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Lecture III - Outline

• l+l−, W±, and Z production

• Kinematics

• Observables in lowest order

• QCD improved parton model

• pT distributions and Higher order corrections



Lepton Pair Production (l+l−, l+ν, or l−ν̄)

Original idea due to Drell and Yan: S.D. Drell and T.-M. Yan, PRL 25,
316 (1970)

• Electromagnetic probe of a hadron-hadron process

• Compare to

– DIS: E-M probe of a single hadron process

– e+e−: E-M probe of hadron production

• Simple description in terms of the (then new) parton model

• Mass of the pair could be varied to insure that the parton momen-
tum fractions were neither too small nor too large (avoid problems
with x near 0 or 1)
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• Basic Feynman diagram for lepton pair production.

• The task is to figure out what is in the blob

• Compare to DIS and e+e− annihilation
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• Will see that the structure of the parton model calculation pre-
served in the presence of QCD corrections

• First example of a calculable hadron-hadron process in the context
of the parton model

• Process is of historical interest (2 Nobel prizes)

• Pedagogical importance - one of the early calculations of higher
order QCD corrections

• Important for precision Standard Model measurements

• Excellent probe of q̄ PDFs

• Can help determine PDFs in pions and kaons

• Important roles in searches for new physics



Basic Idea
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• Producing a virtual boson of mass Q

• Our task is to figure out what is in the shaded circle in the figure

• Simplest possibility: qq̄ → l+l−

• Represents purely E-M process in the context of the parton model
(treating the quarks as free)



Born Term
q(p1)

q(p2)

l-(k1)

l+(k2)

Lorentz invariant variables

ŝ = (p1 + p2)
2 = (k1 + k2)

2

t̂ = (p1 − k1)
2 = (p2 − k2)

2

û = (p1 − k2)
2 = (p2 − k1)

2

The matrix element is M = eq
e2

ŝ
u(k1)γµv(k2)v(p2)γ

µu(p1) and
Appendix I shows how to obtain the parton-level cross section result

σ(qq → l+l−) =
4πα2

9ŝ
e2
q ≡ σ0.



Hadronic Cross Section

Convolute the parton-level cross section σ0 with the appropriate quark
and antiquark parton distribution functions:

σ(AB → l+l− + X) =
∑

q

∫

dxadxb σ0 [q(xa)q(xb) + a ↔ b]

Note: remember to symmetrize with respect to the beam and target
particles. This corresponds to t̂ ↔ û here, so σ0 is unchanged.



Differential Distributions

The total cross section involves a convolution with products of parton
distributions. In order to test the theory or to learn more about the
parton distributions it has proven to be convenient to undo one or both
of the integrations by looking a differential distributions. If we ignore
external hadronic masses, we can relate the hadronic and partonic center
of mass energies as follows:

ŝ = (p1 + p2)
2 = 2p1 · p2 = 2(xapA) · (xbpB) = xaxbs

where it has been assumed that p1 = xapA and p2 = xbpB.



Lepton pair mass distribution

For qq → l+l− the invariant mass of the lepton pair is just Q2 = ŝ. Thus,

dσ

dQ2
=

∑

q

∫

dxadxb Hq(xa, xb) σ0 δ(Q2 − ŝ)

Here the sum over the products of parton distributions is denoted by the
function Hq(xa, xb). Next, evaluate the δ function as follows:

∫

dxadxbδ(Q
2 − xaxbs) =

∫

dxa

xas
δ(xb − Q2/xas)

Thus,
dσ

dQ2
=

∑

q

∫

dxa

xas
Hq(xa,

Q2

xas
)
4πα2

9Q2
e2
q



Scaling

It is convenient to define a dimensionless parameter τ = Q2/s = xaxb so
that 0 ≤ τ ≤ 1. Then, we can write

Q4 dσ

dQ2
=

4πα2

9

∑

q

∫ 1

τ

dxa

xa

τHq(xa,
τ

xa

)e2
q

• Q4 dσ
dQ2 is dimensionless

• Righthand side is a function only of τ at this level of approximation

• Plot Q4 dσ
dQ2 or (Q3 dσ

dQ
) for different values of s

• Should lie on a universal “scaling” curve

• Approximate scaling is observed in the data





Longitudinal Momentum Distributions

• xF = pl/plmax ≈ 2pl/
√

s where pl is the lepton pair longitudinal
momentum in the hadron-hadron cms.

