Parton Distribution Functions - lecture 1 -

Alberto Accardi Hampton U. and Jefferson Lab

CTEQ summer school 2013

Plan of the lectures

Lecture 1 – Global PDF fits

- Why parton distributions?
- Global PDF fits
- Observables
- The art of fitting

Lecture 2 – PDF uncertainties and applications

- Statistical and theretical uncertainties
- Modern PDF sets
- LHC applications
- Large-x connections

Resources

Articles

- J.Rojo, "Parton distributions in the Higgs boson era ", arXiv:1305.3476
- A.Accardi, "The CJ12 parton distribution functions", DIS2013 proceedings (see school's website)

Reviews

- P.Jimenez-Delgado, W.Melnitchouk, J.F.Owens,
 "Momentum and helicity distributions in the nucleon", arXiv:1306.6515
- Forte, Watt, "Progress in partonic structure of proton", arXiv:1301.6754

Lectures

- J.F. Owens' lectures, "Intro to parton model and pQCD", 2013 summer school
- J.F. Owens, "PDF and global fitting", 2007 summer school
- W.K.Tung, "pQCD and parton structure of the nucleon", CTEQ website

Resources

Textbooks (mostly on DIS...)

- Halzen, Martin, "Quarks and leptons," John Wiley and sons, 1984
- Lenz et al. (Eds.), "Lectures on QCD. Applications," Springer, 1997
 - esp. lectures by Levy, Rith, Jaffe
- Devenish, Cooper-Sarkar, "Deep Inelastic Scattering," Oxford U.P., 2004
- Feynman, "Photon-hadron interactions," Addison Wesley, 1972

...and a special thank to Jeff Owens, who has been teaching me this business...

Lecture 1 - Global PDF fits

Why parton distributions?

High-energy, hadronic and nuclear physics

Global PDF fits

- The basic ideas

Observables

Sensitivity to specific quarks and gluons

Fitting

- A selection of fine details
- PDF uncertainties: experimental, theoretical
- Some recent PDFs

Why parton distributions?

CTEQ 2013 – Lecture 1

Fundamental description of the structure of hadrons

Nucleons made of 3 quarks

7

Fundamental description of the structure of hadrons

- Nucleons made of 3 confined quarks

Fundamental description of the structure of hadrons

- Nucleons made of 3 confined quarks, and sea quarks and gluons

Non-perturbative regime – dynamics of quark confinement

- SU(6) spin-flavor symmetry: $d/u \xrightarrow[x \to 1]{} 1/2$
- Broken SU(6) : hard gluon exchange: $d/u \xrightarrow[x \to 1]{} 1/5$ Broken SU(6) : scalar diquark dominance: $d/u \xrightarrow[x \to 1]{} 0$

Perturbative regime – gluon saturation

Essential in perturbative calculations of hard scattering processes

- Factorization & universality

[J.Owens' lectures]

For example, at the LHC

- Key ingredient for Higgs discovery
- But PDF uncertainties fundamentally limit cross section calculations

Higgs cross section uncertainty

- Hence limitation on measurement of Higgs coupling
- Cause: spread of PDF fits at medium-low x

New heavy particle searches

– Large statistical uncertainties on large-*x* PDFs

Gluino searches

accardi@jlab.org

- Large statistical uncertainties in high-x gluons

13

 $x \approx \frac{M}{\sqrt{s}} e^y$

W' and Z' total cross sections

- Large statistical and theoretical uncertainties on high-x d quarks
- In the figure, "nuclear uncertainties" only
- PDF uncertainties are comparable

PDFs and nuclear physics

Precise PDFs from proton target data

 \rightarrow baseline for "nuclear PDFs"

Compare proton target data with theory-corrected nuclear target data

 \rightarrow test of nuclear theory models

These lectures' common thread

Global PDF fits

CTEQ 2013 – Lecture 1

Fundamentals

pQCD factorization

Parton Distribution Fns Partonic cross section (non-perturbative)

(calculable in pQCD)

Universality

- PDFs can be used to compute "any" hard scattering process
- In fact, the proof is not general but needs to be done process-by-process

Fundamentals

DGLAP evolution:

