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Lecture IV - Hadron-hadron production of particles, jets, and photons

• Kinematics

• Observables in lowest order - QCD improved parton model

• Higher order corrections

• More complex observables and the need for Monte Carlo techniques

• Overview of phase space slicing methods



Pre-QCD

Berman, Bjorken, and Kogut, Phys. Rev. D4 (1971) 3388

• Gave predictions for the inclusive production of particles, jets (called
“cores”) and photons with large transverse momentum in hadron-
hadron, lepton-hadron, and lepton-lepton processes

• Pre-dated QCD, but assumed an underlying DIS-type scattering
process

• Predicted large yields at high-pT

• Subsequently observed at the ISR and Fermilab



Post-QCD

• Asymptotic freedom suggested applicability of perturbative techniques

• Scale-dependent PDFs from DIS and lepton pair production

• Scale-dependent FFs from e+e− annihilation and also DIS particle pro-
duction

• Use the “QCD-improved Parton Model” formalism described earlier

• High-pT scattering would allow one to test the perturbative predictions
for the hard scattering at the parton level

• Photon production would provide a “color blind” probe of the scattering

• The expectation that jets would be observed and that their 4-vectors
could approximately be identified with those of the scattered partons
was an important test of the picture



Inclusive jet production

• We will start with inclusive jet production process A + B → jet + X
where A and B are hadrons and we will identify the jet with a scattered
parton

• The basic cross section starts with an expression of the form

dσ(AB → h + X) =
1

2ŝ

X

abcd

Ga/A(xa,M2
f ) dxa Gb/B(xb, M

2
f ) dxb

X

|Mab→cd|2 dPS(2)

• We can simplify this expression if we evaluate the two-particle phase
space factor using the Mandelstam variables

ŝ = (pa + pb)
2 t̂ = (pa − pc)

2 û = (pb − pc)
2



• The two-body phase space factor is

dPS(2) =
d3pc

(2π)32Ec

d3pd

(2π)32Ed
(2π)4δ(pa + pb − pc − pd)

• Exercise: Show that d3pd

2Ed
= d4pdδ(p2

d) and that δ(p2
d) = δ(ŝ + t̂ + û) for

massless partons and hence that

dPS(2) =
1

8π2

d3pc

Ec
δ(ŝ + t̂ + û)

• Parton 4-vectors in the hadron-hadron frame:

pa
b

= xa
b
(1, 0, 0,±1) pc

d
= pT (cosh yc

d
, 1, 0, sinh yc

d
)

• And in the parton-parton frame:

pa
b

=

√
ŝ

2
(1, 0, 0,±1) pc

d
=

√
ŝ

2
(1,± sin θ, 0,± cos θ)



• Exercise: Show that the Mandelstam variables in the hadron-hadron
frame are

ŝ = xaxbs, t̂ = −xa

√
spT e−yc , and û = −xb

√
spT eyc

and that in the the parton-parton frame they are

t̂ = − ŝ

2
(1 − cos θ) and û = − ŝ

2
(1 + cos θ)

• At the parton level one can write the cross section as

dσ̂ =
1

2ŝ

X

|M |2dPS(2)

• It follows then that
dσ̂

dt̂
=

1

16πŝ2

X

|M |2



• Putting this all together one gets the following expression for the invari-
ant cross section

E
d3σ

d3p
(A + B → jet + X) =

X

ab

Z

Ga/A(xa,M2
f ) dxaGb/B(xb, M

2
f ) dxb

ŝ

π

dσ̂

dt̂
(ab → cd)δ(ŝ + t̂ + û)

• Substitute in the expressions for the Mandelstam variables in the hadron-
hadron frame and integrate on xb to get

E
d3σ

d3p
(A + B → jet + X) =

X

ab

Z 1

xamin

dxa Ga/A(xa, M2
f )Gb/B(xb, M

2
f )

2

π

xaxb

2xa − xT ey1

dσ̂

dt̂
(ab → cd)

where xb = xaxT e−y1

2xa−xT ey1
and xamin = xT ey1

2−xT e−y1
corresponds to xb = 1

and xT = 2pT√
s

.



