mymain.out

You can then study mymain.out, especially the example of an event record. At this point
you need to turn to Appendix A for a brief overview of the information stored in the event
record.

An important part of the event record is that many copies of the same particle may
exist, but only those with a positive status code are still present in the final state. For
illustration, consider a gluon produced in the first initial state splitting of the gg → H
hard interaction. Initially, this parton will have a positive status code. When a shower
branching changes properties of this gluon, then the new, changed gluon is added at the
bottom of the then-current event record, but the old g is not removed. It is marked as
decayed, however, by negating its status code. At any stage of the shower there is thus
only one “current” copy of this gluon. When you understand the basic principles, see if
you can find several copies of the a parton produced in the hard interaction, and check
the status codes to figure out why each new copy has been added. Also note how the
mother/daughter indices tie together the various copies.

3.2 A first realistic analysis

We will now gradually expand the skeleton mymain program from above, towards what
would be needed for a more realistic analysis setup.
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• Generally, we wish to generate more than one event. To do this, introduce a loop
around pythia.next() and pythia.event.list(), so the code now reads

for (int iEvent = 0; iEvent < 5; ++iEvent) {
pythia.next();

pythia.event.list();

}
Hereafter, we will call this the event loop. The program will now generate and
print 5 events; each call to pythia.next() resets the event record and fills it with a
new event. Once you start generating many events, it might be convenient to remove
the pythia.event.list() call. By default, Pythia 8 will still print a record of
the very first event.

• To obtain statistics on the number of events generated of the different kinds, and
the estimated cross sections, add

pythia.stats();

just before the end of the program.

• During the run you may receive problem messages. These come in three kinds:

– a warning is a minor problem that is automatically fixed by the program, at
least approximately;

– an error is a bigger problem, that is normally still automatically fixed by the
program, by backing up and trying again;

– an abort is such a major problem that the current event could not be completed;
in such a rare case pythia.next() is false and the event should be skipped.

Thus the user need only be on the lookout for aborts. During event generation,
a problem message is printed only the first time it occurs. The above-mentioned
pythia.statistics() will then tell you how many times each problem was encoun-
tered over the entire run.

• Looking at the pythia.event.list() listing for a few events at the beginning
of each run is useful to make sure you are generating the right kind of events, at
the right energies, etc. For real analyses, however, you need automated access to
the event record. The Pythia event record provides many utilities to make this
as simple and efficient as possible. To access all the particles in the event record,
insert the following loop after pythia.next() (but fully enclosed by the event
loop)

for (int i = 0; i < pythia.event.size(); ++i)

cout << "i = " << i << ", id = " << pythia.event[i].id() <<

endl;

which we will call the particle loop. Inside this loop, you can access the properties
of each particle pythia.event[i]. For instance, the method id() returns the
PDG identity code of a particle (see Appendix A). The cout statement, therefore,
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will give a list of the PDG code of every particle in the event record. All methods
that give particle properties can be found following the “Particle properties” link
in the section “Study output” in the left-hand menu in the manual, or in the file
/path/to//Pythia/pythia8160/htmldoc/ParticleProperties.html.

• If you are e.g. only interested in final state partons, the isFinal() and isParton()

methods can be applied to the event record entry:

for (int i = 0; i < pythia.event.size(); ++i)

if(pythia.event[i].isFinal() && pythia.event[i].isParton())

cout << "i = " << i << ", id = " <<

pythia.event[i].id() << endl;

This will only print the PDG code of final state gluons, (anti)quarks and diquarks.

• In addition to the particle properties in the event listing, there are also methods
that return many derived quantities for a particle, such as transverse momentum
(pythia.event[i].pT()). Use this method to find the transverse momentum of
the H-boson after the evolution, i.e. the last H-boson in the event record (which
is of course cheating a bit, since in an experimental environment, it is a lot more
complicated to isolate H-candidates).

