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Overview of the Lectures

Lecture I - Parton Model, QCD, and e+e− annihilation

• History and Background

• Parton Model and Relationship to QCD

• Examples from e+e− → hadrons

– Total cross section

– Angular distribution

– Inclusive hadron production

• Next order order correction to the total cross section

• Running Coupling

• Differential observables - thrust

• Inclusive hadron production - scale-dependent fragmentation functions



Lecture II - Deeply Inelastic Scattering (DIS)

• Kinematics

• Cross sections and structure functions

• Lowest order results - parton model

• Parton distributions functions (PDFs)

• Higher order corrections

• Factorization schemes

• PDF scale dependence and evolution equations

• QCD-improved parton model



Lecture III - Vector Boson Production

• l+l−, W±, and Z production

• Kinematics

• Observables in lowest order

• QCD improved parton model

• pT distributions and Higher order corrections

Lecture IV - Hadron-hadron production of particles, jets, and photons

• Kinematics

• Observables in lowest order - QCD improved parton model

• Higher order corrections

• More complex observables and the need for Monte Carlo techniques

• Overview of phase space slicing methods



Resources

• Previous introductory lectures by Ellis, Olness, Sterman, Soper,
and Tung are online at cteq.org

• My lectures cover more or less the same material, but in in a com-
plementary manner

• I have included material that will be useful for understanding the
applications of theory and the comparisons to data

• The Handbook of Perturbative QCD is also online.



History and Background

• 1950s and 60s saw the discovery of many hadronic resonances -
hundreds!

– 1963 – Gell-Mann and Ne’eman – “Eightfold way” applied
SU(3) symmetry (flavor) to hadron spectroscopy

– Particles/resonances organized in decuplets, octets, singlets

– Common spin, parity C-parity for each member of a group

– All the observed combinations could be made using members
of the fundamental representation - called quarks by Gell-
Mann



• New accelerators were being designed and built - Fermilab (200
GeV fixed target) and CERN’s ISR (Intersecting Storage Ring,
proton proton at

√
s = 62 GeV)

– Needed new theories/models for what would be observed at
the new higher energies

– Feynman explored the consequences of hadrons being made
of constituents - partons

• DIS experiments at SLAC - 1968

– Observed unexpected scaling behavior in their data (to be
discussed later)

– Theoretical insights by J.D. Bjorken

– Feynman’s parton model offered a ready explanation of scaling

– Gave plausible argument for the reality of quarks



• 1972 - Fritzsch, Leutwyler, and Gell-Mann formulated QCD as a
gauge theory of quarks interacting with gluons

• 1973 - Polizter, Gross, and Wilczek demonstrate that QCD pos-
sesses “asymptotic freedom” wherein the strong coupling becomes
weaker for large momentum transfer processes

• 1974 - Charm discovered at the SLAC e+e− storage ring SPEAR.

– Further demonstration of the reality of quarks

– e+e− demonstrated that parton model ideas worked well for
observables involving hadronic final states

By the mid 1970s it was clear that one could use QCD to develop a
“QCD improved parton model” that could be applied to large momentum
transfer processes

My goal is to investigate simple parton model ideas (basically kinematics)
and show how these relate to perturbative QCD calculations in lepton-
lepton, lepton-hadron, and hadron-hadron scattering.



e+e− → hadrons

e
−

e
+

q

q̄

• No free quarks −→ qq̄ final state completely converts to hadrons

• Lowest order result yields

dσ

d cos θ
=

πα2e2
q

2s
(1 + cos2 θ)

where θ is the angle between the e+e− axis and the qq̄ axis in the
overall center-of-mass system and eq is the fraction quark charge
in units of e



• The total cross section is

σ =
4πα2e2

q

3s

• The ratio to the cross section for µ pair production is

R ≡
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= 3

∑

q

e2
q

where the factor of three comes from the sum over quark colors

Homework: Derive these results



Data for R confirm the lowest order prediction (up to higher order cor-
rections)
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Figure 40.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− →

µ+µ−, s). σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex

loops, σ(e+e− → µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative

guide: the broken one (green) is a naive quark-parton model prediction and the solid one (red) is 3-loop pQCD prediction (see “Quan-

tum chromodynamics” section of this Review, Eq. (9.12) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B 586 (2000) 56