Discussion

• Don’t forget to sum over all possibilities for the parton-parton scat-
tering

• For a gq initial state the gluon may come from hadron A and the
quark form hadron B or the other way around! Both contributions
are needed.

• Likewise, the jet may have come from parton c or from parton d.
Again, both contributions must be included.

• When y ≈ 0 then xa ∼ xb ∼ xT

• Forward or backward rapidities are dominated by one x large and
one x small



• There is still one integration which smears out a direct reconstruc-
tion of the underlying scattering

• Consider a dijet cross section where one measures the rapidities of
the two scattered jets

• Easiest to start with the four-momentum conserving delta function
in dPS(2)

– The transverse momentum parts ensure that the jets balance
in pT in lowest order

– The energy and longitudinal delta functions determine both
xa and xb



Dijet cross section

dσ

dycdyddp2
T

=
X

ab

xaGa/A(xa, M2
f )xbGb/B(xb,M

2
f )

dσ̂

dt̂
(ab → cd)

where
xa

b
=

pT√
s
(e±yc + e±yd)

• Using the expressions for the parton 4-vectors and the Mandelstam vari-
ables given earlier one can derive several useful relations

p2
T = t̂û/ŝ cos θ = (t̂ − û)/ŝ

• After a bit of work, these can be used to derive

cos θ = tanh
yc − yd

2



What about inclusive hadron production?

Insert a factor of Dh/c(z, M2
f )dz resulting in one more integration.

E
d3σ

d3p
(A + B → h + X) =

∑
abc

∫ 1

xamin

dxa

∫ 1

xbmin

dxb Ga/A(xa, M2
f )

Gb/B(xb, M
2
f )Dh/c(z, M2

f )
1

πz

dσ̂

dt̂
(ab → cd)

where z = xT

2xb
e−y + xT

2xa
ey.

Also, xbmin = xaxT e−y

2xa−xT ey and xamin = xT ey

2−xT e−y .

• Note that the hadron 4-vector is given by p = zpc

• One must also include the contribution where parton d fragments
into the observed hadron



Direct Photon Production - Theory Overview

• Lowest Order: O(ααs)

1. qg → γq QCD Compton

2. qq → γg annihilation

• The single photon invariant cross section is given by a convolution with
the beam and target parton distribution functions

a

b c

γ

dσ(AB → γ + X) = Ga/A(xa, µF ) dxa Gb/B(xb, µF ) dxb

1

2ŝ

X

ab

|M(ab → γc)|2dPS(2)



• Event topology is that of an isolated photon recoiling against a jet (either
a quark or a gluon)

Next-to-Leading Order: O(αα2
s)

1. one-loop virtual contributions

2. qq → γgg

3. gq → γqg

4. qq′ → γqq′ plus related subprocesses

• In the next order one sees a new configuration wherein the photon is no
longer isolated. Instead, it may be radiated off a high-pT quark produced
in the hard scattering process.



• Consider the subprocess q(1)q(2) → q(3)q(4)γ(5)

• Examine the region where s35 = (p3 − p5)
2 ≈ 0

1

2

3

4

5

X

|M(qq → qqγ)|2 ≈ α

2π
Pγq(z)

1

s35

X

|M(qq → qq)|2

• An internal quark line is going on-shell signalling long distance physics
effects

• Gives rise to a collinear singularity

• Can factorize the singularity by introducing a photon fragmentation

function



Photon Fragmentation

• Photon is accompanied by jet fragments on the same side

• Factorize the singularity and include it in the bare photon fragmentation
function

• Sum large logs with modified Altarelli-Parisi equations

Q2 dDγ/q(x, Q2)

dQ2
=

α

2π
Pγq +

αs

2π

ˆ

Dγ/q ⊗ Pqq + Dγ/g ⊗ Pgq

˜

Q2 dDγ/g(x, Q2)

dQ2
=

αs

2π

"

X

q

Dγ/q ⊗ Pqg + Dγ/g ⊗ Pgg

#

• As with hadron PDFs and fragmentation functions, can’t perturbatively
calculate the fragmentation functions, but the scale dependence is per-
turbatively calculable

• Note the Pγq splitting function - represents the pointlike coupling of the
photon to the quark in q → γq



Fragmentation Component

• The situation has become more complex

• Expect to see two classes of events

1. Direct (or pointlike) - no hadrons accompanying the photon

2. Fragmentation (or bremsstrahlung) - photon is a fragment of a
high-pT jet. Part of the fragmentation function is perturbatively
calculable.

