Sarah Demers Yale University

DAY 2: TRIGGER AND MEASUREMENTS **DOUBLING AS** SEARCHES

TRIGGER PHILOSOPHY?

Standard Model Measurements Searches for physics beyond the Standard Model

How do experiments support a wide array of measurements and searches?

TRIGGER PHILOSOPHY?

How do experiments support a wide array of measurements and searches?

WE THROW OUT THE VAST MAJORITY OF OUR DATA . . .

4

AND PEOPLE ARE PRETTY CREATIVE!

HOW TO BALANCE COMPETING NEEDS?

TRIGGER

ATLAS: 3 Levels

Level 1 <2.5 µs 40 MHz 40 MHz L1 Accept 75 (100) kH: 75 (100) kHz Regions Of Interest 20 kHz ~40 ms ~40 ms 50 kHz ~45 ms Level 2 RO ~ 3 kHz Reque L2 Accept 3.5 (2.0) kHz ~4 sec 5.5 (3.7) kHz ~0.6 s Event Filter EF Accept ~200 Hz High Level Trigger ~ 200 Hz 350 Hz 400 Hz

CMS: 2 Levels

TRIGGER PHILOSOPHY

Physics-object based

- electrons, muons, jets, b-jets, taus,
- SUM ET, MET
- Reject as early as possible, leaving more time for more complicated decisions
- Need to be able to measure trigger efficiency
 - back-up triggers required?
- Result, ~500 distinct selections at the trigger level

TRIGGER MENU JUGGLING: ATLAS ORGANIZATION

Physics Groups B Physics Top Standard Model Higgs SUSY Exotics

Heavy lons Monte Carlo

<u>Combined Performance</u> e/gamma Flavour tagging Jet/MET Tau Muon Inner Tracking

Note: the Exotics group has an "other" category...

SUSY: this is just a representative selection...

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: LHCP 2013

Inclusive

3^{°d} gen.