(Erratum ibid. B 634 (2002) 413). Breit-Wigner parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list

of references to the original data and the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corre-

sponding computer-readable data files are available at http://pdg.ihep.su/xsect/contents.html. (Courtesy of the COMPAS(Protvino)

and HEPDATA(Durham) Groups, August 2005. Corrections by P. Janot (CERN) and M. Schmitt (Northwestern U.))

http://pdg.ihep.su/xsect/contents.html


• Expect the hadrons to form “jets” - hadrons are roughly collimated
along the direction of the parent quark (more on this later)

• Can reconstruct the jet axis which should also be the qq̄ axis in the
center of mass

• Data agree with the 1 + cos2 θ prediction



Inclusive Hadron Production

Introduce a parton fragmentation functions Dh/c(z) defined so that

Dh/c(z) dz

gives the probability of producing a hadron h from a parton c with a
fraction z of the parton’s momentum between z and z + dz.

• The inclusive z distribution for a hadron h in e+e− annihilation is
given by

1

σ

dσ

dz
=

∑

q

e2
q

[

Dh/q(z) + Dh/q̄(z)
]

where σ denotes the total cross section.

• Momentum conservation requires

∑

h

∫ 1

0

dzzDh/c(z) = 1, for each c



QCD and the Parton Model

• We have looked at the total cross section, the jet angular distribu-
tion, and the inclusive hadron z distribution in the context of the
parton model.

• In lowest order, QCD and the parton model give the same results

But QCD allows one to calculate higher order corrections to the basic
parton model results

Let’s do this for our previously derived results!



e+e− annihilation

First, consider the 2 → 3 e+e− → qqg subprocess. Actually, it is easier to

consider the decay of a virtual photon of 4-momentum Q as shown below:

Q

p1

p2

p3

p1 + p3 p2 + p3

• Kinematics - use massless quarks and gluons.

• Define xi = 2Ei/Q, i = 1, 2, 3 in the overall center-of-mass system where
Q denotes the total energy ⇒ x1 + x2 + x3 = 2.

• (p1 + p3)
2 = 2p1 · p3 = (Q − p2)

2 = Q2(1 − x2)

• (p2 + p3)
2 = 2p2 · p3 = (Q − p1)

2 = Q2(1 − x1)

• The quark propagators from the above diagrams will give factors of
(1−x1) and (1−x2) in the denominator. x1 → 1 corresponds to ~p3 ‖ ~p2

while x2 → 1 corresponds to ~p3 ‖ ~p1. Note that if both x1 and x2 →
1 then x3 → 0.



3-body Phase Space

Exercise: Show that

dPS3 =
d3p1

(2π)32E1

d3p2

(2π)32E2

d3p3

(2π)32E3
(2π)4δ4(Q − p1 − p2 − p3)

=
Q2

16(2π)3
dx1 dx2

Using this result it is straightforward to show that the differential cross section
can be written as

1

σ

dσ

dx1 dx2
= CF

αs

2π

x2
1 + x2

2

(1 − x1)(1 − x2)

where CF is a color factor equal to 4/3 for QCD.

For the total cross section, one should integrate over both x1 and x2. These

integrations diverge when either x1 or x2 or both approach unity.



Partial fraction the denominators:

1

(1 − x1)(1 − x2)
=

1

x3

„

1

(1 − x1)
+

1

(1 − x2)

«

• This shows that the double pole when both x1 and x2 approach unity
is due to a combination of a collinear divergence (x1 or x2 → 1) and a
soft divergence (x3 → 0).

• The problem now is how to generate a finite contribution to the total
cross section.

• We shall use dimensional regularization

– Analytically continue in the number of dimensions from n = 4 to
n = 4 − 2ǫ.

– For the soft and collinear singularities we will take ǫ < 0

– Converts logarithmic divergences into poles in ǫ.