• Expect (1) to dominate at high-pT since the energy is not shared with
accompanying hadrons.

• The Pγq splitting function gives rise to the leading high Q2 behavior
going as α log(Q2/Λ2) ∼ α

αs
(see Appendix II for a derivation)

So, to our list of contributions add those involving photon fragmentation func-
tions

• O(ααs) : dσ
dt̂

(ab → cd) ⊗ Dγ/c

• O(αα2
s) : dσ

dt̂
(ab → cde) ⊗ Dγ/c



Some Comments

• Photons can be produced as fragments of jets, as is also the case for
particles

• Photon production therefore involves all of the subprocesses relevant for
jet or particle production

• In addition, one also has the pointlike production processes

Photon production is more complicated than jet production, not less



Angular Dependence

• Appendix I lists the expressions for the two-body QCD subprocesses

• t channel vector boson exchange: 1
t̂2

∼ 1
(1−cos θ)2

(dominant in jet pro-

duction)

• t channel fermion exchange: 1
t̂
∼ 1

(1−cos θ)
(dominant in direct photon

production)

• Can measure the angular distributions and see the differences between
jets and γs



The different angular distributions for jet, photon, and weak boson production
are well described by QCD



Scaling Behavior

• The invariant cross section E d3σ
dp3 has mass dimension 4. Thus, at fixed

values of xT and θ (or rapidity) it should scale as p−4
T

• Plot data versus xT

• Data should lie on a common curve if multiplied by p4
T

• Compilation of isolated direct photon data from d’Enterria and Rojo
(arXiv:1202.1762[hep-ph])

• Idea works, but n=4.5, not 4 – Why?





The explanation is due to the various sources of scaling violations in the theory

• αs depends on the dimensionless quantity ln(µ/Λ)

• Typically one expects µ ≈ pT

• As pT increases αs decreases and one needs to multiply the cross section
by a higher power of pT in order to get the scaling curve

• Similarly, the PDFs above x ≈ .2 decrease with increasing pT causing
an additional increase in the power of pT required to get the data to lie
on a common curve

• Similar behavior exists for jets since the factors of the PDFs and αs are
the same

• A slightly higher power is seen for inclusive hadron production since one
has an additional scale-violating fragmentation function



Now, let’s look at the form of the NLO corrections

By now, we can anticipate what needs to be done

• Use the two-loop running coupling

• Use NLO PDFs

• Use 2 → 3 tree-level matrix elements and 2 → 2 loop corrections

• Use three particle phase space for the tree graphs

• Use dimensional regularization

• Factorize the collinear singularities associated with the PDFs and FFs

• This will result in an O(αs) correction to the preceding expression for
the invariant cross section



• Generally, the high-pT calculation outlined above is appropriate for
problems where there is one large scale

• This means that ŝ ∼ t̂ ∼ û

• In terms of the kinematic parameters of the observed hadron, this means
that the rapidity is not near the edge of phase space and that the trans-
verse momentum is large, i.e., xT = 2pT√

S
is neither near one nor near

zero

• In this region the NLO calculation will generally provide

– Reduced scale dependence

– A modest correction to the normalization of the lowest order result

• There may be some changes in the pT and y distributions due to the
presence of new subprocesses

• Note that in this example we have integrated over both of the recoiling
partons. This smooths out regions where there might otherwise have
been large corrections.

• Next, let’s look at how the reduction in scale dependence actually comes
about and how we might use this to our advantage



Scale dependence

• Consider a highly simplified example of jet production in hadron-hadron
scattering at large enough values of xT that only valence quark scattering
subprocesses need be considered.