- you only need to know the PDFs at one scale Q_0

$$\frac{\partial q(x,t)}{\partial t} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{qq}(y)q(\frac{x}{y},t) + P_{qg}(y)g(\frac{x}{y},t) \right]$$
$$\frac{\partial g(x,t)}{\partial t} = \frac{\alpha_s(t)}{2\pi} \int_x^1 \frac{dy}{y} \left[P_{gq}(y)q(\frac{x}{y},t) + P_{gg}(y)g(\frac{x}{y},t) \right]$$

- Coupled set of equations whose solutions show how the PDFs change with variations in the scale Q
- Splitting functions have perturbative expansions α_s

$$t = \ln M_f^2 / \mu^2 \qquad P_{ij}(y) = P_{ij}^0(y) + \frac{\alpha_s}{2\pi} P_{ij}^1(y) + \cdots$$

Fundamentals

Sum rules

- Charge conservation

$$2 = \int_{0}^{1} dx \left[u(x) - \bar{u}(x) \right] = \int_{0}^{1} dx \left[d(x) - \bar{d}(x) \right] = \int_{0}^{1} dx \left[d(x) - \bar{d}(x) \right]$$
$$= d_{V}(x)$$
$$0 = \int_{0}^{1} dx \left[s(x) - \bar{s}(x) \right] = \int_{0}^{1} dx \left[c(x) - \bar{c}(x) \right]$$
NOTE: does not mean $c(x) = \bar{c}(x)$!

$$1 = \sum_{i=q,g} \int_0^1 dx \, x \, f_i(x)$$

Useful PDF properties - 1

- The gluon dominates at low x and falls steeply as x increases
- Symmetric sea quarks: anti-q and q comparable at low x (and anti-q fall off in x even faster than the gluons)
- \Box u and d dominate at large x with u > d; at low x, $u \approx d$

Useful PDF properties - 2

 \Box Gluon radiation – QCD evolution in Q^2

- Gluon radiation causes parton momentum loss:
 - At large *x*, quarks and gluons shift to the left: PDFs get steeper
- Gluons create q, anti-q pairs, and g, g pairs:
 - At small x, quark and gluon PDFs increase, get steeper

Global PDF fits

Problem:

 we need a set of PDFs in order to calculate a particular hard-scattering process

Solution:

- Choose a data set for a set of different hard scattering processes
- Generate PDFs using a parametrized functional form at initial scale Q_0 ; evolve them from Q_0 to any Q using DGLAP evolution equations
- Use the PDF to compute the chosen hard scatterings
- Repeatedly vary the parameters and evolve the PDFs again
- Obtain an optimal fit to a set of data.

Modern PDF sets: CTEQ-TEA (CT10), CTEQ-JLab (CJ12), MSTW2008, NNPDF2.1, ABM11, JR09, HERAPDF1.5

Global PDF fits

data theory • DIS: p, d pQCD at NLO • p+p(pbar) \rightarrow l⁺l⁻, W[±], Z Factorization & universality • Large-*x*, low-*Q*², nuclear corr. • p+p(pbar) \rightarrow jets, γ +jet fits • Parametrize PDF at Q_0 , evolve to Q• Minimize χ^2 **PDFs F**₂(n) W, Z / W', Z', Higgs (or any other "hard" observable) 24 accardi@jlab.org CIEQ 2013 - Lecture 1

Global PDF fits as a tool

Test new theoretical ideas

- *e.g.*, are sea-quarks asymmetric? Is there any "intrinsic" charm?

Phenomenology explorations

e.g., can CDF / HERA "excesses" be at all due to glue/quark underestimate at large x? Are there new particles at the LHC?

Test / constrain models

- *e.g.*, by extrapolating *d/u* at *x=1*
- Possibly, constrain nuclear corrections

Limitations

- existing data
- experimental uncertainty
- theoretical uncertainty

As a user you should be aware of these

The art and science of global fitting - key points

- Choice of observables and data sets
- Choice of kinematic cuts to perform calculations with confidence
- \Box Parametrized functional form for input PDFs at Q_0
- Definition of "optimal fit"
 - typically by a suitable choice of χ^2 function
- Truncation of the perturbative series:
 - LO; NLO (state-of-the-art)
 - NNLO (fully available for DIS, DY partially for other processes)
- Treatment of errors
 - Experimental: statistical and systematic
 - Theoretical

