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Lecture II - Deeply Inelastic Scattering

• Kinematics

• Cross sections and structure functions

• Lowest order results - parton model

• Parton distributions functions (PDFs)

• Higher order corrections

• Factorization schemes

• PDF scale dependence and evolution equations

• QCD-improved parton model



Brief Overview of DIS
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DIS

• The basic idea is to use the known interaction of a photon to probe the
structure of the target particle

• Elastic lepton scattering from a point-like target particle can be calcu-
lated using QED

• If the target is an extended object the cross section is modified by one
or more form factors, e.g., one for a spinless target, two for a proton.

• These form factors depend on the squared four-momentum transfer Q2

• The Fourier transform of the electric form factor gives the spatial de-
pendence of the charge density
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DIS

• The generalization to inelastic scattering from a proton introduces two
“structure functions” (three if one is considering neutrino scattering)

• These structure functions depend on two kinematic variables - Q2 and
the energy transfer ν, for example.

• Early measurements at SLAC (1968) showed that for fixed values of
Q2/ν the structure functions showed no Q2 dependence - that is, they
only depended on one variable. This was called “scaling.”

• Feynman’s parton model (today’s lowest order QCD) provided an intu-
itive description of scaling

• Higher order QCD corrections provide an excellent description of the
observed deviations from exact scaling
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• Reduced cross section (a combination of structure functions) versus Q2

at fixed values of x = Q2/2Mν

• Notice the near constant values for x ≈ 0.1− 0.3

• Cross section increases with Q2 at low values of x and decreases at high
values of x



• Could simply calculate the cross section in terms of the interaction
of the virtual photon with the partons in the target

• Historical approach has been based on structure functions

• The basic idea is to remove as much of the known physics of the
lepton vertex as possible, constrain the remaining hadronic piece
using gauge invariance, current conservation, parity invariance (for
the electromagnetic interaction) and time reversal invariance and
then express what is left in terms of the hadronic structure func-
tions F1 and F2 ( plus F3 for weak interactions)

• For some purposes it is often preferable to work directly with the
cross sections since that avoids any model-dependent assumptions
associated the extraction of the structure functions

• On the other hand, the structure functions are easy to interpret in
terms of the parton structure of the target

• I will summarize here the structure function approach



Start with a few definitions for the process e−(k)+ A(P )→ e−(k′) +X in the
target rest frame where M denotes the target mass

A

l
l

X

DIS

q2 = −Q2 = (k − k′)2 x = Q2/2P · q = Q2/2Mν

E = k · P/M E′ = k′ · P/M

ν = P · q/M = E − E′ W 2 = (P + q)2 = M2 + Q2

„

1

x
− 1

«

y = ν/E = 1− E′/E (evaluated in the lab frame where P µ = (M, 0, 0, 0))



The cross section can be written as

σ =
1

4ME

Z

d3k′

(2π)32E′

1

4

X

spins

X

X

NX
Y

n=1

Z

d3pn

(2π)32En
|Tfi|

2(2π)4δ(k+P−k′−pX)

• The leptonic and hadronic parts have been written separately

• Can simplify this by being differential in the scattered lepton energy and
scattering solid angle.

• Can also express Tfi as

Tfi = e2u(k′)γµu(k)
1

q2
Jµ

• Here Jµ is the matrix element of the electromagnetic current operator
between the initial and final hadronic states



Exercise: show that

dσ

dE′dΩ′
=

α2

MQ4

„

E′

E

«

LµνWµν

Lµν = 2
`

kµk′
ν + kνk′

µ − gµνk · k′
´

Wµν =
(2π)3

4

X

spins

X

X

NX
Y

n=1

d3pn

(2π)32En
Jµ†Jν

• Gauge invariance, current conservation, and parity conservation give

Wµν = F1

„

gµν +
qµqν

Q2

«

+
F2

Mν

„

P µ + qµ P · q

Q2

« „

P ν + qν P · q

Q2

«

• The structure functions F1 and F2 contain information on the structure of the
hadronic target

• Both depend on the 4-vectors P and q through Lorentz scalars

• Since P 2 = M2 and q2 = −Q2, they can depend on Q2 and P · q = Mν = Q2/2x,
for example