– Note: we will use the substitution gs → gsµ
ǫ in order for the strong

coupling to remain dimensionless in n dimensions



Phase space becomes

dPSn
3 =

Q2

16(2π)3

„

Q2

4π

«−2ǫ„
1 − u2

4

«−ǫ
1

Γ(2 − 2ǫ)
x−2ǫ

1 dx1 x−2ǫ
2 dx2

where u = 1 − 2(1−x1−x2)
x1x2

• It is not obvious how this helps until you make a substitution x2 = 1−vx1

• The u-dependent term introduces factors of (1 − v)−ǫ and (1 − x1)
−ǫ

• dx2 becomes x1dv

• Then note that
Z 1

0

dx(1 − x)−1−ǫ =
1

−ǫ
(1 − x)−ǫ|10 =

1

−ǫ

as long as ǫ < 0.

• The logarithmic divergence has, indeed, been converted into a pole in ǫ.



2 → 2 contribution

k

• The loop graphs are O(αs) so the interference with the lowest order term
gives an O(αs) contribution to the cross section

• For on-shell massless quarks the self-energy loop corrections are zero

• The vertex correction loop integral has a denominator of the form:
k2(p1 + k)2(p2 − k)2

• The denominator vanishes when k → 0 or when k is collinear with either
p1 or p2

• These singularities correspond to the same types as observed for the qqg
final state

• Can also use dimensional regularization to evaluate the loop contribution
in n-dimensions



Final Results

• After doing both of the integrations for the three-body , one arrives at

σ3 =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

2

ǫ2
+

3

ǫ
+

19

2
−

2π2

3

–

where σ0 is the lowest order result.

• After doing the loop integral for the virtual contribution one gets

σv =
αs

2π
CF σ0

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

−
2

ǫ2
−

3

ǫ
− 8 +

2π2

3

–

• Adding the two together along with the lowest order result yields

σ = σ0(1 +
αs

π
)

• The poles in ǫ have all cancelled, leaving a finite higher order correction



Running Coupling

The expression for the total cross section now depends on αs =
g2

s

4π
. But what

value should one use for αs?

Consider a dimensionless observable R measured at some energy scale Q.

• If there are no other mass scales in the problem, R can only depend on
the renormalized coupling αs and the ratio Q/µ where µ is the renor-
malization scale.

• R should be independent of the choice of µ. This is expressed by a
Renormalization Group Equation:

µ2 dR

dµ2
=

»

µ2 ∂

∂µ2
+ µ2 ∂αs

∂µ2

∂

∂αs

–

R = 0

• Let t = ln
“

Q2

µ2

”

and β(αs) = µ2 ∂αs

∂µ2



Rewrite the RGE as
»

−
∂

∂t
+ β(αs)

∂

∂αs

–

R(et, αs) = 0

To solve this equation, define a running coupling αs(Q
2) by

t =

Z αs(Q2)

αs(µ2)

dx

β(x)

From this definition we can derive (just take appropriate derivatives)

∂αs(Q
2)

∂t
= β(αs(Q

2)) and
∂αs(Q

2)

∂αs(µ2)
=

β(αs(Q
2)

β(αs(µ2)

Exercise: Show that R(1, αs(Q
2)) is a solution of the RGE.

That is, all of the scale dependence is contained in the running coupling.



αs is the solution to the following equation

t =

Z αs(Q2)

αs(µ2)

dx

β(x)

The β function has a perturbative expansion

β(αs) = −bα2
s(1 + b′αs + ...)

with b =
(33−2nf )

12π
and b′ =

153−19nf

2π(33−2nf )

where nf is the number of active parton flavors.

Exercise: Neglecting b′, show that the running coupling is given by

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)bt



Now, let’s go back to the e+e− hadronic total cross section. The discussion
above shows that choosing µ = Q puts all of the scale dependence into the
running coupling:

σ(Q2) = σ0

„

1 +
αs(Q

2)

π

«

Let’s express this result in terms of αs(µ
2) using

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)bt
= α(µ2)

∞
X

j=0

(−αs(µ
2)bt)j

Then we get

σ(Q2) = σ0

 

1 +
αs(µ

2)

π

∞
X

j=0

(−αs(µ
2)bt)j

!

In this case the leading logarithms depending on µ have been summed into the
running coupling αs(Q

2)



• Note how in this example the terms are of the form αs(µ
2)j+1tj

• For the leading-log approximation, only the one-loop term (b) is retained.

• What if we had calculated the next term in the perturbative expansion
for σ? Denote this by σ2α

2
s

• Expressing this in terms of αs(µ
2) we have

σ2α
2
s(µ

2)[1 − 2αs(µ
2)bt + . . .]