• We now want to generate more events, say 1000, to study the shape the pT,H-
spectrum. Inside Pythia is a very simple histogramming class, that can be used
for rapid check/debug purposes. To book the histograms, insert before the event
loop

Hist HistPTH("pT of H-boson", 50, 0., 500.);

where the last three arguments are the number of bins, the lower edge and the
upper edge of the histogram, respectively. As an exercise, fill this histogram for
each event with the transverse momentum of the H-boson after the evolution.
For this, initialise a variable before the particle loop, and find the pT inside a
particle loop:

double pT = 0.;

for (int i = pythia.event.size(); i > 0; --i)

if( pythia.event[i].idAbs() == 25 ) {
pT = pythia.event[i].pT();

break;

}

Then, before the end of the event loop, insert

HistPTH.fill(pT);

to fill the histogram. To arrive at a correctly normalised histogram, include

HistPTH *= pythia.info.sigmaGen() / pythia.info.nAccepted();

after the event loop and the pythia.stats() call. In this way, the sum of the
heights of all histogram bins will give the correct cross section, irrespectively of
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how many events you requested4. Finally, to print the histograms to the terminal,
add a line like

cout << HistPTH;

For comparison with merged results, it might be useful to save the output of this
run.

4 Tree-level merged predictions

The main program we have constructed in the previous section has one drawback: All
radiation will be produced by Pythia 8. This will give reliable results for soft and
collinear configurations, but less so for multiple hard, well-separated jets. To model both
soft/collinear and well-separated jets at the same time, we need to include matrix element
calculations – which describe the production of multiple hard jets nicely – into the jet
evolution of the parton shower. This can be done by supplying LHE files to Pythia 8,
which will then internally be processed to perform a smooth transition from n-jet to n+1-
jet events. Several main programs illustrating matrix element + parton shower merging
(MEPS) are included in the Pythia 8 distribution, offering a range of different merging
schemes:

• Tree-level merging: MLM-style jet matching with Madgraph or Alpgen, CKKW-
L merging [5], and unitarised ME+PS merging (UMEPS) [6];

• Next-to-leading order merging: NL3 merging, unitarised NLO+PS merging (UN-
LOPS) [7].

Here, we will get to know the CKKW-L, UMEPS and UNLOPS schemes by manipulating
some example main programs5 We will use H+ ≤ 2 jets as an example.

4.1 CKKW-L merging

CKKW-L merging [5] was the first merging scheme available in Pythia 8. For this school,
we supply the example main program main-ckkwl.cc. This program uses the LH files
in the examples directory to produce a result that simltaneously describes H + 0, 1, 2 jet
observables with leading-order matrix elements, while also including PS resummation (i.e.
arbitrarily many PS emissions). CKKW-L is described in the online manual under Link
to other programs → CKKW-L merging.

Take as an example one-jet observables (e.g. the transverse momentum of the jet in events
with exactly one jet). In this case, we want to take a ”hard” jet from the pp→ Hj matrix
element (ME), while ”soft” jets should be modelled by emissions off pp → H states,
generated by Pythia. This means that in order to smoothly merge these two samples,

4Pythia cross sections are given in units of mb. If you instead prefer e.g. pb then multiply by 1e9.
5A more concise tutorial on how to write a CKKW-L main program from scratch can be found at

http://home.thep.lu.se/∼torbjorn/pythia8/mergingworksheet8160.pdf .
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we have to know in which measure ”hard” is defined, and which value of this measure
separates the hard and soft regions. In main-ckkwl.cc, these definitions are

pythia.readString("Merging:doPTLundMerging = on");

pythia.readString("Merging:TMS = 15");

This will enable the merging procedure, with the merging scale defined through the evo-
lution p⊥ of Pythia 8. Such a definition fixes what we mean when we talk about “hard”
and “soft” jets6:

Hard jets: min{p⊥evol(Hard jet)} > tMS

Soft jets: min{p⊥evol(Soft jet)} < tMS

Then, to define that we want to produce results for Higgs production, we set

pythia.readString("Merging:Process = pp>h");

and allow for full flexibility in the the Higgs decay products, by simply disregarding the
decay products in the merging:

pythia.readString("Merging:mayRemoveDecayProducts = on");

Finally, we want to include the pre-generated ME events for up to two additional jets.
This is communicated to Pythia by setting

pythia.readString("Merging:nJetMax = 2");

Then, main-ckkwl.cc will start generating events, reading from the LHE file with the
highest parton multiplicity first. Each event after the merging comes with a weight

double weight = pythia.info.mergingWeight();

which contains Sudakov factors to remove the double counting between samples of different
multiplicity, αs-ratios to incorporate αs−running, and ratios of parton distributions to
include variable factoriation scales. This weight must be used to fill histogram bins. As
an exercise, convince yourself that the variation in this weight is moderate.

main-ckkwl.cc finishes by normalising the histograms for each sub-sample by the correct
cross section