Interpretation of F1 and F2

Real photons have only transverse polarizations, but virtual photons can also
have longitudinal polarization:

ǫµ(x) = (0, 1, 0, 0) ǫµ(y) = (0, 0, 1, 0) but we need an expression for ǫ(0)

Consider a frame where the proton and virtual photon four-vectors are as
follows:

P −→ ←− q

qµ = (0, 0, 0,−Q) q2 = −Q2 P µ = (P0, 0, 0, Pz)

Use P · q = Mν = PzQ and P 2 = M2 to get

P µ = M

 

s

ν2 + Q2

Q2
, 0, 0,

ν

Q

!



We need ǫµ(0) such that ǫ(0) · q = 0, ǫ(0) · ǫ(x) = 0, and ǫ(0) · ǫ(y) = 0

Can choose ǫµ(0) = (1, 0, 0, 0)

Next, recall

Wµν = F1(−gµν +
qµqν

q2
) +

F2

P · q
(Pµ +

qµP.q

q2
)(Pν +

qνP · q

q2
)

Transverse cross section: σT ∝ F1

Longitudinal cross section: σL ∝ −F1 + F2M
2 ν2

+Q2

P ·qQ2

Exercise: Derive these and rewrite the last result as

−F1 +
F2

2x

(

1 +
4M2x2

Q2

)



Sometimes see the ratio

R =
σL

σT
=

F2

(

1 + 4M2x2

Q2

)

− 2xF1

2xF1

Interpretation:

• F1 measures the interaction of transverse photons

• Up to corrections of O(1/Q2), F2 − 2xF1 measures the interaction
of longitudinal photons



• In terms of these structure functions, one can write the cross section
as

dσ

dxdQ2
=

4πα2

Q4

[

(

1 + (1 − y)2
)

F1 +
(1 − y)

x
(F2 − 2xF1)

]

• Alternatively, using FL = F2 − 2xF1 one can write

dσ

dxdQ2
=

2πα2

Q4

[(

1 + (1 − y)2
)

F2 − y2FL

]

• To separate F2 and FL one needs to have data at fixed values of
x and Q2, but different values of y.

• Since Q2 = 2MExy this requires data from different beam energies



• With these definitions, we can now examine the form of the struc-
ture functions in the parton model

• Start with the basic definition of Wµν using a parton target of
charge eq

p1

p2

q

Wµν =
(2π)3

2

1

2

X

spins

N

Z

d3p2

(2π)32E2
δ4(p2−q−p1)e

2
q (u(p2)γµu(p1))

† (u(p2)γνu(p1))

• N is a normalization factor to be defined below



• Use d3p2

2E2
= d4p2δ(p

2
2) to get

Wµν = Ne2
qδ(p

2
2)

„

2p1µp1ν + p1µqν + p1νqµ +
q2

2
gµν

«

• Next, assume that the parton carries a fraction η of the target’s 4-
momentum and neglect target mass effects. Thus, p1 = ηP

• With this definition,

δ(p2
2) = δ[(p1 + q)2] = δ(q2 + 2p1 · q)

=
1

2Mν
δ(η −

Q2

2Mν
) =

1

2Mν
δ(η − x)

• So, to this order, x is a measure of the momentum fraction carried by
the struck parton

• The normalization factor N corrects for the flux factor being that of the
parton, not the target hadron: N = 1/η



• The end result is

Wµν =
η

2Mν
e2

qδ(η − x)

»

2PµPν +
Pµqν + Pνqµ

η
+

q2

2η2
gµν

–

• From this expression one can read off the results

F̂2 = ηe2
qδ(η − x) F̂1 =

e2
q

2
δ(η − x) ⇒ F̂2 = 2xF̂1

• I have used the ˆ symbol to denote the contributions to the structure
functions at the parton level.

• The last relation above is called the Callan-Gross relation which says
that FL = 0 for quarks at lowest order

• To calculate the hadronic structure function introduce a parton distribu-
tion function (PDF) defined such that Ga/A(x)dx gives the probability
of finding a parton a in a hadron A with a momentum fraction between
x and x + dx



PDF Sum Rules

PDFs are inherently non-perturbative and so can not be calculated using
perturbative QCD. But we do know some properties they must satisfy.