• Parton 4-vectors and lepton pair energy and longitudinal momen-
tum

p1 = xa

√
s

2
(1, 0, 0, 1) p2 = xb

√
s

2
(1, 0, 0,−1)

E =
√

s

2
(xa + xb) pl =

√
s

2
(xa − xb)

• These yield xF = xa − xb.

• One can use this to define a double differential cross section

dσ

dQ2dxF

=
4πα2

9Q4

∑

q

e2
q

∫ 1

τ

dxa

xa

τHq(xa,
τ

xa

)δ(xF − xa +
τ

xa

)



• δ(xF − xa + τ
xa

)

• The δ function constraint can be solved for xa yielding

xa =
1

2

(

xF +
√

x2
F + 4τ

)

.

• Using xb = τ/xa one derives

xb =
1

2

(

−xF +
√

x2
F + 4τ

)

.

• The Jacobian factor from the δ function introduces a factor of
xa/(xa + xb) so the final result can be written as

dσ

dQ2dxF

=
4πα2

9Q4

1
√

x2
F + 4τ

τ
∑

q

e2
qHq(xa,

τ

xa

).



Rapidity

• Rapidity is defined as

y =
1

2
ln

E + pl

E − pl

=
1

2
lnxaxb

• Exercise: Show that xa =
√

τey and xb =
√

τe−y.

• Changing variables from (Q2, xF ) to (y, τ) is done using

dQ2dxF = dydτ s
√

x2
F + 4τ

• This results in

dσ

dydτ
=

4πα2

9s

∑

q

e2
q

τ
Hq(xa, xb)



QCD improved parton model

• Following the discussion in Lecture II, there is only one change
needed – Replace the PDFs with scale-dependent PDFs

q(x) → q(x, M2
f )

• But, what is the scale Mf? That depends on the observable.

• For dσ
dQ2 , dσ

dydQ2 , or dσ
dxF dQ2 there is only one large scale – Q

• This one change yields the LO QCD predictions with leading-log
PDFs



Next Order Correction to dσ
dQ2

q

q

l−

l+

Let’s write the lowest order expression for the cross section as follows:

dσ

dQ2
=

σ(Q2)

s

Z

dxa

xa

dxb

xb

X

e2
q [q(xa)q(xb) + q ↔ q] δ(1 − z)

where z = Q2

xaxbs

Now, consider the virtual corrections - these are the same as in the e+e−

example. One simply replaces δ(1 − z) in the above expression by

δ(1 − z)

"

1 +
αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

− 2

ǫ2
− 3

ǫ
− 8 +

2π2

3

–

#

Next, we must consider the contributions from the Compton and annihilation

subprocesses



Annihilation Contribution

• By now, the steps should be familiar - square the matrix element in n-dimensions,
multiply by 3-body n-dimensional phase space, and divide by the flux factor

• Perform the relevant phase space integrations using the changes of variables
and the “+” distributions outlined in the e+e− case

• Add to the preceding results for the lowest order and virtual contributions

• The ǫ−2 terms will cancel, as will some of the ǫ−1 terms, leaving some residual
ǫ pole terms.

• Factorize these remaining singular terms and absorb them into the bare PDFs,
leaving a residual finite O(αs) correction

• As before, the factorization of the initial state collinear singularities will be
facilitated by the introduction of a mass factorization scale Mf



The full annihilation contribution, including the lowest order and virtual con-
tributions, at the parton level prior to the mass factorization step is

δ(1 − z) +
αs

2π
CF

„

Q2

4πµ2

«−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)

»

δ(1 − z)

„

−3

ǫ
− 8 +

2π2

3

«

−2

ǫ

1 + z2

(1 − z)+
+ 4(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 2
1 + z2

1 − z
ln z

#

One can recognize the familiar splitting function Pqq(z) in this expression. The
result can be simplified to

δ(1 − z) − 2

ǫ

αs

2π

 

M2
f

4πµ2

!−ǫ
Γ(1 − ǫ)

Γ(1 − 2ǫ)
Pqq(z) +

αs

2π
2Pqq(z) ln

Q2

M2
f

+
αs

2π
fq(z)

where fq(z) represents a finite O(αa) correction as in the DIS example and I

have kept the factorization scale dependent term separate from fq



Compton Subprocess

• The same procedure as outlined on the preceding slides is followed for
the Compton subprocess

• This time there is no lower order term and there are no virtual correc-
tions

• The only singularity is the collinear singularity associated with the gluon
splitting vertex

• The full Compton result using the same normalization as for the anni-
hilation result is

−1

ǫ

αs

2π
Pqg(z)

 

M2
f

4πµ2

!−ǫ

+
αs

2π
Pqg(z) ln

 

Q2

M2
f

!