Observables

CTEQ 2013 – Lecture 1

Observables

- Each observables involves a different linear combination, or product of PDFs: a diverse enough set of observables is needed for parton flavor separation
 - Some redundancy needed to cross-check data sets
- Typical data sets used in global fits
 - Inclusive DIS $\ell^{\pm} + p, \ \ell^{-} + D^{*}$
 - Vector boson production in p+p, p+D W^{\pm} , Z^0 , DY lepton pairs
 - Hadronic jets, p+p or p+pbar: inclusive jets, $\gamma + jet$
 - neutrino DIS: $u + A^*$

* use of nuclear targets require consideration of nuclear corrections to measure the proton / neutron PDFs; typically these induce large theoretical uncertainty, the more so for heavy nuclei. Fixed target DY is so far an exception: the probed x values in the nucleus are small enough to neglect corrections.

Need to establish a strategy to get to the particular PDFs one is interested in

Different groups make different choices

$$\ell^{\pm} + p \rightarrow \ell^{\pm} + X \qquad \text{NC: gamma, } Z$$

$$\ell^{+}(\ell^{-}) + p \rightarrow \bar{\nu}(\nu) + X$$

$$\nu(\bar{\nu}) + A \rightarrow \ell^{-}(\ell^{+}) + X$$

$$CC: W^{+}, W^{-}$$

 $\frac{d\sigma^{NC}}{dxdQ^2} \propto Y_+ F_2^{NC}(x, Q^2) \mp Y_- x F_3^{NC}(x, Q^2) - y^2 F_L^{NC}(x, Q^2)$ $Q^2 = -p_{\gamma, Z, W}^2 \quad x = \frac{2p \cdot q_{\gamma, Z, W}}{Q^2} \quad y = \frac{q_{\gamma, Z, W} \cdot p}{k \cdot p}$

Electromagnetic probe at small Q2, electroweak couplings at large Q2

$$F_2^{NC} \propto F_2^{\gamma} + (g_V \pm \lambda g_A) \frac{G_F M_Z^2}{4\pi \alpha} \frac{Q^2}{Q^2 + M_Z^2} F_2^{\gamma Z}$$
$$xF_3^{NC} \propto (g_V \pm \lambda g_A) \frac{Q^2}{Q^2 + M_Z^2} xF_3^{\gamma Z}$$

accardi@jlab.org

CTEQ 2013 – Lecture 1

Leading Order DIS is a direct probe of quark and antiquarks

- **Proton target** at $Q^2 \ll M_Z^2$ $F_2^{\gamma}(x,Q^2) \propto x \sum_i e_i^2 \left(q_i(x,Q^2) + \bar{q}_i(x,Q^2) \right)$
 - Each flavor is weighted by its charge squared
 - Gluon does not enter at LO (and $F_1 = 0$)
 - Quarks and antiquarks enter togther

Deuterium target = (interacting) proton + neutron

 $F_2^{\gamma}(x,Q^2) \propto x \sum_i (q_i(x,Q^2) + \bar{q}_i(x,Q^2))$

- Different combination, allows d vs. u quark separation
- Assumes isospin symmetry, up= dn and dp= un, no other nuclear fx
- But corrections for binding and Fermi motion not small at x > 0.3
 accardi@jlab.org
 CTEQ 2013 Lecture 1

Neutrino scattering: measure both F₂ and F₃

$$F_2^{\nu}(x,Q^2) = x \sum_i e_i^2 \left(q_i(x,Q^2) + \bar{q}_i(x,Q^2) \right)$$
$$xF_3^{\nu}(x,Q^2) = x \sum_i e_i^2 \left(q_i(x,Q^2) - \bar{q}_i(x,Q^2) \right)$$

- Separation of quarks and antiquarks
- BUT: few data on proton targets (WA21/22)
- Needs heavy nuclear targets, theoretical corrections for nuclear effects

Same can be accomplished in **CC lepton DIS on protons** (e.g. at HERA)

$$F_2^{W^+} = x(\bar{u} + d + s + \bar{c})$$
$$F_2^{W^-} = x(\bar{u} - d - s + \bar{c})$$

accardi@jlab.org

CTEQ 2013 – Lecture 1

 $\Box \gamma$ -Z interference allows further quark separation

 $xF_3^{\gamma Z} = x\sum_i D_i \left(q_i - \bar{q}_i\right)$ – Can be measured by comparing positive vs. negative helicity leptons