SubHistPTH *= 1e9 * pythia.info.sigmaGen() / pythia.info.nAccepted();

and then adding the histograms

HistPTH += SubHistPTH;

6There is of course a plethora of possilbe hardness criteria. For this reason, CKKW-L merging in
Pythia 8 allows you to define your very own merging scale (please consult the manual for details).
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You can compile and main-ckkwl.cc by issuing the commands

make main-ckkwl

./main-ckkwl.exe

Now that we understand the main program, let us (a) compare to the full result of
simply showering the Higgs production process, (b) check in which p⊥ regions which jet
multiplicity contributes, (c) vary the merging scale value TMS.

If you would like to get your hands dirty on some CKKW-L details, check out the col-
lection of main programs for CKKW-L merging (main81.cc-main85.cc) that Pythia 8
offers. Each of these require a different level of knowledge about the merging procedure.
main85.cc is intended as a black box. However, before you get stuck on CKKW-L, it is
useful to know that other, more modern, merging schemes are available in Pythia 8.

4.2 Unitarised ME+PS merging

One main disadvantage of classical merging schemes is the matrix element calculations
that are included into the parton shower might contain large logarithmic contributions
that cannot be cancelled by the shower resummation. These terms can, particularly for
small merging scales, lead to changes of the inclusive cross section after multi-jet merging.
A better shower would ameliorate this issues. Still, such problems reveal that the merging
scale value is not a purely technical parameter, but should be chosen in a sensible range.

However, it is possible to demote the merging scale to a technical parameter without
having to improve the PS resummation. Rather, improved approximate virtual corrections
can be employed, resulting in a scheme called unitarised ME+PS merging, short UMEPS
[6]. The basic idea is simple: Subtract what you add, then the inclusive cross section
will stay fixed. The way this ”add-subtract” scheme is facilitated (without disturbing the
description of well-separated jets) closely follows the prescription how (un-merged) parton
showers preserve the inclusive cross section. UMEPS is described in the online manual
under Link to other programs → UMEPS merging.

For this school, we supply a sample main program7 for UMEPS merging, main-umeps.cc.
The main program starts by setting the merging scale value

pythia.readString("Merging:TMS = 15");

Note that the actual merging scale definition will be set on a sample-by-sample basis.
Then, the core scattering is defined

pythia.readString("Merging:Process = pp>h");

pythia.readString("Merging:mayRemoveDecayProducts = on");

and the maximal number of additional partons in the matrix element calculation is set

7The standard UMEPS sample main program is main86.cc.
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pythia.readString("Merging:nJetMax = 2");

The event generation code starts after these settings. Note that this code is split into
an ”additive” part (the loop over njetcounterLO), followed by a ”subtractive” part (the
loop over njetcounterCT).

In the additive part of UMEPS, the merging scale is defined by

pythia.readString("Merging:doUMEPSTree = on");

This is currently the only merging scale definition for UMEPS, and corresponds to sepa-
rating hard and soft jets according to min{p⊥evol}. The setting

pythia.readString("Merging:nRecluster = 0");

is also necessary to ensure that the algorithm works as expected (see below). Histograms
bins for observables in this additive part should, as in CKKW-L, be filled with the weight
containing Sudakov-, αs and PDf-factors,

double weight = pythia.info.mergingWeight();

and the resulting sub-sample histogram should added to the to-be merged histogram.

In the subtractive part of UMEPS, we define the merging scale by

pythia.readString("Merging:doUMEPSSubt = on");

pythia.readString("Merging:nRecluster = 1");

This enables the trick that is at the very heat of UMEPS: In a parton shower, ap-
proximate virtual corrections Vps and approximate real emissions Rps cancel because
Vps = − ∫

Rps. Thus, the inclusive cross section is not changed by the parton shower.
This cancellation is however spoiled when merging a real emission matrix element Rme,
since Rme 6= Rps. The subtractive part of UMEPS puts Vumeps = − ∫

Rme, thus explicitly
enforcing the parton-shower-like cancellation. The necessary integration is enabled by
putting Merging:nRecluster = 1. As always, the result should be histogrammed with
the weight

double weight = pythia.info.mergingWeight();

Now, the resulting sub-sample histograms should be subtracted from the to-be merged
result.