• Notice that there is one less logarithm per power of αs than for the
lowest order term. We have included some subleading logarithms.

• We must examine other sources of subleading logs. One such place is the
expression used for the running coupling - using the two-loop expression
for β (keeping the b′ term) generates contributions which are down by
one logarithm

• So, for next-to-leading-order (NLO) calculations the two-loop term (b′)
must be retained.



Infrared Safety

• This is an example which will play out over and over in the following –
for a suitable defined inclusive observable there is a cancellation between
the soft and collinear singularities occurring in the real contributions and
those which occur in the loop contributions. We saw that in the total
cross section calculation.

• It is imperative that this cancellation be allowed to occur when calcu-
lating any observable!

• Care must be taken when designing new observables to insure that they
do not distinguish between a configuration of partons and the same one
where a soft or collinear parton is added.

• Observables that respect this constraint are called infrared safe observ-
ables

• The requirement of infrared safety is a necessary condition for an ob-
servable to be calculable in perturbation theory.



Differential Observables

• In order to further test the theory one would like to have more informa-
tion than that provided buy the total cross section

• The phase space integrations obscure a lot of information that should
be tested by comparison with data

• An example of an infrared safe observable - Thrust

T = max~n

P

i |~pi · ~n|
P

i |~pi|

• Vary the choice of the thrust axis ~n in order to maximize T

• 2 parton final state: ~n lies along p1 and T=1



• If one of the partons emits a collinear parton, then nothing changes and
T = 1

• If a soft gluon is emitted, then in the limit of zero energy nothing changes
and T = 1

• The various divergent contributions seen previously all lie at T = 1 so
that the cancellations still occur

• T 6= 1 yields information on the relative angular distributions of the
three final state partons

• Note: no jet definition is required in order to study the thrust distribu-
tion

• Note: A spherically symmetric multiparton final state: T=1/2

• The thrust distribution is easily calculable: T = max [xi] at this order

• Integrate dσ/dx1 dx2 over x1 and x2 subject to the above constraint



• Exercise: show that

1

σ

dσ

dT
= CF

αs

2π

»

2(3T 2 − 3T + 2)

T (1 − T )
ln

„

2T − 1

1 − T

«

−
3(3T − 2)(2 − T )

(1 − T )

–

0.6 0.7 0.8 0.9 1

T
0.01

0.1

1

10

100

1/
σ 

dσ
/d

T

• Expected divergence as T → 1 is evident. Perturbative corrections be-
come large in this region - a better treatment is needed

• The minimum value of T is 2/3 at this order - need higher order correc-
tions to get to smaller T



Comments on Jet Algorithms

• At lowest order, one associates final state partons with jets. One might
therefore expect that the O(αs) calculation would shed information on
both the 2- and 3-jet cross sections

• In order to define a jet cross section, one needs an infrared safe jet
definition

• Such a definition must not distinguish between a parton and two collinear
partons or between a parton and a parton plus a soft parton

• Examples include Sterman-Weinberg jets, cone jets, kT algorithms, and
many more

• The key point I wish to make is that whatever algorithm is used, it must
allow for the cancellation between the soft and collinear singularities
from the real emission graphs for an n−body process and those from
the (n − 1)-body virtual graphs

• This point will become of great importance when we discuss NLO pro-
grams based on phase space slicing techniques



Fragmentation Functions

• What if one wants to study the hadronic composition of the final state?

• What if you don’t want to use a jet observable which depends on choosing
a specific jet algorithm?

• What if your detector is optimized for particle detection, but not for
reconstructing jets?

• One solution is to introduce Fragmentation Functions (FFs) as was dis-
cussed earlier. We saw that

Dh/c(z) dz is the probability of getting a hadron h from a parton c with
a fraction of the parton’s momentum fraction between z and z + dz

• Our previous result for the lowest order form for e+e− → hadrons is

1

σ

dσh

dz
=
X

q

e2
q

ˆ

Dh/q(z) + Dh/q(z)
˜

• How can we extend this concept to include the O(αs) corrections that
we have been studying?



Virtual Contributions

• These are easy, as we have already done the work! The virtual contri-
bution, σv, calculated previously has the same final state structure as
the lowest order term.