• The number of quarks (or antiquarks) in a proton is indeterminate
since quantum fluctuations can create qq̄ pairs which subsequently
annihilate

• But the net number of u quarks should be two:
∫ 1

0

dx (u(x) − ū(x)) = 2

• The net number of d quarks should be one:
∫ 1

0

dx
(

d(x) − d̄(x)
)

= 1



• The net number of s quarks should be zero:

∫ 1

0

dx (s(x) − s̄(x)) = 0

with similar relations for c and b quarks

• Note: This does not mean that s(x) ≡ s̄(x) – the s and s̄ PDFs
can have different x dependences

• Momentum must be conserved:

∫ 1

0

dxx

[

∑

q

(q(x) + q̄(x)) + g(x)

]

= 1

where g(x) denotes the gluon PDF



• The hadronic structure functions are given by weighting the par-
tonic structure function by the appropriate PDFs:

F2(x, Q2) = 2xF1(x, Q2)

=
∑

q

e2
q

∫

dηq(η)ηδ(η − x) =
∑

q

e2
qxq(x)

• One can see that to this order the structure functions are indepen-
dent of Q2, which is the scaling result discussed earlier
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Figure 1: Uncertainty bands for the u, d, d̄ + ū, d̄ − ū, s and g PDFs
for the CJ12mid fit at Q2 = 100 GeV2, shown on logarithmic (left) and
linear (right) scales in x. Note that in the left panel the gluon is scaled
by 1/10.



Parton model, quarks, and DIS

• Simple parton model calculation shows scaling behavior

• Early SLAC data showed FL was small - consistent with the par-
tons having spin 1/2

• Early data also showed

∫ 1

0

dxF ep
2 (x) ≈

4

9
< x >u +

1

9
< x >d≈ 0.18

∫ 1

0

dxF en
2 (x) ≈

1

9
< x >u +

4

9
< x >d≈ 0.12

(I used Gu/n = Gd/p, Gd/n = Gu/p, and neglected antiquarks)



These values suggested that

< x >u≈ 0.36 and < x >d≈ 0.18

Only about half the proton’s momentum is carried by the quarks!

⇒ neutral partons carry about half the proton’s momentum

First evidence based on the parton model for
gluons



• We are now prepared to consider the higher order corrections to this
result, starting with corrections involving quarks in the initial state

• By now the procedure (if not the details) should be familiar

– Write the cross section expression in n dimensions to determine
the expression for the cross section in terms of the hadronic tensor

– Write the n-dimensional expression for the hadronic tensor at the
parton level for both the one-loop results and the real gluon radi-
ation graphs

– Add the results, cancelling the ǫ−2 contributions and some of the
ǫ−1 terms, as well

– Isolate the residual collinear singularities associated with the initial
state partons

– Factorize these collinear singularities and absorb them into the
bare quark and gluon PDFs



p1

p2

q

k

p3

p2

p1

• I will summarize the results of the steps outlined above. In the following,
let F2(x) = F2(x)/x. This will simplify the convolution notation. Then,
the full structure function can be written in terms of contributions from
quarks and gluons as

F2(x) =

Z

X

q

e2
q

h

F̂q
2 (z)q(y) + F̂g

2 (z)g(y)
i

δ(x− zy)dz dy

• With this notation, the lowest order result is F̂q
2 (z) = δ(1− z)



• Using this same notation, the one-loop vertex correction to the lowest
order quark result is

F̂q,v
2 (z) = −

αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)
δ(1− z)

„

2

ǫ2
+

3

ǫ
+ 8 +

π2

3

«

• The contribution from the real emission graphs is

F̂q,r
2 (z) =

αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)
»

δ(1− z)

„

2

ǫ2
+

3

2ǫ

«

−
1

ǫ

1 + z2

(1− z)+
+ finite terms

–



• Adding these two terms together yields the intermediate quark result

F̂q
2 (z) = δ(1− z) +

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

„

Q2

4πµ2

«−ǫ »