You can compile and main-umeps.cc by issuing the commands

make main-umeps

./main-umeps.exe
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Once we have understood main-umeps.cc, let us find the average weight (for one particu-
lar number of additional ME partons) of the additive parts of UMEPS, and compare this
to the average weight (of the same parton multiplicity) in CKKW-L. Further, change the
merging scale value in UMEPS, and try to understand the changes. Compare the merged
results between CKKW-L and UMEPS.

If you have finished these challenges, you should take the opportunity to try a few other
options. Below are given some examples, but feel free to pick something else that you
would be more interested in.

In the next session, you will move one step further in the history of merging schemes.
To assess the theoretical uncertainties of current merging methods, you will use the best
method we have so far in Pythia 8: NLO multi-jet merging in the UNLOPS scheme.

5 Next-to-leading order merging

The most recent development in combining fixed-order calculations and parton shower
resummation is next-to-leading order merging. This is different from NLO matching (e.g.
POWHEG and MC@NLO) because it allows to describe different parton multiplicities
simultaneously at NLO accuracy. NLO merging schemes are the successor of tree-level
merging schemes.

In this tutorial, we will assess the uncertainties of the unitarised NLO+PS merging method
(UNLOPS, [7]). For this, we will depart from our usual practise of simply printing his-
tograms to the terminal. Instead, we will use a sample main program that uses HepMC
output, which can then be analysed with RIVET. We will briefly describe the main pro-
gram used for this study, and come back to the actual uncertainty estimates below.

5.1 main88.cc

UNLOPS merging is the direct extention of UMEPS to NLO accuracy. For this school,
we would like our simulation to describe H + 0 and H + 1 jet simultaneously with NLO
accuracy, describe H + 2 jets with tree-level accuracy, and take all further jets from the
PS approximation. This means we have to consider two types of input calculations:
Tree-level and NLO inputs. For this school, we supply tree-level event samples produced
with MadGraph, and NLO event samples produced with POWHEG-BOX. UNLOPS then
processes these samples in the following way:

(1) Use tree-level matrix elements for n partons as ”seeds” for higher-order corrections
(of O (αn+2

s ) and beyond), making sure that no O (αn+1
s ) are produced.

(2) Add the NLO samples, making sure that no higher orders (of O (αn+2
s ) and beyond)

are produced.

(3) Unitarise everything, making sure that no unwanted O (αn+1
s ) terms are produced,

i.e. ensure that the inclusive cross section is given by the H + 0 NLO result.
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This is done internally in main88.cc, the sample main program we will use to generate
NLO merged results. In the event generation phase, main88.cc uses the tree-level input
file twice (once for Step (1) and once for Step (3)), as well as using the NLO (POWHEG)
inputs twice (once for Step (2) and once for Step (3)). main88.cc is described in detail
in the online manual under Link to other programs → NLO merging8.

main88.cc reads a settings file (e.g. main88.cmnd) for the necessary settings. It is
important to set the switches

// Definition core process for merging

Merging:Process = ?

Merging:mayRemoveDecayProducts = ?

// Maximal number of additional LO jets.

Merging:nJetMax = ?

// Maximal number of additional NLO jets.

Merging:nJetMaxNLO = ?

// Merging scale value.

Merging:TMS = ?

// Values of (fixed) scales in the matrix element calculation.

Merging:muFacInME = ?

Merging:muRenInME = ?

// Values of (fixed) scales for the PS lowest multiplicity process.

Merging:muFac = ?

Merging:muRen = ?

in such an input file. The process definition, maximal number of additional tree-level
jets and merging scale value have already been discussed in the CKKW-L section. In
addition, you now need to set the maximal number of additional jets for which an NLO
event sample is available, and the renormalisation and factorisation scales with which the
event samples have been produced. Finally, it is also necessary to set te scales which
would be used in default Pythia 8 to evaluate the core scattering (i.e. for H production,
the mass mH). In the case of wimpy showers, the value of Merging:muFac further sets
the shower starting scale in UNLOPS.

In general, you also need to generate tree-level- and POWHEG event samples as input
for main88.cc. For this school, we have included some pre-calculated samples in the
HIGGSDIR directory. The main program main88.cc assumes, to allow for a streamlined
file parsing, a particular naming convention. All POWHEG event samples should be
called

myLHEF_powheg_njets.lhe.gz

where myLHEF is a free process idetifier, which is assumed to be identical for all samples
belonging to one particular process. njets should give the number of additional partons
that are described at NLO accuracy (i.e. not counting real-emission partons). POWHEG

8In fact, we have slightly changed main88.cc to be able to read compressed LHE files.
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events for H + j@NLO could for example be called higgs powheg 1.lhe.gz. Tree-level
inputs are called

myLHEF_tree_njets.lhe.gz

A legitimate name for a tree-level sample with two additional jets could e.g. be
higgs tree 2.lhe.gz.