• It can be included along with the lowest order term by just multiplying
the previous expression by 1 + σv

σ0

Three-body Contribution

• This one is more complicated - there are now three partons in the final
state and each can give rise to hadrons

• Not only do we have quark and antiquark FFs, but now we also have to
include a possible gluon FF.

• The basic structure should be familiar:

dσ

dz
=

1

2Q
(PhaseSpace) (Squared matrix elements) (FFs)

• Of course, this is all done in n dimensions in order to regularize the soft
and collinear divergences



• Bear with me - this is going to get complicated, but there is a reason for
all of this

• Plugging the appropriate terms into the above expression yields

dσ
dz

=
1

2Q

Q2

16(2π)3

„

Q2

4πµ2

«−2ǫ Z Z
„

1 − u2

4

«−ǫ
1

Γ(2 − 2ǫ)
x−2ǫ
1 dx1 x

−2ǫ
2 dx2

8(e g µ2ǫ)2

(1 − x1)(1 − x2)
[(n− 2)(x2

1 + x2
2) + 2(n− 4)(n− 2)(2(1 − x1 − x2) + x1x2)]

e2q
ˆ

Dh/q(y)δ(z − yx1) +Dh/q(y)δ(z − yx2) +Dh/g(y)δ(z − yx3)
˜

dy

• We recognize some familiar structures from the total cross section cal-
culation, but the structure is more complex

• How can we do the integrations with the unknown FFs in the integrands?

• How can we ensure that the proper soft and collinear cancellations take
place?

• Proceed as in the total cross section case. Consider the first term and
make the substitution x2 = 1 − vx1.



• This introduces factors of (1 − x1)
−ǫ and (1 − v)−ǫ

• The v integrations can be done using

Z 1

0

dv vn−1 (1 − v)m−1 = B(n,m) =
Γ(n)Γ(m)

Γ(n + m)

• This generates explicit poles in ǫ through terms like

B(−ǫ, 1 − ǫ) =
Γ(−ǫ)Γ(1 − ǫ)

Γ(1 − 2ǫ)
= −

1

ǫ

Γ(1 − ǫ)2

Γ(1 − 2ǫ)

• Can do the y integration using the δ function



• We are left with terms like

Z 1

z

dx1 xn−1
1 (1 − x1)

m−1Dh/q(z/x1)

• Note the non-zero lower limit on the integral which is forced by the
argument of the FF

• How are we to do this integral in order to pull out the singular terms
when we don’t know the analytic form for the FF?

• Enter the “+” distribution!

• This distribution will enable us to extract the poles in ǫ from integrals
of the above form



Consider

I =

Z 1

0

dw (1 − w)−1−ǫ f(w)

=

Z 1

0

dw (1 − w)−1−ǫ [f(1) + (f(w) − f(1))]

= −
f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w

ˆ

1 − ǫ ln(1 − w) + O(ǫ2)
˜

= −
f(1)

ǫ
+

Z 1

0

dw
f(w) − f(1)

1 − w
− ǫ

Z 1

0

dw
ln(1 − w)

1 − w
[f(w) − f(1)] + O(ǫ2)

≡ −
f(1)

ǫ
+

Z 1

0

dw
f(w)

(1 − w)+
− ǫ

Z 1

0

dw

„

ln(1 − w)

1 − w

«

+

f(w) + O(ǫ2)

This last expression allows us to make the following identification

(1 − w)−1−ǫ = −
δ(1 − w)

ǫ
+

1

(1 − w)+
− ǫ

„

ln(1 − w)

1 − w

«

+



• The astute reader will no doubt have noticed that the previous derivation
involved integrals extending from zero to one. What if the lower limit
is non-zero?

• The derivation can be repeated and the only difference will be in the
δ-function term. There we will get (recall that ǫ < 0)

1

ǫ
(1 − w)−ǫ|1a = −

1

ǫ
(1 − a)−ǫ

= −
1

ǫ

»

1 − ǫ ln(1 − a) +
ǫ2

2
ln2(1 − a) + . . .

–

= −
1

ǫ
+ ln(1 − a) −

ǫ

2
ln2(1 − a) + . . .

• The regulators under the integral signs behave the same way as when
the lower limit was zero.