3rd gen. squarks

EW

Long-lived

	Model	e,	μ, τ, γ	Jets	E ^{miss}	$\int Ldt \ [fb^{-1}]$	Mass limit	0	Reference
Inclusive searches	$ \begin{array}{c} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{qq}, \overline{q} \rightarrow q \overline{q}_{1}^{0} \\ \overline{qg}, \overline{g} \rightarrow q \overline{q}_{2}^{0} \\ \overline{qg}, \overline{q} \rightarrow q \overline{q}_{2}^{0} \\ \overline{qg}, \overline{q}, \overline{q} \\ \overline{qg}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{qg}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{qg}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{qg}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{qg}, \overline{q}, \overline{q}$) 21 P) 2	$\begin{matrix} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ e, \mu (SS) \\ 2 e, \mu \\ 1 - 2 \tau \\ 2 \gamma \\ e, \mu + \gamma \\ \gamma \\ 0 \\ \end{matrix}$	2-6 jets 4 jets 7-10 jets 2-6 jets 2-6 jets 2-4 jets 3 jets 2-4 jets 0-2 jets 0 0 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 5.8 20.3 20.3 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q. g 1.24 Tr q. g 1.1 TeV q 740 GeV g 1.3 TeV g 1.3 TeV g 1.1 TeV g 1.3 TeV g 1.1 TeV g 1.1 TeV g 1.24 Tr g 1.24 TeV g 900 GeV F 619 GeV G 619 GeV G 690 GeV F ¹² Scale 645 GeV	1.8 TeV $m(\tilde{Q})=m(\tilde{Q})$ eV $m(\tilde{Q})=m(\tilde{Q})$ $any m(\tilde{Q})$ $m(\tilde{Q}^2_1) = 0 \text{ GeV}$ $m(\tilde{\chi}^2_1) = 0 \text{ GeV}$ $m(\tilde{\chi}^2_1) < 200 \text{ GeV}, m(\tilde{\chi}^{**}) = 0.5(m(\tilde{\chi}^2_1)+m(\tilde{Q}))$ $m(\tilde{\chi}^2_1) < 650 \text{ GeV}$ eV $\tan\beta < 15$ 4 TeV $\tan\beta < 15$ 4 TeV $\tan\beta > 18$ $m(\tilde{\chi}^2_1) > 50 \text{ GeV}$ $m(\tilde{\chi}^2_1) > 50 \text{ GeV}$ $m(\tilde{\chi}^2_1) > 220 \text{ GeV}$ $m(\tilde{\chi}) > 220 \text{ GeV}$ $m(\tilde{\chi}) > 220 \text{ GeV}$ $m(\tilde{\chi}) > 10^4 \text{ eV}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 1208.4688 ATLAS-CONF-2013-007 1208.4688 ATLAS-CONF-2013-026 1209.0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152
g med.	$\widetilde{g} \rightarrow bb \widetilde{\chi}_{1}^{0}$ $\widetilde{g} \rightarrow t \widetilde{\chi}_{2}^{0}$ $\widetilde{g} \rightarrow t \widetilde{\chi}_{2}^{0}$ $\widetilde{g} \rightarrow t \widetilde{\chi}_{2}^{0}$	2	0 e, μ (SS) 0 0	3 b 0-3 b 7-10 jets 3 b	Yes No Yes Yes	12.8 20.7 20.3 12.8	ğ 1.24 To ğ 900 GeV ğ 1.14 TeV ğ 1.15 TeV	eV m(χ ⁰ ₁) < 200 GeV m(χ ⁰ ₁) < 500 GeV / m(χ ⁰ ₁) < 500 GeV / m(χ ⁰ ₁) < 200 GeV / m(χ ⁰ ₁) < 200 GeV	ATLAS-CONF-2012-145 ATLAS-CONF-2013-007 ATLAS-CONF-2013-054 ATLAS-CONF-2012-145
direct production	$\begin{array}{c} \widetilde{\underline{b}}_{22}, \widetilde{\underline{b}}_{1}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{b}}_{12}, \widetilde{\underline{b}}_{11}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{b}}_{12}, 0, 1-\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{12}, (\text{light}), \widetilde{\underline{t}}_{1}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{12}, (\text{light}), \widetilde{\underline{t}}_{1}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{11}, (\text{medium}), \widetilde{\underline{t}}_{1}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{12}, (\text{medium}), \widetilde{\underline{t}}_{1}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{12}, (\text{heavy}), \widetilde{\underline{t}}_{21}, -b\overline{\underline{b}}_{21}^{o}, \\ \widetilde{\underline{t}}_{12}, (\text{heavy}), \widetilde{\underline{t}}_{22}, -b\overline{\underline{t}}_{22}, \\ \widetilde{\underline{t}}_{22}, \widetilde{\underline{t}}_{22}, -\widetilde{\underline{t}}_{1}, +Z \end{array}$	2 .	0 e, μ (SS) 1-2 e, μ 2 e, μ 2 e, μ 0 1 e, μ 0 e, μ (Z) e, μ (Z)	2 b 0-3 b 1-2 b 0-2 jets 0-2 jets 2 b 1 b 2 b 1 b 2 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} m(\widetilde{\chi}_{1}^{Q}) &< 100 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{Q}) &= 2 \; m(\widetilde{\chi}_{1}^{Q}) \\ m(\widetilde{\chi}_{1}^{Q}) &= 55 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{Q}) &= 55 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{Q}) &= 0 \; \text{GeV} \; m(\widetilde{\chi}_{1}) \\ m(\widetilde{\chi}_{1}^{Q}) &= 0 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{Q}) &= 10 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{Q}) &= 10 \; \text{GeV} \end{split}$	ATLAS-CONF-2013-053 ATLAS-CONF-2013-007 1208.4305, 1209.2102 ATLAS-CONF-2013-048 ATLAS-CONF-2013-048 ATLAS-CONF-2013-033 ATLAS-CONF-2013-037 ATLAS-CONF-2013-025 ATLAS-CONF-2013-025