To use main88.cc, go into the HIGGSDIR directory and compile the main program

cd $HIGGSDIR

make main88

and run by issuing a command of the form

./main88.exe myInputFile myLHEF myHEPMCoutput

main88.cc will then, consecutively, read tree-level and POWHEG event samples, and
produce HepMC events.

To get used to the program, produce only small number of events, and run

./main88.exe main88.cmnd ggh_cc myHEPMCoutput

Can you identify the Steps (1)-(3) through the terminal output? Why is step (3) applied
both to tree-level and POWHEG samples?

5.2 Uncertainty estimates

In this part, we will try to estimate the scale uncertainty of the UNLOPS method. For
this, we will vary µf and µr in the matrix element calculation, while keeping the scales
in the parton shower resummation unchanged. In the HIGGSDIR directory, you can find
event files produced with three different scale settings:

• Files whose name contains ll have been generated with µf = µr = 1
2
mH

• Files whose name contains cc have been generated with µf = µr = mH

• Files whose name contains hh have been generated with µf = µr = 2mH

Let us now investigate the scale uncertainty of the (H+0, 1@NLO)+(H+2@LO) prediction.
We will use the analysis MC HJETS of RIVET to do this.

For each (fixed-order) scale setting, you will need to change Merging:muFacInME and
Merging:muRenInME in your input file and use the correct LHE samples.

We use HepMC events to parse the Pythia 8 output to RIVET. However, HepMC
event files quickly become prohibitively large. This is why RIVET allows the usage
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of fifo pipes to pass the events at generator run time, without having to store large
intermediate files. Pythia 8 will write a single event to the pipe, and RIVET will read
and analyse this event. To make this as simple as possible, you can use the BASH script
run.sh. This script allows to run both Pythia 8 and RIVET in the background of one
common terminal. To use run.sh, make it executable

chmod +x run.sh

and infer it by

./run.sh

main88.cc needs to be compiled before running the script. You will have to change the
name of LHE files, log-files and aida output files in the script, and the scales in the
settings file, if you want to generate histograms with different scale choices.

Now, try to do the following

• Run main88.cc, for the central scales, with only (H + 0@NLO)+(H + 1, 2@LO),
and with H + 0, 1@NLO)+(H + 2@LO). Check the exclusive jet multiplicity of the
MC HJETS analysis. Can you explain the differences?

• Run main88.cc, with H + 0, 1@NLO)+(H + 2@LO) for the three scale choices

(a) µf = µr = 1
2
mH = 62.5 GeV

(b) µf = µr = mH = 125 GeV

(c) µf = µr = 2mH = 250 GeV

Display the results together, and try to understand the differences.

• Switch between wimpy and power showers by changing the settings
TimeShower:pTmaxMatch and SpaceShower:pTmaxMatch.

Finally, compare the UNLOPS results to the results of the other Event Generators. This
is most conveniently done if you display the variations as uncertainty band. You can
modify the script

~/tutorials/higgs/plotit.sh

for this purpose. Type

cd ~/tutorials/higgs/

./plotit.sh -help

to find out about the script.

This concludes the generator-specific part of the tutorials. Don’t hesitate to contact us
[8] if you have further questions.
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Bonus: Some interesting settings

You are now free to play with further options in the input file (or use the
pythia.readString method directly in your code), and make changes such as:

• Tune:pp = 5 (or other values between 1 and 7)
Different combined tunes, in particular to radiation and multiple interactions pa-
rameters. In part this reflects that no generator is perfect, and also not all data
is perfect, so different emphasis will result in different optima. Currently, the de-
fault tune for LHC is Tune 4C, (which can also be explicityly set by Tune:pp = 5).
What happens if you switch to Tune A2, which is a recent tune that can be used
by putting Tune:pp = 7?

• PartonLevel:FSR = off

switch off final-state radiation.

• PartonLevel:ISR = off

switch off initial-state radiation.

• PartonLevel:MPI = off

switch off multiple interactions.

• TimeShower:pTmaxMatch = 1

wimpy final state showers (default).