• Schematically we can write

1

(1 − w)+
=

1

(1 − w)a
+ ln(1 − a)δ(1 − w)

and

„

ln(1 − w)

1 − w

«

+

=

„

ln(1 − w)

1 − w

«

a

+
1

2
ln2(1 − a)δ(1 − w)

There are several important points to notice about these regulators

• We derived these expressions by adding and subtracting f(1) and then
rearranging the integrations. When the lower limit is non-zero, the can-
cellation between these two terms with f(1) is no longer exact and there
is a remainder involving logs of (1 − a)

• As the lower limit, a, approaches 1 these logs can become large.

• This could happen with the fragmentation functions if we were interested
in the region of large z.



• These logs are called “threshold” logs and physically what is happening
is that the phase space for additional gluon radiation is being limited
by the requirement that z be large. These large logs must be resummed
via a procedure referred to as “soft gluon” or “threshold” resummation

• Remember the idea of incomplete cancellation between the virtual and
real contributions with a finite remainder consisting of potentially large
logarithms

• After this interlude, we can go back to the fragmentation calculation



• We have done the y and v integrations, leaving integrals of the form

Z 1

z

dx1 xn−1
1 (1 − x1)

m−1Dh/q(z/x1)

• Terms with m = −ǫ will give poles proportion to δ(1 − x1)

• Doing the x1 integration will give pole terms proportional to Dh/q(z)
which can now be combined with the lowest order terms

• In this way we can extract the divergent pieces needed for the cancella-
tion with the virtual contributions



• The intermediate answer for the next order contribution after adding the
virtual contribution to the three real fragmentation pieces is as follows

dσ

dz
=

αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
X

q

e2
q

Z

dx dy δ(z − xy)
`

Dh/q(y) + Dh/q(y)
´

»

δ(1 − x)

„

−
2

ǫ2
−

3

ǫ
+
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• See that the 1
ǫ2

terms cancel, but that there are some remaining 1
ǫ

pieces

• How should these be interpreted and what can we do about them?



• These are residual collinear singularities associated with the quark prop-
agators going on shell in the collinear quark+gluon configuration

• On-shell propagators are associated with long range physics and should
not be associated with the hard scattering correction that we are calcu-
lating.

• Factorize the remaining collinear singularities and absorb them into the
bare FFs.

• We need to define a scheme to tell us how much of the finite contributions
to subtract along with the ǫ pole terms. Use

1

ǫ

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
=

1

ǫ
+ ln(4π) − γE − ln

M2
f

µ2
− ln

Q2

M2
f

+ . . .

• The MS scheme (Minimal Subtraction) says to subtract only the pole
term

• The MS scheme (Modified Minimal Subtraction) says to also subtract
the ln(4π) − γE terms



• In addition, I have introduced a factorization scale Mf and I will subtract

the ln
M2

f

µ2 term, as well. Technically, each choice of Mf defines a new

scheme, but we usually refer to all of them as being the MS scheme

• In order to absorb the collinear singularities in the bare FFs, introduce
a scale-dependent FF
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• Replacing the bare FFs by the above scale-dependent FFs will cancel
the remaining collinear singularities



• The final result takes the form
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• Here I have used two splitting functions defined as

Pqq(x) = CF

“

1+x2

(1−x)+
+ 3

2
δ(1 − x)

”

and Pgq(x) = CF

“

1+(1−x)2

x

”



• Note that I have substituted the scale-dependent FFs on the right hand
side - this is allowed to this order

• Note that the results simplify considerably if we choose Mf = Q

• In this case the ln Q2

M2
f

terms disappear and all of the logs have been

absorbed in the scale-dependent FFs



Summary

In this lecture we have seen the following

• The typical ingredients for the hard scattering subprocesses include

– The lowest order expressions for the relevant subprocesses

– The 1-loop virtual corrections to these subprocesses

– The expressions for the relevant next order subprocesses

• The real processes generally have both soft and collinear singularities

• After renormalization, the loop graphs also contribute soft and collinear
singularities

• For suitable observables these singularities cancel, leaving finite higher
order corrections

• Observables for which this occurs are said to be infrared safe

• If one wants to study specific details of the hadronic final state, then
Fragmentation Functions can be introduced.

• In the next order there will be uncancelled collinear singularities which
can be absorbed into the bare FFs by defining scale-dependent FFs