EW direct	$ \begin{array}{l} \widetilde{I}_{L,R}\widetilde{I}_{L,R},\widetilde{I}_{\rightarrow}\widetilde{\chi}_{1}^{0}\\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1},\widetilde{\chi}_{1}^{+}\rightarrow\widetilde{I}v\left(\widetilde{I}^{v}\right)\\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1},\widetilde{\chi}_{1}^{+}\rightarrow\widetilde{I}v\left(\widetilde{I}^{v}\right)\\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2},\widetilde{\chi}_{1}^{+}\rightarrow\widetilde{I}v\left(\widetilde{I}^{v}\right)\\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2}^{0}\rightarrow\widetilde{I}_{1}v\widetilde{I}_{1}(\widetilde{I}^{v}v), I\widetilde{v}\widetilde{I}_{1}(\widetilde{\chi}^{v})\\ \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2}^{0}\rightarrow W^{0}\widetilde{\chi}_{1}^{0}Z^{(v)}\widetilde{\chi}_{1}^{0} \end{array} $	(v v)	2 e, μ 2 e, μ 2 τ 3 e, μ 3 e, μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	Ν 85-315 GeV 1 85-315 GeV χ [±] ₁ 125-450 GeV χ [±] ₁ 180-330 GeV χ [±] ₁ χ [±] ₂ 600 GeV 1315 GeV χ [±] ₁ χ [±] ₂ δ00 GeV 1315 GeV	$\begin{split} m(\widetilde{\chi}_{1}^{0}) &= 0 \; \text{GeV} \\ m(\widetilde{\chi}_{1}^{0}) &= 0 \; \text{GeV}, \; m(\widetilde{l}, \widetilde{v}) &= 0.5(m(\widetilde{\chi}_{1}^{*}) + m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{0}) &= 0 \; \text{GeV}, \; m(\widetilde{\tau}, \widetilde{v}) &= 0.5(m(\widetilde{\chi}_{1}^{*}) + m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{*}) &= m(\widetilde{\chi}_{2}^{0}), \; m(\widetilde{\chi}_{1}^{0}) = 0, \; m(\widetilde{l}, \widetilde{v}) &= 0.5(m(\widetilde{\chi}_{1}^{*}) + m(\widetilde{\chi}_{1}^{0})) \\ m(\widetilde{\chi}_{1}^{*}) &= m(\widetilde{\chi}_{2}^{0}), \; m(\widetilde{\chi}_{1}^{0}) = 0, \; m(\widetilde{\chi}_{1}^{0}) = 0, \; \text{sleptons decoupled} \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035
particles	Direct $\widetilde{\chi}_1^* \widetilde{\chi}_1^*$ prod., long-liv Stable $\widetilde{\chi}_1$, R-hadrons GMSB, stable $\widetilde{\chi}$, low β GMSB, $\widetilde{\chi}_1^0 \rightarrow \gamma \widetilde{G}$, long-lived $\widetilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	ved $\widetilde{\chi}_1^{\pm}$	0 0-2 e, μ 2 e, μ 2 γ 1 e, μ	1 jet 0 0 0 0	Yes Yes Yes Yes Yes	4.7 4.7 4.7 4.7 4.4	χ ² 220 GeV g 985 GeV τ 300 GeV χ ⁰ 230 GeV q 700 GeV	$\begin{split} 1 < \tau(\widetilde{\chi}_1^*) < 10 \text{ ns} \\ 5 < \tan\beta < 20 \\ 0.4 < \tau(\widetilde{\chi}_1^0) < 2 \text{ ns} \\ 1 \text{ mm} < c\tau < 1 \text{ m}, \ \widetilde{g} \text{ decoupled} \end{split}$	1210.2852 1211.1597 1211.1597 1304.6310 1210.7451
RPV	$ \begin{array}{c} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e (\mu) \\ Bilinear RPV CMSSM \\ \widetilde{X}_{1}^{+}\widetilde{X}_{1}^{-}\widetilde{X}_{1}^{+} \rightarrow W\widetilde{X}_{0}^{0}, \widetilde{\chi}_{0}^{0} \rightarrow eev_{\mu} \\ \widetilde{X}_{1}^{+}\widetilde{X}_{1}^{-}\widetilde{X}_{1}^{+} \rightarrow W\widetilde{X}_{0}^{0}, \widetilde{\chi}_{0}^{0} \rightarrow trv_{e}, \\ \widetilde{g}^{+} \rightarrow qq \\ \widetilde{g} \rightarrow qq, \\ \widetilde{g} \rightarrow t, \widetilde{t}, \widetilde{t} \rightarrow bs \end{array} $		2 e, μ e,μ + τ 1 e, μ 4 e, μ e, μ + τ 0 e, μ (SS)	0 0 7 jets 0 0 6 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.6 4.7 20.7 20.7 4.6 20.7	v̄, 1.1 TeV q̄, g̃ 1.2 Te v̄, 760 GeV v̄, 350 GeV g̃ 666 GeV g̃ 880 GeV	1.61 TeV $\lambda_{31}^{-}=0.10, \lambda_{122}=0.05$ $\lambda_{31}^{-}=0.10, \lambda_{1(2)33}=0.05$ IV $m(\hat{Q}) = m(\hat{Q}), c_{1,23} < 1 \text{ mm}$ $m(\hat{\chi}_{1}^{2}) > 300 \text{ GeV}, \lambda_{121} > 0$ $m(\hat{\chi}_{1}^{2}) > 80 \text{ GeV}, \lambda_{133} > 0$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 1210.4813 ATLAS-CONF-2013-007
Other	Scalar gluon WIMP interaction (D5, Dir	rac χ)	0 0	4 jets mono-jet	- Yes	4.6 10.5	sgluon 100-287 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi) < 80 \; \text{GeV}, \text{ limit of} < 687 \; \text{GeV} \text{ for D8}$	1210.4826 ATLAS-CONF-2012-147
	¥.	s = 7 TeV	∦s : nart	= 8 TeV	¶s = 8 full c	TeV	10 ⁻¹ 1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