 $F_2^{\gamma Z} = x \sum_i B_i \left(q_i + \bar{q}_i \right)$

and positrons vs. electrons

In principle DIS on protons allows full quark flavor separation, but:

- Data scarce for more "exotic" structure functions
- Would require either a neutrino factory (far in the future)
 or an Electron-Ion Collider EIC or LHeC (possibly in the 2020's)

We also need nuclear targets and/or hadron-hadron scattering

Lepton pair production in hadronic collisions

$$p + p(\bar{p}) \to \gamma, Z, W \to \ell + \bar{\ell} + X$$
$$Q^2 = (p_\ell + p_{\bar{\ell}})^2$$
$$x_{1,2} = \frac{Q}{\sqrt{s}} \exp(\pm y)$$

$$\gamma \qquad \frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}y} = \frac{4\pi\alpha^2}{9Q^2s} \sum_i e_i^2 L^{ii}(x_1, x_2)$$
$$W \qquad \frac{\mathrm{d}\sigma}{\mathrm{d}y} = \frac{\pi G_F M_V^2 \sqrt{2}}{3s} \sum_{i,j} |V_{ij}^{\mathrm{CKM}}| L^{ij}(x_1, x_2)$$
$$Z \qquad \frac{\mathrm{d}\sigma}{\mathrm{d}y} = \frac{\pi G_F M_V^2 \sqrt{2}}{3s} \sum_i \left(V_i^2 + A_i^2\right) L^{ii}(x_1, x_2)$$

accardi@jlab.org

CTEQ 2013 – Lecture 1

"Drell-Yan" pair production

 \Box Away from Z,W resonance \rightarrow mediated by photons

 \Box At large (but not too much) y, and low Q^2

 $\sigma^{pp} \propto 4u(x_1)\bar{u}(x_2) + d(x_1)\bar{d}(x_2) + \dots$ $\sigma^{pD} \propto 4\left[4u(x_1) + d(x_1)\right] \left[\bar{u}(x_2) + \bar{d}(x_1)\right] + \dots$

– σ^{pD}/σ^{pp} sensitive to the ${ar d}/{ar u}$ ratio

 \Box At large y (large x_1 , small x_2) same combinations as DIS on p and D

No new information

Large Q² range at LHC: additional handles available

- Evolution at moderate x different for strange and light quarks
- at very large Q^2 charm quarks not negligible

accardi@jlab.org

CTEQ 2013 – Lecture 1

W,Z production

 $\Box Z \rightarrow l^+ + l^-$

- Z kinematics reconstructed from charged lepton pair
- Weak coupling helps with flavor separation

 $\begin{array}{l} \blacksquare W \rightarrow l + v \\ & d\sigma^{W^+}/dy \approx u(x_1)d(x_2) + \bar{d}(x_2)\bar{u}(x_2) + \dots \\ & d\sigma^{W^-}/dy \approx u(x_1)d(x_2) + \bar{d}(x_2)\bar{u}(x_2) + \dots \end{array} \\ \text{At large } y, \textit{ i.e., small } x_2 \colon d\sigma^{W^-}/d\sigma^{W^+} \approx d/u \\ & \text{(Alternatively, charge asymmetry } (W^+ - W^-)/(W^+ + W^-) \text{)} \end{array}$

- But: missing energy, reconstruction of W kinematics is a challenge
- Lepton decay limits reach to x < 0.5

Hadronic production of jets

- \Box The qq subprocesses do dominate the high-E_T region
 - But enough contribution from the gluons that data can be used to constrain the large-*x* gluon behavior
 - Combined with the low-x data and the momentum sum rule one has strong constraints on the gluon distribution

Gluons from DIS

- 2 methods
 - Scaling violations in F_2 $G(x) \approx \frac{d}{d \log Q^2} F_2(x, Q^2)$

- Longitudinal structure function F_{I}
 - $F_L(x) = \gamma F_2 2xF_1(x) = 0$ at LO

$$\gamma = \sqrt{1 + 4x^2 M^2/Q^2}$$

- Gluons subdominant in F_2
- But same order as quarks in F_{L}

accardi@jlab.org

CTEQ 2013 – Lecture 1

Gluons from DIS

Caveats

- Experimentally separating F2 and FL requires measurements at different Vs
- Typically lower statistics than for F2
- Systematic error analysis tricky

$$\frac{d\sigma^{NC}}{dxdQ^2} \propto F_2^{NC}(x,Q^2) - \frac{y^2}{1 + (1-y)^2} F_L^{NC}(x,Q^2)$$
$$y = Q^2/(xs)$$