• Denote the lowest order result for the invariant cross section by

E
d3σ

dp3
≡ σ = α2

s(µ)σ̂B ⊗ q(M) ⊗ q(M)

• Here σ̂B denotes the lowest order parton-parton scattering cross section
while q(M) denotes a quark PDF with factorization scale M

• I have separated out the running coupling which is evaluated at a renor-
malization scale µ

• ⊗ denotes a convolution

f ⊗ g =

Z 1

x

dy

y
f

„

x

y

«

g(y)



• With this same notation the NLO calculation will have the form

σ = α2
s(µ)σ̂B ⊗ q(M) ⊗ q(M)

+ 2bα3
s(µ) ln

µ2

p2
T

σ̂B ⊗ q(M) ⊗ q(M)

+ 2
α3

s(µ)

2π
ln

p2
T

M2
Pqq ⊗ q(M) ⊗ q(M)

+ α3
s(µ)K ⊗ q(M) ⊗ q(M)

• I have separated out the parts of the NLO correction which contain
explicit logs of µ or of M and have normalized then using pT

• K denotes the remainder of the NLO correction



Recall that

µ2 ∂αs(µ)

∂µ2
= −bα2

s + . . .

and that the nonsinglet PDF satisfies

M2 ∂q(x,M)

∂M2
=

αs

2π
Pqq ⊗ q(M)

• Now, calculate µ2 ∂σ
∂µ2

• The derivative of the first line gives a contribution which cancels a piece
of the derivative of the second line; the remaining derivatives of the
second, third, and fourth lines all give contributions of O(α4

s)

• The µ dependence is thus zero to O(α3
s) (Exercise: Fill in the steps to

show this)



• Now, calculate M2 ∂σ
∂M2

• Again, the derivative of the first line cancels a portion of the derivative of
the third and the remaining derivatives give results of O(α4

s) (Exercise:
Fill in the steps to show this)

• Both the renormalization and factorization scale dependences cancel to
the order calculated, although there is still residual scale dependence
due to higher order corrections

• The following plot shows the type of behavior which is typical of LO
and NLO calculations

0 0.5 1 1.5 2 2.5
µ/ET

100

1000

dσ
/d

yd
E

T
 (

pb
/G

eV
)

p p
−
 −−> jet + X

√s = 1800 GeV   ET = 70 GeV   2 < |y| < 3

LO
NLO



Understanding the scale dependences

• To simplify the discussion, consider the situation where µ = M , as in
the previous plot

• For the lowest order calculation we understand that increasing µ causes
the running coupling to decrease

• In the region of x & .1 an increase of M also causes the PDFs to decrease
- this is the region relevant for our high-pT jet example

• Thus, the LO calculation is a monotonically decreasing function of the
scale

• For the full NLO calculation, the first line (lowest order result) and the
last line (residual NLO result) both have the same type of monotonically
decreasing behavior as the scale increases

σ = α2
s(M)σ̂B ⊗ q(M) ⊗ q(M) + . . .

+ α3
s(M)K ⊗ q(M) ⊗ q(M)



• The ln M2

p2

T

factor in the second line causes this contribution to be nega-

tive for M < pT and to be positive once M exceeds pT

σ = . . .

+ 2bα3
s(M) ln

M2

p2
T

σ̂B ⊗ q(M) ⊗ q(M) + . . .

• For the third line, recall that the convolution with the splitting function
gives a negative contribution in the region of interest since the slope of
the scaling violations is negative there

σ = + . . .

+ 2
α3

s(M)

2π
ln

p2
T

M2
Pqq ⊗ q(M) ⊗ q(M) + . . .



• Thus, for M < pT the third line is negative and it turns positive for
M > pT

• The explicit logs in lines 2 and 3 thus cause the NLO curve to be below
the LO curve if µ = M < pT and to be above it if the scales are greater
than pT , as shown in the plot

0 0.5 1 1.5 2 2.5
µ/ET

100

1000

dσ
/d

yd
E

T
 (
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/G
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)

p p
−
 −−> jet + X
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LO
NLO

• Note that this is an approximate argument and that there can be ex-
ceptions to it caused, for example by new channels opening in higher
order

• The exact crossover point depends on the relative sizes of the contribu-
tions from each of the four lines



“Which scale is best?”