• SpaceShower:pTmaxMatch = 1

wimpy initial state showers (non-default).

For debugging your code for instance, it might be reasonable to switch off multiple inter-
actions, so that you can produce plots more quickly.

The philosophy of Pythia is to make every parameter available to the user. A com-
plete list of changeable settings can be found in the online manual. Have a look at the
switches related to MEPS merging. As additional challenge, think about which switches
are dangerous, i.e. will maximally corrupt your predictions. Can you isolate a singularly
bad setting? Why does the prediction deteriorate with the changes?

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:
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• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id());

• name, a plain text rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (px, py, pz, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p⊥, etc), open the program’s online documentation in a browser
(see Section 2, point 6, above), scroll down to the “Study Output” section, and follow
the “Particle Properties” link in the left-hand-side menu. For brief summaries on the less
trivial of the ones above, read on.

A.1 Identity codes

A complete specification of the PDG codes is found in the Review of Particle Physics [3].
An online listing is available from

http://pdg.lbl.gov/2008/mcdata/mc particle id contents.html

A short summary of the most common id codes would be

1 d 11 e− 21 g 211 π+ 111 π0 213 ρ+ 2112 n
2 u 12 νe 22 γ 311 K0 221 η 313 K∗0 2212 p
3 s 13 µ− 23 Z0 321 K+ 331 η′ 323 K∗+ 3122 Λ0

4 c 14 νµ 24 W+ 411 D+ 130 K0
L 113 ρ0 3112 Σ−

5 b 15 τ− 25 H0 421 D0 310 K0
S 223 ω 3212 Σ0

6 t 16 ντ 431 D+
s 333 φ 3222 Σ+

Antiparticles to the above, where existing as separate entities, are given with a negative
sign.
Note that simple meson and baryon codes are constructed from the constituent (anti)quark
codes, with a final spin-state-counting digit 2s + 1 (K0

L and K0
S being exceptions), and

with a set of further rules to make the codes unambiguous.
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A.2 Status codes

When a new particle is added to the event record, it is assigned a positive status code
that describes why it has been added, as follows:

code range explanation
11 – 19 beam particles
21 – 29 particles of the hardest subprocess
31 – 39 particles of subsequent subprocesses in multiple interactions
41 – 49 particles produced by initial-state-showers
51 – 59 particles produced by final-state-showers
61 – 69 particles produced by beam-remnant treatment
71 – 79 partons in preparation of hadronization process
81 – 89 primary hadrons produced by hadronization process
91 – 99 particles produced in decay process, or by Bose-Einstein effects

Whenever a particle is allowed to branch or decay further its status code is negated (but it
is never removed from the event record), such that only particles in the final state remain
with positive codes. The isFinal() method returns true/false for positive/negative
status codes.

A.3 History of parton shower branchings

The two mother and two daughter indices of each particle provide information on the
history relationship between the different entries in the event record. The detailed rules
depend on the particular physics step being described, as defined by the status code. As
an example, in a 2 → 2 process ab → cd, the locations of a and b would set the mothers
of c and d, with the reverse relationship for daughters. When the two mother or daughter
indices are not consecutive they define a range between the first and last entry, such as a
string system consisting of several partons fragment into several hadrons.

There are also several special cases. One such is when “the same” particle appears as
a second copy, e.g. because its momentum has been shifted by it taking a recoil in the
dipole picture of parton showers. Then the original has both daughter indices pointing
to the same particle, which in its turn has both mother pointers referring back to the
original. Another special case is the description of ISR by backwards evolution, where the
mother is constructed at a later stage than the daughter, and therefore appears below in
the event listing.

If you get confused by the different special-case storage options, the two
pythia.event.motherList(i) and pythia.event.daughterList(i) methods are able
to return a vector of all mother or daughter indices of particle i.

A.4 Colour flow information

The colour flow information is based on the Les Houches Accord convention [4]. In it, the
number of colours is assumed infinite, so that each new colour line can be assigned a new
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separate colour. These colours are given consecutive labels: 101, 102, 103, . . . . A gluon
has both a colour and an anticolour label, an (anti)quark only (anti)colour.