+
αs

2π
fg(z)



• At this point the final step is to factorize the remaining collinear terms
into the bare PDFs

• This is easily done using the expressions given previously as I have al-
ready isolated the appropriate subtraction terms for the MS scheme.

• Restoring the full normalization for the cross section we get

dσ

dQ2
=

σ(Q2)

s

Z

dxa

xa

dxb

xb

"

X

q

e2
q

ˆ

q(xa, M2
f )q(xb, M

2
f ) + a ↔ b

˜

·
"

δ(1 − z) +
αs

2π

 

2Pqq(z) ln

 

Q2

M2
f

!

+ fq(z)

!#

+
X

q

e2
q

ˆ`

q(xa, M2
f ) + q(xa, M2

f )
´

g(xb,M
2
f ) + a ↔ b

˜

αs

2π

 

Pqg(z) ln

 

Q2

M2
f

!

+ fg(z)

!#



The relatively simple expression on the previous page contains many of the elements
that characterize NLO calculations in general

• The chosen form strongly suggests the choice Mf = Q which follows from the

fact that the phase space factor
“

Q2

4πµ2

”−ǫ
is given in terms of Q2 which sets

the natural scale for the process

• There is explicit Mf dependence in the NLO term which partially cancels that
contained in the lowest order term

• To see this, take a derivative with respect to ln M2
f of the cross section expres-

sion

– The derivative of q(xa, M2
f ) gives a contribution of

αs

2π
[Pqq ⊗ q + Pqg ⊗ g]

where ⊗ is shorthand for the convolution of the PDF and splitting func-
tion. This follows from the DGLAP equations for the scale dependence
of the PDFs

– The derivative of the NLO correction gives a similar term, but with a

minus sign coming from the ln

„

Q2

M2

f

«

factors



• The cancellation is not exact, but is correct up to the next order in αs

(Exercise: Show this)

• This is a feature which is typical of NLO calculations and is one of the
reasons for why they are important - they generally, but not always,
feature a decreased scale dependence relative to the leading-order calcu-
lation

For completeness here are the remaining factors in the NLO calculation

fq(z) = CF

»

δ(1 − z)(−8 +
2π2

3
)

+4(1 + z2)

„

ln(1 − z)

1 − z

«

+

− 2
1 + z2

1 − z
ln z

#

and

fg(z) =
1

2

»

ln
1 + z2

z

ˆ

z2 + (1 − z)2
˜

+
1

2
+ 3z − 7z2

–



Comments

• If you compare the expressions for the fs in the Lepton Pair Production
case to those in the DIS case for F2 you will see some features in common,
but also some differences

– In both cases there are combinations of delta function terms, plus
regulators, and other z-dependent terms

– The dependence on the plus regulators is different

• The differences stem from the fact that in both case we are integrating
over an additional parton in the final state, but the phase space is dif-
ferent in the two cases - we have an spacelike photon in the initial state
for one and a timelike photon in the final state for the other

• Remember that the plus regulators are related to the limitations placed
on parton emission near threshold and these constraints are different in
the two cases



• The change from space-like to time-like Q2 also affects terms involving
ln Q2 since the argument will be negative for one of the processes.

• Re(−1)−ǫ = Re exp(−iπǫ) = 1 − ǫ2π2 + · · ·
• This multiplies ǫ−2 and so generates a contribution proportional to π2

• Historically, the existence of these π2 terms played an important role in
understanding the QCD description of these two processes

This brings us to the idea of the infamous “K Factors”

Aside: Why infamous? Because they don’t have a unique definition and
they aren’t true factors!!



K factors

• The idea of K factors started innocently enough. In the 1980s the early
Lepton Pair Production experimental results were compared with exist-
ing predictions based on leading order PDFs and the lowest order hard
scattering expressions

• The results were given as the ratio of the data to the predictions and
this ratio was called the K factor, i.e. the amount one would have to
multiply the theoretical predictions by in order to describe the data

• The early comparisons showed that this result was about 2, which seemed
like a real problem for QCD

• The explanation came when NLO calculations became available

• Almost all of the NLO correction is associated with a large contribution
proportional to δ(1 − z)

• To understand this requires several steps...