There are various methods for guestimating the choice of scale in NLO pro-
cesses. Here are some examples:

• Principle of Minimal Sensitivity

– An exact calculation would have no scale dependence - perturbative
calculations are incomplete

– The PMS scheme enforces ∂σ
∂µ

= ∂σ
∂M

= 0

– In my example the full dependence on µ was displayed so one can
solve for the value of µ which makes the derivative zero - not the
same as having it be zero to O(α3

s)

– Similarly, can numerically solve for the value of M which forces
∂σ
∂M

to be zero

– For each kinematic point the plot of µ versus M gives a saddle
point structure and one can read off the correct values for both
scales



• Could also use a “1-scale” PMS scheme - then one can read off the
optimal scale from plots like the one shown previously which suggested
µ = M ≈ pT /2

• Method of Fastest Apparent Convergence

– Choose the scale such that NLO and LO calculations are equal

– All the higher order corrections are effectively absorbed into the
logs of the scales

There is no unique prescription for choosing the scales

• When the higher order corrections are under control, both schemes give
similar results of the order of the single large scale in the process

• In the plot shown earlier both schemes would suggest the choice of pT /2
which is close to the “natural” choice of pT

The ratio of the NLO and LO curves is just the K factor. It is obviously
very scale dependent. For the FAC scheme the K factor is defined to be
1!



Comments

Does the scale dependence always work the way I have described? No!

• A new channel can open up in the next order that has no counterpart
at the Born level - it is a new contribution, not just a correction to the
LO result

• Example: Heavy quark production

LO: qq̄ → QQ̄ gg → QQ̄

• Here the heavy quarks appear on opposite sides of the events - the heavy
quark jets balance in pT

NLO gg → QQ̄g + . . .

Here is a new configuration where a pair of heavy quarks recoils against
a gluon jet

• This provides a large contribution whose scale dependence is not com-
pensated by an LO contribution

Lesson: look at the subprocesses involved. If a new channel opens up, the next
order corrections may not reduce the scale dependence.



More complicated observables

For the single particle cross section it is easy to calculate both the pT and y
distributions. However, there are other interesting observables

• Jets - one needs to be able to form jets of according to some jet definition
which may not be easy to express in terms of partonic variables

• One might wish to examine joint distributions involving more than one
particle

• Classic example - one might wish to calculate or measure the angular
distribution of the scattered partons in their center of mass frame. With
2 → 3 subprocesses, how do you define this?

• One might wish to place cuts (kinematic constraints) on the final state
particles. Sometimes this is easy (cuts in pT or y)

• Sometimes the Jacobian between the experimentally observed variables
and the parton level variables can not be easily calculated

• Suggests using a Monte Carlo formalism so that the cuts can be made
on an event-by-event basis

• But what about the divergent terms?



Next-to-Leading-Order Calculations – Recap

• Ingredients

– 2 → 2 O(α2
s) subprocesses, e.g., qq → qq, qg → qg, and gg → gg

– O(α3
s) one-loop corrections to 2 → 2 subprocesses

– 2 → 3 subprocesses such as qq → qqg, etc

• O(α3
s) terms have singular regions corresponding to soft gluons and/or

collinear partons

• Need a method to handle such singularities

• Observables involve many kinematic variables since we are interested in
going beyond the single particle case

• Jacobians from parton variables to hadron variables are complex

• Suggests using a Monte Carlo approach, but one which allows the sin-
gularities to be properly treated



Two basic techniques

1. Phase space slicing

2. Dipole subtraction

• The ideas behind both are similar - the singular regions are at the edge
of the 3-body phase space where the configurations look that those of
2-body phase space

• Integrate over the singular regions and combine the result with the 2-
body singular terms

• factorize the collinear singularities associated with PDFs and FFs as
before

• The result will be a set of finite expressions for the 2-body subprocesses
and a second set for the 3-body processes