In practice global fits can directly fit the cross section

- effective F2 / FL separation

Data coverage in x and Q - NNPDF 2.0

NNPDF2.0 dataset

Data coverage in x and Q - CJ12 (by category)

The art of fitting

CTEQ 2013 – Lecture 1

Parametrization at Q_0

In the beginning... first fits based on

$$f_i(x) = N_i x^{\alpha_i} (1-x)^{\beta_i}$$

 \square Estimate β by counting rules: $\beta = 2n_s - 1$ with $n_s =$ spectator quarks no.

- Valence quarks (qqq): $n_s = 2$, $\beta = 3$
- Gluons (qqqg): $n_s = 3$, $\beta = 5$
- Antiquarks $(qqqq\bar{q}): n_s = 4, \beta = 7$
- \square Estimate α from Regge arguments, behavior of gluon radiation:
 - Gluons and antiquarks: $\alpha \approx -1$
 - Valence quarks: $\alpha \approx -1/2$
- Overall normalization fixed by sum rules (momentum, charge conservation, ...)

Parametrization at Q_0

- With the large variety of precise data available today, needs more flexibility: multiply by a suitable function of x.
- Examples for u, d quarks and gluons
 - **CTEQ6.1** $u,d,g: N x^{a_1} (1-x)^{a_2} e^{a_3 x} \left[1+e^{a_4 x}\right]^{a_5}$
 - MSTW2008 u,d: $N x^{a_1} (1-x)^{a_2} \left[1 + a_3 \sqrt{x} + a_4 x \right]$

g:
$$N x^{a_1} (1-x)^{a_2} \left[1 + a_3 \sqrt{x} + a_4 x \right] + N' x^{b_1} (1-x)^{b_2}$$

Caveats:

- Choice of functional form or no. of free parameters can bias the results
- Theoretical prejudices often built-in (*e.g.*, CTEQ gluons can't go negative, d/u ratio forced to either 0 or ∞ as $x \rightarrow 1$)
- NNPDF: obtains "unbiased fits" by a neural-network parametrization, using a very large linear basis of functional forms

Parametrization at Q_0

Other points to keep in mind

- One should increase the number of parameters and the flexibility of the parametrization until the data are well described
- Adding more parameters past that point simply results in ambiguities, false minima, unconstrained parameters, etc.
 - But in Neural Network based fits this is turned into a virtue!
- May have to make some arbitrary decisions on parameter values that are not well constrained by the data

Needs a numerical measure of how good a fit is

- choose a suitable χ^2 function
- vary parameters iteratively until χ^2 minimized
- Simplest choice

$$\chi^2 = \sum_i \frac{(D_i - T_i)^2}{\sigma_i^2}$$

D = exp.data

 σ = uncorrelated exp. errors

T = calculation

- OK for 1 data set
- And if data is statistically limited (errors not "too small")
- But nowadays we have
 - Several data sets for many observables
 - Correlated and uncorrelated errors
 - Overall normalization errors (due to, say, luminosity uncertainties)

Normalization errors

- assign a χ^2 penalty for normalization errors (different choices possible)
- Fit optimal normalization f_{N} , compare to quoted one

$$\chi^{2} = \sum_{i} \frac{(f_{N}D_{i} - T_{i})^{2}}{\sigma_{i}^{2}} + \left[\frac{1 - f_{N}}{\sigma_{N}^{norm}}\right]^{2} \qquad \text{MSTW use a}$$
power 4

Point-to-point systematic errors

$$\chi^{2} = \sum_{i} \frac{(D_{i} - \sum_{j=1}^{k} \beta_{ij} s_{j} - T_{i})^{2}}{\sigma_{i}^{2}} + \sum_{j=1}^{k} s_{j}^{2}$$

- The data points D_i are shifted by an amount reflecting the systematic errors β with the shifts given the the s_i parameters
- There is a quadratic penalty term for non-zero values of the shifts s
- The minimum w.r.t. s_i are obtained analytically