• First, consider that leading order PDFs fitted to DIS data (that was all we
had at first) essentially have all of the higher order corrections absorbed into
the PDFs themselves

• This would be equivalent to using the DIS factorization convention where
fq
2 and fg

2 are absorbed into the PDFs

• But then, when one calculates the Lepton Pair Production cross section these
DIS corrections must be removed from the PDFs. In this DIS scheme we must
replace fq by fq − fq

2 and similarly for the gluon terms

• The coefficient of the delta function term is then

αs

2π
CF

„

1 +
4π2

3

«

relative to which the lowest order term is just 1 (Exercise: Show this)

• For Q ≈ 5 GeV this correction changes the lowest order term by about 1.8,
i.e., a K factor of nearly 2!

• In this case, the bulk of the correction comes from the π2 terms which appear
in the delta function term and so the correction is roughly a constant times
the lowest order results

• And, so, the idea of a K factor has been with us ever since



Comments

• One should be worried that the next order correction is so large - is perturba-
tion theory converging?

• Feynman:

1

1 − x
= 1 + x + . . . and ex = 1 + x + . . .

For x ≈ 1 the first diverges while the second gives about 2.7

• As it turns out a significant part of the correction term exponentiates so the
second example is closer to what is happening

• In this example the kinematics of the NLO correction delta function piece is
the same as for the lowest order, so the correction is essentially a multiplicative
constant

• This does not happen very often

• In the more usual case there are many different subprocesses in the NLO calcu-
lation and they can have very different dependences on the process kinematics

• Various phase space factors can cause the higher order parton emission contri-
butions to contribute differently in different regions of phase space



• So, in general the ratio of the NLO to LO calculations (the so-called
theoretical K factor) will depend on the kinematic variables and will not

be a constant

• Furthermore, there is the issue of the scale dependence. The NLO and
LO terms have different scale dependences. They partially cancel each
other, which is a good thing.

• This has the effect that the ratio of the two terms will depend strongly
on the chosen factorization scale

• But if the so-called K factor depends on the scale choice, then how can
it be a uniquely defined “factor”?

It Can’t!

I’ll have more examples of this in a later lecture



Time to get on the Soap Box

Some people are fond of saying something like “QCD says that in lowest order the
lepton pair is produced with no transverse momentum.” This statement is false. Let’s
see why.

• It is true, that for the qq → l+l− subprocess, the lepton pair has the same
transverse momentum as the qq initial state

• It is also true that we have used kinematics in which we treat the initial partons
as being collinear with the beam

• However, the PDFs in the cross section expressions are the scale-dependent
PDFs and carry an argument M2

f .

• This dependence on the factorization scale comes from integrating over the pT

of the additional partons emitted from the initial state (either radiated gluons
or quarks and antiquarks created by gluons)

• Thus, QCD radiation causes the incoming partons to have non-zero transverse
momenta, but these are integrated out when the scale-dependent PDFs are
used

• We make an approximation when we treat the partons given by the integrated
PDFs as having zero transverse momenta, and this is appropriate for longitu-
dinal momentum distributions.



• Thus, QCD predicts that the lepton pair will have a transverse momentum
distribution, but we have integrated over it (even if we didn’t realize it) when
we use the expressions given previously.

• Then, how do we undo the integration? And what value should we use for
M2

f ?

Choosing the Factorization Scale

• The factorization scale Mf can be understood as setting the upper limit on the
integration over the transverse momenta of the partons emitted in the initial
state evolution

• The leading-log contributions from higher order subprocesses have been in-
cluded in the scale-dependent PDFs

• So, if one wants to calculate the cross section for producing a lepton pair of
mass Q then a choice of Mf ≈ Q would be appropriate.

• This is not exact, since the true upper limit of the transverse momentum inte-
gration would be given by a more complicated expression involving a function
of τ and y multiplying Q. But in the leading-log approximation the choice Q
is acceptable.

• Of course, any constant times Q is equally acceptable as long as the constant
isn’t too large (or too small) since then one would generate spurious large
logarithms



pT Distribution

So, given the preceding discussion, how does one calculate the lepton pair pT distri-
bution? Answer - Go to higher order!