• These can be added together in appropriate histograms for various ob-
servables

• Modern applications allow such NLO calculations to be embedded in
Monte Carlo shower programs



• Such programs will be covered in later lectures in this school

• See Appendix III for more on phase space slicing



Conclusions

• In these four lectures I’ve shown how the parton model emerged to pro-
vide a description of lepton-lepton, lepton-hadron, and hadron-hadron
processes

• QCD in the leading-logarithm approximation modifies the parton model
with the introduction of the running coupling αs and scale violating
PDFs and FFs that satisfy the appropriate DGLAP Equations

• Furthermore, QCD specifies how to calculate NLO corrections and be-
yond

• Later lectures in this Summer School will build on the foundation de-
scribed in these lectures and show how QCD provides an excellent de-
scription of high energy large momentum transfer processes



Appendix I: Two-body QCD Subprocesses

Subprocess dσ̂
dt̂

(in units of πα2
s/ŝ2)

qq′ → qq′ 4
9

ŝ2+û2

t̂2

qq → qq 4
9

h

ŝ2+û2

t̂2
+ ŝ2+t̂2

û2

i

− 8
27

ŝ2

t̂û

qq̄ → q′q̄′ 4
9

t̂2+û2

ŝ2

qq̄ → qq̄ 4
9

h

ŝ2+û2

t̂2
+ û2+t̂2

ŝ2

i

− 8
27

û2

ŝt̂

gq → gq − 4
9

ˆ

ŝ
û

+ û
ŝ

˜

+ ŝ2+û2

t̂2

qq̄ → gg 32
27

h

t̂
û

+ û
t̂

i

− 8
3

t̂2+û2

ŝ2

gg → qq̄ 1
6

h

t̂
û

+ û
t̂

i

− 3
8

t̂2+û2

ŝ2

gg → gg 9
2

h

3 − t̂û
ŝ2 − ŝû

t̂2
− ŝt̂

û2

i

Subprocess dσ̂
dt̂

(in units of πααs/ŝ2)

gq → γq − 1
3
e2

q

ˆ

û
ŝ

+ ŝ
û

˜

qq̄ → γg 8
9
e2

q

h

û
t̂

+ t̂
û

i



Appendix II - Photon fragmentation functions

• Rewrite the evolution equations by taking moments of both sides using
the following definitions:

Mn
q =

Z 1

0

dx xn−1 Dγ/q(x)

Mn
g =

Z 1

0

dx xn−1 Dγ/g(x)

An
ij =

1

2πb

Z 1

0

dx xn−1 Pij(x)

an =
α

2π

Z 1

0

dx xn−1 Pγq

αs(t) =
1

bt

where t = ln(Q2/Λ2).



• The evolution equations can now be written as

dMn
q

dt
= e2

q an +
1

t
[An

qq Mn
q + An

gq Mn
g ]

dMn
g

dt
=

1

t

"

X

q

An
qgMn

q + An
ggMn

g

#

• If each of the moments is proportional to t, the t dependence drops out
of the equations and they may be solved algebraically



• The asymptotic solution is

Mn
q = an

„

e2
q − 5/18

1 − An
qq

+
5

18

1 − An
gg

F n

«

t

Mn
g =

5f

9
an An

gg

F n
t

F n = 1 − AN
qq − An

gg + An
qqA

n
gg − 2fAn

qgAn
gq

where f is the number of flavors

• Note how the moments are each proportional to t

• Compare to the case where Pqγ = 0 where the moments are of the form

Mn(t0)

„

t

t0

«An

• Note that one can add any solution of the homogeneous evolution equa-
tions to this asymptotic solution



Appendix III – Phase Space Slicing Monte Carlo

• See B. Harris and J.F. Owens hep-ph/0102128

• Work in n=4-2ǫ dimensions using dimensional regularization

• Notation:

– At the parton level: p1 + p2 → p3 + p4 + p5

– Let sij = (pi + pj)
2 and tij = (pi − pj)

2

• Partition 2 → 3 phase space into three regions

1. Soft: gluon energy Eg < δs
√

s12/2

2. Collinear: sij or |tij | < δcs12

3. Finite: everything else



• In soft region use the soft gluon approximation to generate a simple
expression for the squared matrix element which can be integrated by
hand

• In the collinear region use the leading pole approximation to generate a
simple expression which can be integrated by hand.