Minimization of biases in treatment of normalizations

- treat all errors on the same footing

the covariance matrix for each experiment is computed from the knowledge of statistical, systematic and normalization uncertainties as follows:

$$(\operatorname{cov}_{t_0})_{IJ} = \left(\sum_{l=1}^{N_c} \sigma_{I,l} \sigma_{J,l} + \delta_{IJ} \sigma_{I,s}^2\right) F_I F_J + \left(\sum_{n=1}^{N_a} \sigma_{I,n} \sigma_{J,n} + \sum_{n=1}^{N_r} \sigma_{I,n} \sigma_{J,n}\right) F_I^{(0)} F_J^{(0)} , \quad (1)$$

where I and J run over the experimental points, F_I and F_J are the measured central values for the observables I and J, and $F_I^{(0)}$, $F_J^{(0)}$ are the corresponding observables as determined from some previous fit.

[Ball et al., Nucl.Phys.B838:136,2010]

Want to emphasize a given data set? use

$$\chi^2 = \sum_k w_k \,\chi_k^2 + \sum_k w_{N,k} \left[\frac{1-f_N}{\sigma_N^{norm}}\right]^2$$

– the weights w_k and $w_{N,k}$ can be chosen to emphasize the contribution of a given experiment or normalization to the total χ^2

accardi@jlab.org

CTEQ 2013 – Lecture 1

Neural Network based fits [Ball et al., Nucl.Phys.B838:136,2010]

- Too many parameters for conventional χ^2 minimization (would fit everything, including statistical fluctuation...)
- Solution:
 - Generate replicas of data set by randomly varying central values within their experimental uncertainties
 - Divide these pseudo-data sets into "training" and "control"
 - Reduce χ^2 in training set until the control χ^2 starts to increase
- Method can in principle be used also in conventional global fits

Order of perturbation theory

- Lowest order in α_{s} (LO) easy to do, but
 - Hard scattering subprocesses do not depend on the factorization scale
 - May be missing large higher order corrections
- Next-to-leading-order (NLO) more complicated, but
 - Less dependent on scale choices since the PDFs and hard scattering subprocesses both contain scale dependences which (partially) cancel
 - Some higher order corrections are now included
- Next-to-next-to-leading-order (NNLO) better, but
 - Splitting functions are known so NNLO evolution can be done
 - Some hard scattering subprocesses are known to NNLO (DIS, DY) but not high-ET jets (yet), and many other important for, say, LHC
- NLO remains the state-of-the-art, but full NNLO analyses are coming

Order of perturbation theory

LO PDFs can be interpreted as probability distribution in x

$$q_{LO}(x) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \langle p|\overline{\psi}(z^-n)\frac{\gamma^+}{2}\psi(0)|p\rangle$$

At NLO, PDFs are defined to absorb IR and collinear divergences in the hard-scattering diagrams: they are no longer probabilities.

 $q_{\scriptscriptstyle NLO} = q_{\scriptscriptstyle LO} + \{\text{divergences}\}$

- Then, get rid of infinities by extracting PDFs from data (in this sense it is analogous to UV renormalization)
- Note: a "divergence" is defined differently in different subtraction schemes (most commonly "modified minimal subtraction" MS, or DIS)

NLO PDFs are not "better" than LO PDFs – they are different objects:

- you should use LO PDFs in LO calculations, NLO PDFs in NLO calcul'ns
- ...and the same subtraction scheme, choice of scale

PDF uncertainties - preview of Lecture 2

Experimental:

- uncertainties in measured data propagate into the fitted PDFs
- can be quantified adapting statistical methods: "PDF error bands"
- These PDF errors need to be interpreted with care

Theoretical:

- Several sources, cannot be quantified easily
 - Choice of data sets, kinematic cuts
 - Parametrization bias
 - Choice of χ^2 function
 - Truncation of pQCD series, heavy-quark scheme, scale choice
 - Higher-twist, target mass effects
 - Nuclear corrections

Lecture 1 - recap

data theory • DIS: p, d pQCD at NLO • p+p(pbar) \rightarrow l⁺l⁻, W[±], Z Factorization & universality • Large-*x*, low-*Q*², nuclear corr. • p+p(pbar) \rightarrow jets, γ +jet fits • Parametrize PDF at Q_0 , evolve to Q• Minimize χ^2 **PDFs F**₂(n) W, Z / W', Z', Higgs (or any other "hard" observable) 53 accardi@jlab.org $c_1 E Q 2013 - Lecture 1$