• To calculate the pT spectrum we will have to consider having the lepton pair
recoil against at least one parton. The subprocesses are

– Compton process: qg → l+l−q

– Annihilation process qq → l+l−g

• Using these subprocesses one can calculate a pT distribution, but it will be a
leading order prediction for the pT dependence

• There is still the issue of the scale choice for the PDFs and the running coupling.

• If one is interested in the high-pT region where pT ∼ Q then there is only one
large scale and either pT or Q or some combination is appropriate.

• If one is interested in the region pT ≪ Q then one has a two scale problem
and logs of pT /Q may become important

• This situation requires resummation...



The O(αs) subprocesses both give contributions which diverge as p−2
T as pT

goes to zero
These divergent terms are factorized and included in the scale dependent PDFs

We want to do a better calculation in the low pT region

• Have to figure out what to do with the low pT radiated partons

• Have to figure out what the scale should be for the PDFs



Comments on Resummation

• Want to include the effects of multiple parton emission

• Divergent pieces from each emission factorize

• Need to insure transverse momentum conservation

• Insert a δ function to enforce it

• Use the Dirac representation of the δ function

δ2(~pT − ~kT1
− · · · − kTn) =

1

(2π)2

Z

d2be−i~b·(~pT −~kT1
−···−~kTn

)

• In this form the δ function factorizes

• Can sum the effects of multiple emissions in impact parameter space

• This concept was developed by Collins, Soper, and Sterman (Nucl.Phys.B250,199(1985))

• See my lecture in the 2010 CTEQ Summer School for more details



• Need to take into account the transverse momentum of the incoming
quarks

– Normally integrated over, leading to the scale dependence of the
PDFs

– Factorization scale usually chosen to be on the order of the single
hard scale

– Now, the lepton pair pT will reflect the pT s of the incoming quarks

– PDF scale is chosen to be of the order of 1/b where b is the impact
parameter seen above

– b and pT are conjugate variables - large pT ↔ small b

– A scale of 1/b is large for large pT and small for small pT

• Classic application is to the lepton pair, W , or Z pT distributions



CSS Resummed Result

The resummed CSS result takes a relatively simple form with an exponentia-
tion in impact parameter space and a convolution with PDFs evaluated at a
scale 1/b

dσ

dQ2 dy dk2
T

=
4π2α2

9Q2s
(2π)−2

Z

d2bei~kT ·~b
X

j

e2
j

X

a

Z 1

xa

dξa

ξa
Ga/A(ξa, 1/b)

X

b

Z 1

xb

dξb

ξb
Gb/B(ξb, 1/b)

e−S(Q2,b)Cja(
xa

ξa
, g(1/b))Cjb(

xb

ξb
, g(1/b))

+
4π2α2

9Q2s
Y (kT , Q, xa, xb)

with S(Q2, b) = exp
h

−
R Q2

1/b2
dµ2

µ2

h

ln
“

Q2

µ2

”

A(g(µ)) + B(g(µ))
ii



• The Y piece is the residual NLO non-log contribution

• In the expression for S, the A term sums the leading logarithms while
the B term sums the next-to-leading logs

• Here are some typical resummed results (from J. Qiu and X. Zhang,
Phys. Rev. D63:114011,2001) compared to data (D0 and Fermilab E-
288)
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• Note that by exponentiating in impact parameter space dσ
dk2

T

has a non-

zero intercept at kT = 0

• The D0 data are shown as dσ
dkT

which has a kinematic zero at kT = 0

• For both plots, however, the tree level calculation would diverge as kT →
0, whereas the b-space exponentiation describes the data nicely

Other Resummation Examples

Logarithms of variables other than kT can also occur - it depends on the type

of distribution one is calculating. The logs come from the same basic vertices

in the Feynman diagrams - they just appear in different ways and require

different types of treatments. Another example is provided by the threshold

logs we encountered previously in Lecture II



Threshold Resummation – Basic Physics

• For inclusive calculations, singularities from soft real gluon emis-
sion cancel against infrared singularities from virtual gluon emis-
sion

• Limitations on real gluon emission imposed by phase space con-
straints can upset this cancellation

• Singular terms still cancel, but there can be large logarithmic re-
mainders

• Applications include high mass lepton pair production, high-pT

particle production, the fragmentation component of direct photon
production,...