−
1

ǫ
Pqq(z) + f̃q

2

–

• f̃q
2 represents a finite correction term which will be detailed shortly

p1

p2

p3

The next contribution to consider is that from the photon gluon fusion process
shown above. The sequence of steps is the same as that for the gluon radiation
process with the result that

F̂g
2 (z) =

αs

2π

Γ(1− ǫ)

Γ(1− 2ǫ)

„

Q2

4πµ2

«−ǫ »

−
2

ǫ
Pqg(z) + f̃g

2

–



• It is clear that there are uncancelled poles in ǫ in both the quark and
the gluon contributions

• These are collinear divergences which result from configurations where
two initial state partons are parallel to each other.

• These divergent terms represent long distance physics reflecting the evo-
lution of the initial quark state before the hard scattering

• As such, they can be absorbed into the bare quark PDF using a proce-
dure analogous to that used for the FFs in Lecture I



Define a scale dependent quark PDF as

q(x, M2
f ) =

Z

dy dzδ(x− yz)

"

q(y)δ(1− z) +
αs

2π

„

−
1

ǫ

«

 

M2
f

4πµ2

!−ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)
[Pqq(z)q(y) + Pqg(z)g(y)]

#

With this definition, all the remaining collinear divergences have been absorbed
into the definition of the scale-dependent PDFs. The finite parton-level struc-
ture functions have simple forms

F̂q
2 (z) = δ(1− z) +

αs

2π

"

ln

 

Q2

M2
f

!

Pqq(z) + f̃q
2

#

F̂g
2 (z) =

αs

2π

"

ln

 

Q2

M2
f

!

Pqg(z) + f̃g
2

#



• The full structure is now given by

F2(x) =

Z

dy dz δ(x− yz)
X

q

e2
q

h

F̂q
2 (z)q(y,M2

f ) + F̂g
2 (z)g(y,M2

f )
i

• Now, it must be remembered that the F̂s in the above expression contain
dependences on both Q2 and M2

f in the form of ln Q2/M2
f

• Suppose that M2
f was chosen to be Q2? Then the log terms vanish

• In this case the result is rather simple:

F2(x, Q2) =
X

q

e2
qxq(x, Q2)

+
αs

2π

X

q

e2
qx

Z

dz

z

h

q(
x

z
,Q2)f̃q

2 (z) + g(
x

z
,Q2)f̃g

2 (z)
i



• The last expression shows that the potentially large logs of Q2 have been
absorbed into the quark PDFs leaving an O(αS) correction. But wait!
It gets even better ...

• When we subtracted the collinear singularities we had the freedom to
subtract additional finite terms - that was how we introduced the fac-
torization scale.

• Suppose we also subtracted out the f̃s? Then the last term would be
absent and the expression for F2 would remain the same as for the parton
model, but with Q2 dependent PDFs

• This scheme is referred to as the “DIS scheme.” It has seen some use
when describing DIS data

• However, the down side is that the PDFs now contain the finite correc-
tions from the f̃s and these must be subtracted out if the PDFs are to
be used in any other process

• It is much more common today to use the MS scheme as presented above.
That way the finite corrections are calculated on a case-by-case basis for
each process



MS DIS Corrections

For completeness, I give here the two finite DIS correction terms for F2

f̃q
2 (z) = CF

"

(1 + z2)

„

ln(1− z)

1− z

«

+

−
3

2

1

(1− z)+

−
1 + z2

1− z
ln z + 3 + 2z −

„

9

2
+

π2

3

«

δ(1− z)

–

and

f̃g
2 (z) =

1

2

»

`

z2 + (1− z)2
´

ln
1− z

z
+ 8z(1− z)− 1

–

I will refer back to these when we discuss the lepton pair production process

shortly



DGLAP Equations

• It is all well and good to have a simple expression for F2 in terms of
scale-dependent PDFs, but where do the PDFs come from and how do
you calculate their dependence on the scale?

• Refer back to the definition I introduced for the scale-dependent PDFs

• The scale entered through a term

−
1

ǫ

 

M2
f

4πµ2

!−ǫ
Γ(1− ǫ)

Γ(1− 2ǫ)
=

−
1

ǫ
+ ln

 

M2
f

µ2

!