While colours are traced consistently through hard processes and parton showers, the
subsequent beam-remnant-handling step often involves a drastic change of colour labels.
Firstly, previously unrelated colours and anticolours taken from the beams may at this
stage be associated with each other, and be relabelled accordingly. Secondly, it appears
that the close space–time overlap of many colour fields leads to reconnections, i.e. a
swapping of colour labels, that tends to reduce the total length of field lines.
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[1] T. Sjöstrand, S. Mrenna and P. Skands, Comput. Phys. Comm. 178 (2008) 852
[arXiv:0710.3820]
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[6] L. Lönnblad and S. Prestel, JHEP 02 (2013) 094, arxiv:1211.4827 [hep-ph]
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Sherpa Tutorial
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1 Introduction
Sherpa is a complete Monte-Carlo event generator for particle production at lepton-lepton, lepton-hadron,
and hadron-hadron colliders [1]. The simulation of higher-order perturbative QCD effects, including NLO
corrections to hard processes and resummation as encoded in the parton shower, is emphasized in Sherpa.
QED radiation, underlying events, hadronization and hadron decays can also be simulated. Alternatively,
Sherpa can be used for pure parton-level NLO QCD calculations with massless or massive partons.

Many reactions at the LHC suffer from large higher-order QCD corrections. The correct simulation of
Bremsstrahlung in these processes is essential. It can be tackled either in the parton-shower approach, or
using fixed-order calculations. Sherpa combines both these methods using a technique known as Matrix
Element + Parton Shower merging (ME+PS). Details are described in Ref. [2] and have been discussed
in the lecture by Frank Krauss. This tutorial will show you how to use the method in Sherpa.

Sherpa is installed on the CTEQ13 VM in /opt/hep, and its documentation is found online [3].
Example setups are located in /opt/hep/examples/sherpa.

2 The Input File
Sherpa is steered using input files, which consist of several sections. A comprehensive list of all input
parameters for Sherpa is given in the Sherpa manual [3]. For the purpose of this tutorial, we will focus
on the most relevant ones.

Change to the directory tutorials/intro/sherpa and open the file Run.dat in an editor. Have a
look at the section which is delimited by the tags (run){ and }(run) (We will call this section the
(run) section in the following). You will find the specification of the collider, i.e. its beam type and
center-of-mass energy, as well as a couple of other parameters, which will be explained later.

The (processes) section specifies, which reactions are going to be simulated. Particles are identified
by their PDG codes, i.e. 1 stands for a down-quark, -1 stands for an anti-down, 2 for an up-quark, etc.
The special code 93 represents a “container”, which comprises all light quarks, b-quarks, and the gluon.
It is also called the “jet” container.

3 Running Sherpa
Have you found out which physics process is going to be generated? You can verify your guess by running
the command line

Sherpa -e1 -o3

When run for the first time, Sherpa will produce diagram information for the calculation of hard scattering
processes. It will also compute that hard scattering cross sections, which are stored, together with the
diagram information, for subsequent runs.

The option -e1 used above instructs Sherpa to produce one event, and the option -o3 will print the
result of event generation on the screen. You will see Sherpa’s internal event record. Search for Signal
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Process inside the output and check incoming and outgoing particles. What happens to the unstable
particles after they have been produced in the hard scattering? Is this result physically meaningful?

Have a look at the Feynman diagrams, which contribute to the simulation of the hard process:

plot_graphs.sh graphs/

firefox graphs/index.html

Are these the diagrams you expect to find? If not, which ones are missing? Can you find the setting in
the runcard which restricts the set of diagrams?

4 Unstable particles
Check the (run) section of the input file again. You will find the setting HARD DECAYS 1; which instructs
Sherpa to automatically decay unstable particles. However, none of the particles produced in the hard
scattering process is set unstable. Verify this by checking the screen output of Sherpa during runtime.
Search for the ‘List of Particle Data’.

Now that you know about the problem, you can remedy the situation by including the following line
in the (run) section

STABLE[6] 0; STABLE[24] 0;

For experts: What happens when you change or remove the setting WIDTH[6] 0; (Hint: Search for
‘Performing tests’ in the screen output of Sherpa). Can you guess what the problem might be?

5 ME+PS merging
The current runcard lets Sherpa generate events at lowest order in the strong coupling. To improve the
description of real radiative corrections, we can include higher-multiplicity tree-level contributions in the
simulation. This is done by changing the process specification

Process 93 93 -> 6 -6;

to

Process 93 93 -> 6 -6 93{1};

The last entry instructs Sherpa to produce up to one additional “jet” using hard matrix elements and
combine the respective process with the leading-order process. This is known as Matrix Element +
Parton Shower merging (ME+PS), or the CKKW method. The essence of the method is a separation of
hard from soft radiative corrections, achieved using phase-space slicing by means of a variable called the
jet criterion (see lectures by Frank Krauss). The slicing parameter is called the merging cut.