• All are examples of where the high mass or high-pT limits the phase
space available for gluon emission



W± and Z production

There are several minor changes (see Appendix II)

• The Feynman graphs are the same, but the couplings are different

• Massive propagators are used

• Due to these factors, the angular distribution of the final state
leptons is different

– l+l− : 1 + cos2 θ

– l−ν̄ : (1 + cos θ)2



The source of the (1+cos θ)2 form is easy to understand. The W couples
to left-handed particles and right-handed antiparticles.

q q’

l

ν

⇐ ⇐

⇐

⇐

θ

When θ → π the cross section must vanish since angular momentum
would not be conserved. However, θ = 0 is allowed. The (1 + cos θ)
factor ensures this.



Some Phenomenology

• Fermilab experiment E866 measured the cross sections for lepton
pair production in pp and pd interactions

• Using dσ
dQ2dxF

one can extract the cross section ratio as a function
of x1 and x2

• Let u1 = u(x1, Q
2), etc and use isospin to relate the PDFs in a

neutron to those in a proton.

• Exercise: For x1 ≫ x2 show that

σpd

2σpp

=
1

2

1 + 1

4
Rdu

1 + 1

4
Rdur2

(1 + r2)

where Rdu = d1

u1

and r2 = d̄2

ū2

and contributions from strange and
heavier quarks have been neglected

• If r2 = 1 then the cross section ratio is also one.
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MRS(R2)
d
–
=u

–

• The data clearly show the d̄ 6= ū

• The line for d̄ = ū is not constant at one because the approximation of
x1 ≫ x2 has been relaxed

• Exercise: repeat the derivation from the previous slide, but do not dis-
card terms like d̄1 or ū1



W rapidity asymmetry

• Consider the asymmetry

AW =
σ(W+) − σ(W−)

σ(W+) + σ(W−)

• Exercise: Show that for the weak mixing angle θW ≈ 0 for p̄p
interactions one can write

AW ≈ Rdu(x2) − Rdu(x1)

Rdu(x2) + Rdu(x1)

where x1

2
= MW√

s
e±y

• Therefore, the asymmetry measured at the Tevatron tells us some-
thing about the d/u ratio



• These are some results from the CJ (CTEQ-Jefferson Lab) Collab-
oration

• Different models for nuclear corrections for deuterium DIS give
different d/u ratios and AW is sensitive to this



• The CDF extraction of AW requires some model-dependent as-
sumptions since one can not detect the outgoing ν’s longitudinal
momentum

• Often one measures the charged lepton rapidity asymmetry instead
of the W asymmetry.

• The V-A nature of the decay angular distribution reduces the
asymmetry (the l− from W− decay is pushed to higher rapidity
while the l+ from W+ decay is pushed to lower rapidity)

• The lepton asymmetry depends on the same physics, but the sen-
sitivity to d/u at large values of x is reduced.



Summary

• We’ve seen the basics of parton model calculations for vector boson
production and how to incorporate QCD effects at LO and NLO

• We’ve seen now the collinear singularities associated with initial
state radiation can be factorized and absorbed into the PDFs

• We’ve seen examples of the convention dependence associated with
the process of factorization

• We’ve seen some examples of how to chose the renormalization and
factorization scales

• We’ve seen a bit of phenomenology associated with vector boson
production

• The next step is to investigate how to handle more complicated
observables in processes involving more partons in the final state



Appendix I - Lepton Pair Production Born Term Calculation

Matrix element M = eq
e2

ŝ
u(k1)γµv(k2)v(p2)γ

µu(p1)

Spin/color averaged matrix element squared

∑

|M |2 =
e2
qe

4

ŝ2

(

1

2

)(

1

2

)

3

(

1

3

) (

1

3

)

Tr [/p1γ
ν/p2γ

µ] Tr [/k2γν/k1γµ]

=
4

3

e2
qe

4

ŝ2
[pν

1pµ
2 + pµ

1pν
2 − gµνp1 · p2] [k2νk1µ + k2µk1ν − gµνk1 · k2]

Red factors are for the spin average and blue factors are for the color
average. Forming the indicated dot products yields

∑

|M |2 =
4

3

e2
qe

4

ŝ2
[2p1 · k2p2 · k1 + 2p1 · k1p2 · k2]

=
2

3

e2
qe

4

ŝ2

[

t̂2 + û2
]