ATLAS Preliminary

 $\int Ldt = (4.4 - 20.7) \text{ fb}^{-1}$ $\sqrt{s} = 7, 8 \text{ TeV}$

MAKING THE MENU

- Need low threshold leptons
 - to keep SM (W and Z) and the Higgs is light
 - SUSY cascades can result in lots of low p_T stuff
- Impose isolation requirements
 - this reduces rate for a given threshold, but can become inefficient at higher energy
 - add higher p_T un-isolated thresholds
- Make multiple object selections (2 electrons, or 1 electron + 1 muon)
 - results in many combinations, could be optimized per "signal" channel with competing interests

SO, YOU HAVE AN ANALYSIS IDEA?

Present the analysis to your colleagues

- Propose trigger item
 - Calculate rate (both total and unique)
 - Present plan for measuring efficiency + any back-up trigger needed
 - Present plan for how to adapt with changing conditions
 - should item be pre-scaled? Thresholds increased?

Bandwidth allocation is driven by priorities of the experiment

MOVING FORWARD?

- How to cope with additional pile-up for LHC Run 2 and beyond?
 - Add more information or increase the quality of information available
 - ATLAS plans to increase granularity of Level 1 calorimeter information, add topology information at L1, and have fast-tracking input to L2
 - For "Run3", tracking would likely be added at Level 1

ELECTROWEAK OVERVIEW

CMS

CMS

$\sqrt{s} = 7 \text{ TeV}$

ZZ PRODUCTION

ATLAS

PRODUCTION OF ZZ

Predicted ZZ cross section, with NLO and natural Z width: $5.89^{+0.22}_{-0.18}~pb$

Higgs also produces ZZ, but one Z is offshell – "contamination" of this analysis expected at the level of 3%

FOUR CHARGED LEPTON CHANNEL

FIDUCIAL CROSS SECTION

EXTRAPOLATE TO TOTAL PHASE SPACE?

$$\sigma_{ZZ}^{\text{total}} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A_{ZZ} \times C_{ZZ} \times \mathcal{L} \times \text{BF}}$$

$$\mathbf{A}_{zz} = \text{Acceptance}$$

$$\frac{\text{Branching}}{ZZ \to \ell^+ \ell^- \ell'^+ \ell'^- \quad 0.804 \pm 0.001 \pm 0.010}{2Z \to \ell^+ \ell^- \nu \bar{\nu} \quad 0.081 \pm 0.001 \pm 0.004}$$

Keep backgrounds low!!