Let us assume we want to classify jets of more than 20 GeV transverse momentum as hard. In Sherpa,
the corresponding merging cut would be specified as

CKKW sqr(20/E_CMS);

Therefore, the complete (processes) section for the merged event sample reads:

(processes){

Process 93 93 -> 6 -6 93{1};

CKKW sqr(20/E_CMS);

Order_EW 0;

End process;

}(processes);

If you like, you can have a look at the Feynman graphs again, which contribute to the ME+PS merged
event sample. In this case, you should not remove the line Print Graphs graphs; from the (processes)
section, and rerun the plot command from Sec. 3.

Run the new setup. Why does Sherpa compute another cross section?
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6 Analyses
By default, Sherpa does not store events. Run Sherpa with the following command to write out event
files in HepMC format, which can subsequently be analyzed

Sherpa EVENT_OUTPUT=HepMC_Short[events_1j]

Sherpa will produce a gzipped file called events 1j.hepmc.gz, which can be processed with Rivet using
the command

mkfifo events

gunzip -c events_1j.hepmc.gz > events & \

rivet -a MC_TTBAR -H analysis_1j.aida events

The option -a MC TTBAR instructs Rivet to run a Monte-Carlo analysis of semileptonic tt̄ events, which
will provide us with a few observables that can be used for diagnostic purposes. Using a fifo pipe to
extract the compressed event file avoids having to expand this file on disk, which can take substantial
time and would unnecessary take up storage space. This method will prove very useful in the tutorial
on boosted final states.

You can display the results of this analysis using the command

rivet-mkhtml --mc-errs analysis_1j.aida

firefox plots/index.html

Now it is your turn: Generate a separate event file without ME+PS merging and analyze it with Rivet.
Compare the results to your previous analysis using rivet-mkhtml (Hint: You can specify multiple aida
input files to rivet-mkhtml.) Do you observe any differences? Why?

7 Playing with the setup
Here are a few suggestions to try if you have time left during the tutorial.

7.1 Changing the functional form of scales
You may have noticed the following line in the runcard

CORE_SCALE VAR{sqr(175)};

It invokes Sherpa’s interpreter to compute the renormalization and factorization scale for the pp → tt̄
production process as the mass of the top quark (Note that all scales have dimension GeV2, hence the
scale is squared using the sqr function).

You can change this to a different value. For example, you could use the invariant mass of the top
quark pair:

CORE_SCALE VAR{Abs2(p[2]+p[3])};

Note that when you change the scale, the cross section will change and needs to be recomputed! You
can instruct Sherpa not to pick up the old result and compute a new one by launching it with the
commandline option -r Result NewScale/. New cross section information will then be stored in the
directory Results NewScale/, while the old is still present in the directory Results/.

How do the observables change with the new scale and why? What is the effect of ME+PS merging
when using this scale?

7.2 Hadronization and underlying event
So far, multiple parton interactions, which provide a model for the underlying event, have not been
simulated. Also, hadronization has not been included in order to speed up event generation. You can
enable both by removing or commenting the line

MI_HANDLER None; FRAGMENTATION Off;

How do the predictions for the observables change and why?
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7.3 Variation of the merging cut
ME+PS merging is based on phase-space slicing, and the slicing cut is called the merging scale. Is is
an unphysical parameter, and no observable should depend sizeably on its precise value. Verify this by
varying the merging cut by a factor of two up and down.

Note that the initial cross sections that Sherpa computes will be different for different values of the
merging cut (Why?). You should therefore instruct Sherpa to use different result directories for each run
in the test. The result directory is specified on the command line with option -r, for example

Sherpa -r MyResultDirectory/

7.4 Other hard scattering processes
Try to generate other hard scattering processes, like the production of a Drell-Yan muon pair (Hint: The
PDG id for the muon is 13.) You will have to insert an additional section into the runcard, which reads

(selector){

Mass 13 -13 66 116;

}(selector);

Why is this section needed?

8 Outlook
You may ask yourself what the meaningful variations are to assess the uncertainty of your Sherpa
predictions. We will try to answer this question in the next tutorial.
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