− ln(4π) + γE + . . .

• The partial derivative of this term with respect to ln M2
f is just one, so

the derivative projects out the coefficient of this term which is just the
convolution of the splitting function and the appropriate PDF



• The result is known as the set of DGLAP (Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi) Equations

• They take the form

∂q(x, t)

∂t
=

αs(t)

2π

Z 1

x

dy

y

»

Pqq(y)q(
x

y
, t) + Pqg(y)g(

x

y
, t)

–

∂g(x, t)

∂t
=

αs(t)

2π

Z 1

x

dy

y

»

Pgq(y)q(
x

y
, t) + Pgg(y)g(

x

y
, t)

–

• Here t = ln M2
f /µ2 and I have introduced two additional splitting func-

tions beyond the two we had already encountered.

• These coupled integro-differential equations may be solved iteratively by
computer, given a set of initial boundary conditions at some scale

• The boundary conditions on the initial PDFs may be parametrized and
then varied to fit a wide variety of data. This is the heart of the global
fitting program for determining PDFs, about which more will be said in
a later lecture



Splitting Functions

• The splitting functions, Pij , can be expanded in a perturbative series

• The lowest order expressions are referred to as the one-loop splitting
functions

P (0)
qq (z) = CF

»

1 + z2

(1− z)+
+

3

2
δ(1− z)

–

P (0)
qg (z) = TR

ˆ

z2 + (1− z)2
˜

P (0)
gq (z) = CF

»

1 + (1− z)2

z

–

= P (0)
qq (1− z), z < 1

p(0)
gg (z) = 2CA

»

z

(1− z)+
+

1− z

z
+ z(1− z)

–

+ δ(1− z)
11CA − 4nfTR

6

• For SU(3) CF = 4/3, CA = 3, TR = 1/2 and nf denotes the number of
active flavors.



DGLAP Equations and Scaling Violations

Multiply the quark equation by xe2
q and sum over all flavors. Using the

lowest order expressions for F2 one has

∂F2(x, Q2)

∂t
=

αs(Q
2)

2π

∫ 1

x

dy Pqq(y)F2(
x

y
, Q2) +

∑

q

e2
qPqg(y)

x

y
g(

x

y
, Q2)

If x ≪ 1 then the gluon PDF term dominates. Since

Pqg(y) =
1

2

(

y2 + (1 − y)2
)

is positive definite, we see that the slope in lnQ2 is positive



For large x the first term dominates. Since

Pqq(y) = CF

[

1 + y2

(1 − y)+
+

3

2
δ(1 − y)

]

we see the presence of (1 + y2)F2(
x
y , Q2) − 2F2(x, Q2) < 1, so the slope

turns negative as x → 1.
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Simple Interpretation

• In a hard collision quarks at high values of x radiate gluons

• This depletes the high x quark PDFs and builds them up at lower
x

• The gluons can create qq̄ pairs, thereby building up the quark PDFs
at lower values of x

This explains the pattern of scaling violations seen in the data



QCD Improved Parton Model

• The predictions of the parton model are justified by lowest order QDC
predictions.

• For processes with one large scale - call it Q2 - these can be improved
upon by using the techniques discussed in Lectures I and II to sum
corrections from large leading logarithms

• Three steps

– Replace αs with the running coupling αs(Q
2)

– Replace PDFs with scale-dependent PDFs which are solutions of
the DGLAP equations

– Replace FFs with scale-dependent FFs which are solutions of their
DGLAP equations

• These three steps constitute the leading logarithm approximation (today
usually labelled as LO for lowest order, but note the scale-dependent
functions involved.)



Next Steps

For improved accuracy, as noted already in these lectures, one can go to
NLO calculations (Here’s another three-step plan)

• Include the next-to-leading-order hard scattering parton cross sec-
tions

• Use the two-loop running coupling (keep both b and b′ in the QCD
β function.)

• Use the two-loop splitting functions in the DGLAP equations for
the PDFs and FFs

In Lectures III and IV we will investigate parton model predictions for
hadron-hadron processes along with QCD improvements generated

using these procedures.