SYSTEMATICS (AS % OF A OR C)

Source	$ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-$	$ZZ^* \to \ell^+ \ell^- \ell'^+ \ell'^-$	$ZZ \to \ell^+ \ell^- \nu \bar{\nu}$
	C_{ZZ}		
Lepton efficiency	3.0%	3.1%	1.3%
Lepton energy/momentum	0.2%	0.3%	1.1%
Lepton isolation and impact parameter	1.9%	2.0%	0.6%
$\text{Jet} + E_{\text{T}}^{\text{miss}} \text{ modelling}$	—	_	0.8%
Jet veto	—	—	0.9%
Trigger efficiency	0.2%	0.2%	0.4%
PDF and scale	1.6%	1.5%	0.4%
	A_{ZZ}		
Jet veto	—	-	2.3%
PDF and scale	0.6%	-	1.9%
Generator modelling and parton shower	1.1%	_	4.6%

BACKGROUNDS

for the 4 ch. lepton channel, backgrounds come from jets faking electrons or muons measured from data (f), and scaled-up from lepton + jets sample (N) corrected for the signal.

	$e^+e^-e^+e^-$	$\mu^+\mu^-\mu^+\mu^-$	$e^+e^-\mu^+\mu^-$	$\ell^+\ell^-\ell'^+\ell'^-$
$(+) \ N(\ell\ell\ell j) \times f$	8.85 ± 0.98	0.21 ± 0.21	10.63 ± 1.06	19.70 ± 1.46
$(-)N(ZZ) \times f$	0.29 ± 0.18	$0.20^{+0.25}_{-0.20}$	0.56 ± 0.28	1.05 ± 0.42
$(-)N(\ell\ell jj) imes f^2$	4.24 ± 0.23	1.10 ± 0.31	4.24 ± 0.23	9.58 ± 0.45
Background estimate, $N(BG)$	$4.3 \pm 1.4 (\text{stat.})$	< 0.91	$5.8 \pm 1.6 (\text{stat.})$	$9.1 \pm 2.3 (\text{stat.})$
	$\pm 0.6(\mathrm{syst.})$		± 0.9 (syst.)	$\pm 1.3(\text{syst.})$

for the channel with neutrinos, the backgrounds are electroweak processes

	Process	$e^+e^-E_{\rm T}^{\rm miss}$	$\mu^+\mu^- E_{\rm T}^{\rm miss}$	$\ell^+\ell^- E_{\rm T}^{\rm miss}$
7	$t\bar{t}, Wt, WW, Z \to \tau^+ \tau^-$	$8.5\pm2.1\pm0.5$	$10.6\pm2.6\pm0.6$	$19.1 \pm 2.3 \pm 1.0$
	WZ	$8.9\pm0.5\pm0.4$	$11.9\pm0.5\pm0.3$	$20.8\pm0.7\pm0.5$
data-driven	$Z \to \mu^+ \mu^-, e^+ e^- + \text{jets}$	$2.6\pm0.7\pm1.0$	$2.7\pm0.8\pm1.2$	$5.3\pm1.1\pm1.6$
4	W+ jets	$0.7\pm0.3\pm0.3$	$0.7\pm0.2\pm0.2$	$1.5\pm0.4\pm0.4$
	$W\gamma$	$0.1\pm0.1\pm0.0$	$0.2\pm0.1\pm0.0$	$0.3\pm0.1\pm0.0$
	Total	$20.8 \pm 2.3 \pm 1.2$	$26.1 \pm 2.8 \pm 1.4$	$46.9 \pm 4.8 \pm 1.9$
				23

DO WE KNOW WHAT WE ARE DOING?

for the I⁺I⁻I⁺I⁻ channel

WHAT ABOUT FOR THIS CHANNEL?

for the channel with two neutrinos

RESULTS

measured:

 $\sigma_{ZZ}^{\text{tot}} = 6.7 \pm 0.7 \text{ (stat.)} ^{+0.4}_{-0.3} \text{ (syst.)} \pm 0.3 \text{ (lumi.) pb.}$

TOP QUARK OVERVIEW

CMS

CMS Preliminary, $\sqrt{s} = 7$ TeV

28

CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$

CMS Preliminary

t-channel single top quark production

ASSOCIATED PRODUCTION: TOP QUARK PAIRS AND W/Z

CMS

PRODUCTION

NLO calculation for ttW:

NLO calculation for ttZ:

 $0.169^{+0.029}_{-0.051}\,\mathrm{pb}$

 $0.137^{+0.012}_{-0.016}\,\mathrm{pb}$

Most important diagrams for ttV

Testing the SM at the TeV scale!