Center of mass frame: the 4-vectors are

p1 =

√
ŝ

2
(1, 0, 0, 1) p2 =

√
ŝ

2
(1, 0, 0,−1)

k1 =

√
ŝ

2
(1, sin(θ), 0, cos(θ)) k2 =

√
ŝ

2
(1,− sin(θ), 0,− cos(θ))

yielding the Lorentz scalars

t̂ = − ŝ

2
(1 − cos(θ)) and û = − ŝ

2
(1 + cos(θ))

with

t̂2 + û2 =
s2

2
(1 + cos2(θ))

Inserting these relations into our result yields the answer we seek:

X

|M |2 =
e2

qe
4

3
(1 + cos2(θ))



To make use of this result we need to convert it to a cross section. For this we
need the two-body Lorentz invariant phase space factor:

PS(2) =
d3k1

(2π)32E1

d3k2

(2π)32E2

×(2π)4δ4(p1 + p2 − k1 − k2)

=
d3k

16π2E1E2
δ(
√

ŝ − E1 − E2).

In the center-of-momentum frame we have k = |~k1| = |~k2| so that in this
frame we can write

d(E1 + E2) = d
√

ŝ

= kdk

„

1

E1
+

1

E2

«

= kdk
E1 + E2

E1E2
.

with k =
√

ŝ/2.



This allows the phase space factor to be written as

PS(2) =
k2dkdΩ

16π2E1E2
δ(
√

ŝ − E1 − E2)

=
kd

√
ŝdΩ

16π2
√

ŝ
δ(
√

ŝ − E1 − E2)

=
dΩ

32π2

=
d cos(θ)

16π



To get a cross section we multiply the phase space factor times the spin and
color averaged squared matrix element and multiply that by a flux factor of
1/2ŝ yielding

σ(qq → l+l−) =
1

2ŝ

Z 1

−1

d cos(θ)

16π

e2
qe

4

3
(1 + cos2(θ))

=
e2

q

3

(4πα)2

16π

1

2ŝ

8

3

where the fine structure constant α = e2

4π
≈ 1

137
.

The final result for the parton-level cross section is

σ(qq → l+l−) =
4πα2

9ŝ
e2

q ≡ σ0.



Appendix II W and Z Production

• W and Z production involve subprocesses which are very similar to lep-
ton pair production, e.g., qq′ → W and qq → Z.

• Use the narrow width approximation, i.e., the vector bosons will be
treated as stable particles of fixed mass. All of the previous lepton pair
production results can be easily utilized, providing that we make some
changes in the couplings.

Consider q(p1)q
′(p2) → W (p), for which the matrix element is

M = −iVqq′

g√
2
ǫαv(p2)γ

α 1

2
(1 − γ5)u(p1)

where Vqq′ is the appropriate element of the CKM matrix.



The spin/color averaged squared matrix element is given by

X

|M |2 = |Vqq′ |2 g2

96
2Tr [/p1(1 − γ5)/p2(1 − γ5)]

= |Vqq′ |2 g2

24
Tr[/p1/p2] = |Vqq′ |2 g2

6
p1 · p2

= |Vqq′ |2 GF M4
W√

2

2

3

where g2 =
8GF M2

W√
2

. The hadronic cross section σ is given by convoluting the
parton level cross section σ̂ with the appropriate PDFs:

σ =

Z

dxadxb

X

qq′

q(xa)q′(xb)σ̂

σ̂ =
1

2ŝ

2

3

GF M4
W√

2
|Vqq′ |2

Z

d3p

(2π)32E
(2π)4δ4(p − p1 − p2).



The integrand of the phase space integral can be rewritten as

2π d4p δ4(p − p1 − p2)δ(ŝ − M2
W )

This yields

σ̂ =
2π

3
|Vqq′ |2 GF M2

W√
2

δ(ŝ − M2
W ).

Compare this to our lepton pair production result

σ̂γ∗ =
4π2α

3
e2

qδ(ŝ − Q2)

which shows that

4παe2
q ↔ 2|Vqq′ |2 GF M2

W√
2

.



Z Production

Here the subprocess is q(p1)q(p2) → Z(p), with the matrix element given by

M = −igǫαv(p2)γ
α(gV + gAγ5)u(p1).

The partonic cross section is given by

σ̂Z =
8π

3

GF M2
W√

2
(g2

V + g2
A)δ(ŝ − M2

Z)

where

g2
V + g2

A =
1

8
(1 − 4|eq| sin2 θW + 8e2

q sin4 θW ).

Apart from changing the coupling, we can treat W and Z production just like
lepton pair production at a fixed value of Q2.