• Resulting expressions have explicit poles from soft and collinear singu-
larities

• Factorize initial and final state mass singularities and absorb into the
fragmentation and distribution functions

• Add soft and collinear integrated results to the 2 → 2 contributions –
singularities cancel

• Generate finite region contributions in 4 dimensions using usual Monte
Carlo techniques

• End results is a set of two-body weights and a set of three-body weights.

• Both are finite and both depend on the cutoffs δs and δc

• Cutoff dependence cancels for sufficiently small cutoffs when the two
sets of weights are added at the histogramming stage



Simple Example

Consider the integral of a quantity which has a pole at x = 0. Using dimen-
sional regularization, one has an integral of the form

F =

Z 1

0

dx x−1−ǫf(x).

For x very near zero, approximate f(x) by f(0) yielding

F ≈ f(0)

Z δ

0

dxx−1−ǫ +

Z 1

δ

dx x−1−ǫf(x)

The first integral can be done analytically. The second is finite and can be
evaluated with ǫ = 0.

F ≈ −f(0)

ǫ
+ f(0) log δ +

Z 1

δ

dx
f(x)

x
.

The second integral can be done numerically. The dependence on the cutoff δ
cancels for sufficiently small values of δ



Another Simple Example

Consider the example from Lecture I of the total cross section for e+e− →
hadrons. The complete first order QCD correction is simply αs

π
.

• Phase space can be written in terms of two variables. It is convenient
to choose these to be s35 and s45.

s45

s35

S

C

C

m

m

δcs12

δcs12δss12

δss12

• This sketch shows the soft, hard collinear, and finite regions of phase
space



• The 1-loop virtual corrections lie at the origin in the lower left and are included
in the soft region

• In the soft region the squared matrix element takes on a relatively simple form
which may be integrated to yield

dσS = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
r

s12

«ǫ– „

As
2

ǫ2
+

As
1

ǫ
+ As

0

«

with

As
2 = 2CF

As
1 = −4CF ln δs

As
0 = 4CF ln2 δs

• The final state hard collinear contribution can be simplified in the collinear
region and easily integrated to yield

dσq→qg
HC = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
r

s12

«ǫ– „

Aq→qg
1

ǫ
+ Aq→qg

0

«



with

Aq→qg
1 = CF (3/2 + 2 ln δs)

Aq→qg
0 = CF

ˆ

7/2 − π2/3 − ln2 δs − ln δc (3/2 + 2 ln δs)
˜

• The virtual contribution is given by

dσV = dσ0

»

αs

2π

Γ(1 − ǫ)

Γ(1 − 2ǫ)

„

4πµ2
r

s12

«ǫ– „

Av
2

ǫ2
+

Av
1

ǫ
+ Av

0

«

with

Av
2 = −2CF

Av
1 = −3CF

Av
0 = −2CF (4 − π2/3)

• The full two-body weight is given by the sum dσS+dσV+2dσq→qg
HC . The factor

of two occurs since there are two quark legs, either of which can emit a gluon.



• At this point we have a finite result since As
2 + Av

2 and As
1 + Av

1 + 2Aq→qg
1

both separately add up to zero

• The finite two-body weight is given by

σ(2) =

Z

dσ0

“ αs

2π

”

`

As
0 + Av

0 + 2Aq→qg
0

´

while the three-body contribution is given by

σ(3) = σHC =
1

2s12

Z

HC

X

|M3|
2dPS3

• The final result is shown in the following figure as a positive three-body weight,
a negative two-body weight and the finite sum



• The results are plotted versus δs with δc = δs/300

• The solid horizontal line is the exact result

• The method converges nicely, provided that the cut-offs are small enough

• Note: the small triangular regions denoted by m in the phase space figure are
not included in the calculation. Their contribution can be included, but it is
of order δc/δs and is negligible provided that δc << δs