TRILEPTON ANALYIS

$pp \to t\bar{t}Z \to (t \to b\ell^{\pm}\nu)(t \to bjj)(Z \to \ell^{\pm}\ell^{\mp})$ (with $\ell = e \text{ or } \mu$)

TRILEPTON ANALYIS

 $pp \to t\bar{t}Z \to (t \to b\ell^{\pm}\nu)(t \to bjj)(Z \to \ell^{\pm}\ell^{\mp})$

(with $\ell = e \text{ or } \mu$)

Z provides powerful constraint! two same-flavor, opposite-sign leptons (pT > 20 GeV) that give Z mass (81 – 100 GeV)

two b-quarks!

three jets, at least two b-tags additional lepton > 10 GeV

transverse momentum of Z system > 35 GeV

scalar sum of p_T of all jets > 120 GeV

TRILEPTON RESULT

SAME-SIGN DILEPTONS (V+TTBAR)

 $pp \rightarrow t\bar{t}W \rightarrow (t \rightarrow b\ell^{\pm}\nu)(t \rightarrow bjj)(W \rightarrow \ell^{\pm}\nu)$ $pp \rightarrow t\bar{t}Z \rightarrow (t \rightarrow b\ell^{\pm}\nu)(t \rightarrow bjj)(Z \rightarrow \ell^{\pm}\ell^{\mp})$

SAME-SIGN DILEPTONS (V+TTBAR)

$$pp \to t\bar{t}W \to (t \to b\ell^{\pm}\nu)(t \to bjj)(W \to \ell^{\pm}\nu)$$
$$pp \to t\bar{t}Z \to (t \to b\ell^{\pm}\nu)(t \to bjj)(Z \to \ell^{\pm}\ell^{\mp})$$

First, we want an orthogonal selection: veto events that pass trilepton analysis cuts

requiring three jets, at least one b-tagged

two same-sign leptons pT > 55 (30) GeV, with invariant mass > 8 GeV

Why is the Z even included in this selection?

SAME-SIGN RESULTS

backgrounds are fairly low

ttV can be accessed

$$\sigma_{t\bar{t}V} = 0.43^{+0.17}_{-0.15}$$
 (stat.) $^{+0.09}_{-0.07}$ (syst.) pb

SUMMARY

TTBAR RESONANCE SEARCH

ATLAS

USING LEPTON + JETS CHANNEL

Resolved

- Trigger: low p_T single lepton (18 – 22 GeV depending on object)
- jets assigned via minimization:

$$\begin{split} \chi^2 &= \left[\frac{m_{jj} - m_W}{\sigma_W}\right]^2 \\ &+ \left[\frac{m_{jjb} - m_{jj} - m_{t_h - W}}{\sigma_{t_h - W}}\right]^2 + \left[\frac{m_{j\ell\nu} - m_{t_\ell}}{\sigma_{t_\ell}}\right]^2 \\ &+ \left[\frac{(p_{\mathrm{T}, jjb} - p_{\mathrm{T}, j\ell\nu}) - (p_{\mathrm{T}, t_h} - p_{\mathrm{T}, t_\ell})}{\sigma_{\mathrm{diff} p_{\mathrm{T}}}}\right]^2, \end{split}$$

Boosted

- Trigger: large (R=1.0) radius high p_T (240 GeV) single jet trigger
- offline single jet p_T cut is 350 GeV
- the large jet is taken to have the W-> jets, so missing E_T provides the neutrino information

MASS RECONSTRUCTION (SIMULATION)

CONTROL REGION: MULTI-JET ENRICHED

Require Missing ET < 50 GeV and m_{T} < 50 GeV

For muons, also require significant impact parameter to enrich in heavy flavor

electrons (resolved)

Data

Single top

Multi-jets

Diboson

⊡tī

e + jets resolved

1.2

1.6

m_t^{reco} [TeV]

W+jets

Z+jets

 10^{6}

10⁵

10⁴

 10^{3}

10²

10

1

2

0

n

2

Λ

04

0.6

0.8

TLAS

 $Ldt = 4.7 \text{ fb}^{-1}$

 $\sqrt{s} = 7 \text{ TeV}$

Events / 0.2 TeV

Data/Bkg

muons (resolved)

CONTROL REGION: MULTI-JET ENRICHED

	Resolved se	lection	Boosted s	election	
	uncertaint	y [%]	uncertair	nty [%]	
Systematic effect	tot. bkg.	Z'	tot. bkg.	Z'	
Luminosity	3.3	3.9	3.5	3.9	
PDF	4.7	3.2	7.3	1.5	
ISR/FSR	0.5	—	0.9	_	
Parton shower and fragm.	0.1	—	7.4	_	
$t\bar{t}$ normalization	8.2	—	9.0	—	
$t\bar{t}$ EW virtual correction	1.9	—	4.2	—	
$t\bar{t}$ NLO scale variation	1.2	—	8.9	—	
W+jets $bb+cc+c$ vs. light	1.7	—	1.1	—	Look at 1 6 TeV 7'
W+jets bb variation	1.3	—	1.1	Ŧ	avaluate exctemation
W+jets c variation	0.8	—	0.1		evaluate systematics
W+jets normalization	1.3	—	1.5	—	
Multi-jets norm, e +jets	1.7	—	0.4	—	
Multi-jets norm, μ +jets	1.0	—	1.1	_	
JES, small-radius jets	7.9	3.1	0.6	0.4	
JES+JMS, large-radius jets	0.2	4.7	17.3	2.8	
Jet energy resolution	1.3	0.7	0.5	0.2	
Jet vertex fraction	1.4	1.8	1.9	1.9	
<i>b</i> -tag efficiency	3.8	7.9	6.1	3.7	
c-tag efficiency	1.2	0.6	0.1	2.6	
Mistag rate	1.0	0.3	0.6	0.1	
Electron efficiency	0.6	0.7	0.5	0.5	
Muon efficiency	0.9	0.9	0.6	0.6	
All systematic effects	14.1	11.2	25.4	7.1	46

BACKGROUNDS

uncertainties listed are systematics

	Type	Resolved select	ion Boosted selection
	$\overline{t\overline{t}}$	44200 ± 7000	940 ± 260
	Single top	$3200~\pm~500$	$50~\pm~10$
	Multi-jets e	$1600~\pm~1000$	$8~\pm~5$
from data	Multi-jets μ	$1000~\pm~600$	19 ± 11
	W+jets	$7000~\pm~2200$	$90~\pm~30$
	Z+jets	$800~\pm~500$	11 ± 6
	Dibosons	120 ± 50	$0.9~\pm~0.6$
	Total	58000 ± 8000	1120 ± 280
	Data	61931	1078

HOW DID WE DO?

HOW DID WE DO?

electron channel

resolved category: p_T of leading jet

boosted category: p_T of hadronic top candidate (large jet)

HOW DID WE DO?

muon channel

resolved category: p_T of leading jet

boosted category: p_T of hadronic top candidate (large jet)

RESULTS: SKIPPING TO THE PUNCHLINE

Both channels, both methods

TRANSLATING RESULTS TO LIMITS: Z'

SINGLE TOP T-CHANNEL

CMS

OVERVIEW

leading order t-channel production

two channels: muon and electron

muon channel: 17 GeV trigger

electron channel: 27 GeV trigger then 25 GeV electron + 30 GeV jet

STATISTICS

	Process	Muon yield	Electron yield
	<i>t</i> -channel	617 ± 3	337 ± 2
	tW channel	107 ± 1	70.2 ± 0.9
	s-channel	25.6 ± 0.5	14.7 ± 0.4
	$t\overline{t}$	661 ± 6	484 ± 5
	W + light partons	92 ± 7	38 ± 4
normalization from	$\operatorname{Wc}(\overline{c})$	432 ± 14	201 ± 9
data	$Wb(\overline{b})$	504 ± 14	236 ± 10
	Z + jets	87 ± 3	13 ± 1
	Dibosons	23.3 ± 0.4	10.7 ± 0.3
data driven>	QCD multijet	77 ± 3	62 ± 3
	Total	2626 ± 22	1468 ± 16
	Data	3076	1588